mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
fix(config): use new get_config across the app, use correct settings
This commit is contained in:
parent
7b1f9409bc
commit
897fe497dc
@ -65,7 +65,7 @@ class ApiDependencies:
|
||||
logger.info(f"InvokeAI version {__version__}")
|
||||
logger.info(f"Root directory = {str(config.root_path)}")
|
||||
|
||||
output_folder = config.output_path
|
||||
output_folder = config.outputs_path
|
||||
if output_folder is None:
|
||||
raise ValueError("Output folder is not set")
|
||||
|
||||
|
@ -3,9 +3,9 @@ import sys
|
||||
from importlib.util import module_from_spec, spec_from_file_location
|
||||
from pathlib import Path
|
||||
|
||||
from invokeai.app.services.config.config_default import InvokeAIAppConfig
|
||||
from invokeai.app.services.config.config_default import get_config
|
||||
|
||||
custom_nodes_path = Path(InvokeAIAppConfig.get_config().custom_nodes_path.resolve())
|
||||
custom_nodes_path = Path(get_config().custom_nodes_path.resolve())
|
||||
custom_nodes_path.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
custom_nodes_init_path = str(custom_nodes_path / "__init__.py")
|
||||
|
@ -33,7 +33,7 @@ from invokeai.app.invocations.fields import (
|
||||
FieldKind,
|
||||
Input,
|
||||
)
|
||||
from invokeai.app.services.config.config_default import InvokeAIAppConfig
|
||||
from invokeai.app.services.config.config_default import get_config
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.app.util.metaenum import MetaEnum
|
||||
from invokeai.app.util.misc import uuid_string
|
||||
@ -191,7 +191,7 @@ class BaseInvocation(ABC, BaseModel):
|
||||
@classmethod
|
||||
def get_invocations(cls) -> Iterable[BaseInvocation]:
|
||||
"""Gets all invocations, respecting the allowlist and denylist."""
|
||||
app_config = InvokeAIAppConfig.get_config()
|
||||
app_config = get_config()
|
||||
allowed_invocations: set[BaseInvocation] = set()
|
||||
for sc in cls._invocation_classes:
|
||||
invocation_type = sc.get_type()
|
||||
|
@ -866,7 +866,7 @@ class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||||
vae.to(dtype=torch.float16)
|
||||
latents = latents.half()
|
||||
|
||||
if self.tiled or context.config.get().tiled_decode:
|
||||
if self.tiled or context.config.get().force_tiled_decode:
|
||||
vae.enable_tiling()
|
||||
else:
|
||||
vae.disable_tiling()
|
||||
|
@ -279,9 +279,9 @@ class ModelInstallService(ModelInstallServiceBase):
|
||||
def sync_to_config(self) -> None:
|
||||
"""Synchronize models on disk to those in the config record store database."""
|
||||
self._scan_models_directory()
|
||||
if autoimport := self._app_config.autoimport_dir:
|
||||
if self._app_config.autoimport_path:
|
||||
self._logger.info("Scanning autoimport directory for new models")
|
||||
installed = self.scan_directory(self._app_config.root_path / autoimport)
|
||||
installed = self.scan_directory(self._app_config.autoimport_path)
|
||||
self._logger.info(f"{len(installed)} new models registered")
|
||||
self._logger.info("Model installer (re)initialized")
|
||||
|
||||
@ -365,7 +365,7 @@ class ModelInstallService(ModelInstallServiceBase):
|
||||
) -> Path:
|
||||
"""Download the model file located at source to the models cache and return its Path."""
|
||||
model_hash = sha256(str(source).encode("utf-8")).hexdigest()[0:32]
|
||||
model_path = self._app_config.models_convert_cache_path / model_hash
|
||||
model_path = self._app_config.convert_cache_path / model_hash
|
||||
|
||||
# We expect the cache directory to contain one and only one downloaded file.
|
||||
# We don't know the file's name in advance, as it is set by the download
|
||||
@ -591,7 +591,7 @@ class ModelInstallService(ModelInstallServiceBase):
|
||||
|
||||
# add 'main' specific fields
|
||||
if isinstance(info, CheckpointConfigBase):
|
||||
legacy_conf = (self.app_config.root_dir / self.app_config.legacy_conf_dir / info.config_path).resolve()
|
||||
legacy_conf = (self.app_config.legacy_conf_path / info.config_path).resolve()
|
||||
info.config_path = legacy_conf.as_posix()
|
||||
self.record_store.add_model(info)
|
||||
return info.key
|
||||
|
@ -78,13 +78,13 @@ class ModelManagerService(ModelManagerServiceBase):
|
||||
logger.setLevel(app_config.log_level.upper())
|
||||
|
||||
ram_cache = ModelCache(
|
||||
max_cache_size=app_config.ram_cache_size,
|
||||
max_vram_cache_size=app_config.vram_cache_size,
|
||||
max_cache_size=app_config.ram,
|
||||
max_vram_cache_size=app_config.vram,
|
||||
logger=logger,
|
||||
execution_device=execution_device,
|
||||
)
|
||||
convert_cache = ModelConvertCache(
|
||||
cache_path=app_config.models_convert_cache_path, max_size=app_config.convert_cache_size
|
||||
cache_path=app_config.convert_cache_path, max_size=app_config.convert_cache
|
||||
)
|
||||
loader = ModelLoadService(
|
||||
app_config=app_config,
|
||||
|
@ -151,7 +151,7 @@ class SqliteSessionQueue(SessionQueueBase):
|
||||
|
||||
# TODO: how does this work in a multi-user scenario?
|
||||
current_queue_size = self._get_current_queue_size(queue_id)
|
||||
max_queue_size = self.__invoker.services.configuration.get_config().max_queue_size
|
||||
max_queue_size = self.__invoker.services.configuration.max_queue_size
|
||||
max_new_queue_items = max_queue_size - current_queue_size
|
||||
|
||||
priority = 0
|
||||
|
@ -423,7 +423,7 @@ class ConfigInterface(InvocationContextInterface):
|
||||
The app's config.
|
||||
"""
|
||||
|
||||
return self._services.configuration.get_config()
|
||||
return self._services.configuration
|
||||
|
||||
|
||||
class UtilInterface(InvocationContextInterface):
|
||||
|
@ -9,14 +9,14 @@ from einops import repeat
|
||||
from PIL import Image
|
||||
from torchvision.transforms import Compose
|
||||
|
||||
from invokeai.app.services.config.config_default import InvokeAIAppConfig
|
||||
from invokeai.app.services.config.config_default import get_config
|
||||
from invokeai.backend.image_util.depth_anything.model.dpt import DPT_DINOv2
|
||||
from invokeai.backend.image_util.depth_anything.utilities.util import NormalizeImage, PrepareForNet, Resize
|
||||
from invokeai.backend.util.devices import choose_torch_device
|
||||
from invokeai.backend.util.logging import InvokeAILogger
|
||||
from invokeai.backend.util.util import download_with_progress_bar
|
||||
|
||||
config = InvokeAIAppConfig.get_config()
|
||||
config = get_config()
|
||||
logger = InvokeAILogger.get_logger(config=config)
|
||||
|
||||
DEPTH_ANYTHING_MODELS = {
|
||||
|
@ -6,7 +6,7 @@ import pathlib
|
||||
import numpy as np
|
||||
import onnxruntime as ort
|
||||
|
||||
from invokeai.app.services.config.config_default import InvokeAIAppConfig
|
||||
from invokeai.app.services.config.config_default import get_config
|
||||
from invokeai.backend.util.devices import choose_torch_device
|
||||
from invokeai.backend.util.util import download_with_progress_bar
|
||||
|
||||
@ -24,7 +24,7 @@ DWPOSE_MODELS = {
|
||||
},
|
||||
}
|
||||
|
||||
config = InvokeAIAppConfig.get_config()
|
||||
config = get_config
|
||||
|
||||
|
||||
class Wholebody:
|
||||
|
@ -6,9 +6,11 @@ import torch
|
||||
from PIL import Image
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from invokeai.app.services.config import get_invokeai_config
|
||||
from invokeai.app.services.config.config_default import get_config
|
||||
from invokeai.backend.util.devices import choose_torch_device
|
||||
|
||||
config = get_config()
|
||||
|
||||
|
||||
def norm_img(np_img):
|
||||
if len(np_img.shape) == 2:
|
||||
@ -29,7 +31,7 @@ def load_jit_model(url_or_path, device):
|
||||
class LaMA:
|
||||
def __call__(self, input_image: Image.Image, *args: Any, **kwds: Any) -> Any:
|
||||
device = choose_torch_device()
|
||||
model_location = get_invokeai_config().models_path / "core/misc/lama/lama.pt"
|
||||
model_location = get_config().models_path / "core/misc/lama/lama.pt"
|
||||
model = load_jit_model(model_location, device)
|
||||
|
||||
image = np.asarray(input_image.convert("RGB"))
|
||||
|
@ -8,9 +8,9 @@ be suppressed or deferred
|
||||
import numpy as np
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from invokeai.app.services.config import InvokeAIAppConfig
|
||||
from invokeai.app.services.config.config_default import get_config
|
||||
|
||||
config = InvokeAIAppConfig.get_config()
|
||||
config = get_config()
|
||||
|
||||
|
||||
class PatchMatch:
|
||||
|
@ -33,11 +33,11 @@ from PIL import Image, ImageOps
|
||||
from transformers import AutoProcessor, CLIPSegForImageSegmentation
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from invokeai.app.services.config import InvokeAIAppConfig
|
||||
from invokeai.app.services.config.config_default import get_config
|
||||
|
||||
CLIPSEG_MODEL = "CIDAS/clipseg-rd64-refined"
|
||||
CLIPSEG_SIZE = 352
|
||||
config = InvokeAIAppConfig.get_config()
|
||||
config = get_config()
|
||||
|
||||
|
||||
class SegmentedGrayscale(object):
|
||||
|
@ -118,7 +118,7 @@ class ModelMerger(object):
|
||||
config = self._installer.app_config
|
||||
store = self._installer.record_store
|
||||
base_models: Set[BaseModelType] = set()
|
||||
variant = None if self._installer.app_config.full_precision else "fp16"
|
||||
variant = None if self._installer.app_config.precision == "float32" else "fp16"
|
||||
|
||||
assert (
|
||||
len(model_keys) <= 2 or interp == MergeInterpolationMethod.AddDifference
|
||||
|
@ -21,7 +21,7 @@ from diffusers.utils.outputs import BaseOutput
|
||||
from pydantic import Field
|
||||
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
||||
|
||||
from invokeai.app.services.config import InvokeAIAppConfig
|
||||
from invokeai.app.services.config.config_default import get_config
|
||||
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter
|
||||
from invokeai.backend.ip_adapter.unet_patcher import UNetPatcher
|
||||
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningData
|
||||
@ -251,7 +251,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
"""
|
||||
if xformers is available, use it, otherwise use sliced attention.
|
||||
"""
|
||||
config = InvokeAIAppConfig.get_config()
|
||||
config = get_config()
|
||||
if config.attention_type == "xformers":
|
||||
self.enable_xformers_memory_efficient_attention()
|
||||
return
|
||||
|
@ -8,7 +8,7 @@ import torch
|
||||
from diffusers import UNet2DConditionModel
|
||||
from typing_extensions import TypeAlias
|
||||
|
||||
from invokeai.app.services.config import InvokeAIAppConfig
|
||||
from invokeai.app.services.config.config_default import get_config
|
||||
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
|
||||
ConditioningData,
|
||||
ExtraConditioningInfo,
|
||||
@ -54,7 +54,7 @@ class InvokeAIDiffuserComponent:
|
||||
:param model: the unet model to pass through to cross attention control
|
||||
:param model_forward_callback: a lambda with arguments (x, sigma, conditioning_to_apply). will be called repeatedly. most likely, this should simply call model.forward(x, sigma, conditioning)
|
||||
"""
|
||||
config = InvokeAIAppConfig.get_config()
|
||||
config = get_config()
|
||||
self.conditioning = None
|
||||
self.model = model
|
||||
self.model_forward_callback = model_forward_callback
|
||||
|
@ -7,11 +7,12 @@ import torch
|
||||
from torch import autocast
|
||||
|
||||
from invokeai.app.services.config import InvokeAIAppConfig
|
||||
from invokeai.app.services.config.config_default import get_config
|
||||
|
||||
CPU_DEVICE = torch.device("cpu")
|
||||
CUDA_DEVICE = torch.device("cuda")
|
||||
MPS_DEVICE = torch.device("mps")
|
||||
config = InvokeAIAppConfig.get_config()
|
||||
config = get_config()
|
||||
|
||||
|
||||
def choose_torch_device() -> torch.device:
|
||||
|
@ -181,6 +181,7 @@ from pathlib import Path
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
from invokeai.app.services.config import InvokeAIAppConfig
|
||||
from invokeai.app.services.config.config_default import get_config
|
||||
|
||||
try:
|
||||
import syslog
|
||||
@ -339,7 +340,7 @@ class InvokeAILogger(object): # noqa D102
|
||||
|
||||
@classmethod
|
||||
def get_logger(
|
||||
cls, name: str = "InvokeAI", config: InvokeAIAppConfig = InvokeAIAppConfig.get_config()
|
||||
cls, name: str = "InvokeAI", config: InvokeAIAppConfig = get_config()
|
||||
) -> logging.Logger: # noqa D102
|
||||
if name in cls.loggers:
|
||||
return cls.loggers[name]
|
||||
|
Loading…
Reference in New Issue
Block a user