InvokeAI/invokeai/backend/model_manager/config.py

342 lines
10 KiB
Python
Raw Normal View History

# Copyright (c) 2023 Lincoln D. Stein and the InvokeAI Development Team
"""
Configuration definitions for image generation models.
Typical usage:
from invokeai.backend.model_manager import ModelConfigFactory
raw = dict(path='models/sd-1/main/foo.ckpt',
name='foo',
base='sd-1',
type='main',
config='configs/stable-diffusion/v1-inference.yaml',
variant='normal',
format='checkpoint'
)
config = ModelConfigFactory.make_config(raw)
print(config.name)
Validation errors will raise an InvalidModelConfigException error.
"""
import time
import torch
from enum import Enum
from typing import Literal, Optional, Type, Union
from pydantic import BaseModel, ConfigDict, Field, TypeAdapter
from diffusers import ModelMixin
from typing_extensions import Annotated, Any, Dict
from .onnx_runtime import IAIOnnxRuntimeModel
class InvalidModelConfigException(Exception):
"""Exception for when config parser doesn't recognized this combination of model type and format."""
class BaseModelType(str, Enum):
"""Base model type."""
Any = "any"
StableDiffusion1 = "sd-1"
StableDiffusion2 = "sd-2"
StableDiffusionXL = "sdxl"
StableDiffusionXLRefiner = "sdxl-refiner"
# Kandinsky2_1 = "kandinsky-2.1"
class ModelType(str, Enum):
"""Model type."""
ONNX = "onnx"
Main = "main"
Vae = "vae"
Lora = "lora"
ControlNet = "controlnet" # used by model_probe
TextualInversion = "embedding"
IPAdapter = "ip_adapter"
CLIPVision = "clip_vision"
T2IAdapter = "t2i_adapter"
class SubModelType(str, Enum):
"""Submodel type."""
UNet = "unet"
TextEncoder = "text_encoder"
TextEncoder2 = "text_encoder_2"
Tokenizer = "tokenizer"
Tokenizer2 = "tokenizer_2"
Vae = "vae"
VaeDecoder = "vae_decoder"
VaeEncoder = "vae_encoder"
Scheduler = "scheduler"
SafetyChecker = "safety_checker"
class ModelVariantType(str, Enum):
"""Variant type."""
Normal = "normal"
Inpaint = "inpaint"
Depth = "depth"
class ModelFormat(str, Enum):
"""Storage format of model."""
Diffusers = "diffusers"
Checkpoint = "checkpoint"
Lycoris = "lycoris"
Onnx = "onnx"
Olive = "olive"
EmbeddingFile = "embedding_file"
EmbeddingFolder = "embedding_folder"
InvokeAI = "invokeai"
class SchedulerPredictionType(str, Enum):
"""Scheduler prediction type."""
Epsilon = "epsilon"
VPrediction = "v_prediction"
Sample = "sample"
Model Manager Refactor: Install remote models and store their tags and other metadata (#5361) * add basic functionality for model metadata fetching from hf and civitai * add storage * start unit tests * add unit tests and documentation * add missing dependency for pytests * remove redundant fetch; add modified/published dates; updated docs * add code to select diffusers files based on the variant type * implement Civitai installs * make huggingface parallel downloading work * add unit tests for model installation manager - Fixed race condition on selection of download destination path - Add fixtures common to several model_manager_2 unit tests - Added dummy model files for testing diffusers and safetensors downloading/probing - Refactored code for selecting proper variant from list of huggingface repo files - Regrouped ordering of methods in model_install_default.py * improve Civitai model downloading - Provide a better error message when Civitai requires an access token (doesn't give a 403 forbidden, but redirects to the HTML of an authorization page -- arrgh) - Handle case of Civitai providing a primary download link plus additional links for VAEs, config files, etc * add routes for retrieving metadata and tags * code tidying and documentation * fix ruff errors * add file needed to maintain test root diretory in repo for unit tests * fix self->cls in classmethod * add pydantic plugin for mypy * use TestSession instead of requests.Session to prevent any internet activity improve logging fix error message formatting fix logging again fix forward vs reverse slash issue in Windows install tests * Several fixes of problems detected during PR review: - Implement cancel_model_install_job and get_model_install_job routes to allow for better control of model download and install. - Fix thread deadlock that occurred after cancelling an install. - Remove unneeded pytest_plugins section from tests/conftest.py - Remove unused _in_terminal_state() from model_install_default. - Remove outdated documentation from several spots. - Add workaround for Civitai API results which don't return correct URL for the default model. * fix docs and tests to match get_job_by_source() rather than get_job() * Update invokeai/backend/model_manager/metadata/fetch/huggingface.py Co-authored-by: Ryan Dick <ryanjdick3@gmail.com> * Call CivitaiMetadata.model_validate_json() directly Co-authored-by: Ryan Dick <ryanjdick3@gmail.com> * Second round of revisions suggested by @ryanjdick: - Fix type mismatch in `list_all_metadata()` route. - Do not have a default value for the model install job id - Remove static class variable declarations from non Pydantic classes - Change `id` field to `model_id` for the sqlite3 `model_tags` table. - Changed AFTER DELETE triggers to ON DELETE CASCADE for the metadata and tags tables. - Made the `id` field of the `model_metadata` table into a primary key to achieve uniqueness. * Code cleanup suggested in PR review: - Narrowed the declaration of the `parts` attribute of the download progress event - Removed auto-conversion of str to Url in Url-containing sources - Fixed handling of `InvalidModelConfigException` - Made unknown sources raise `NotImplementedError` rather than `Exception` - Improved status reporting on cached HuggingFace access tokens * Multiple fixes: - `job.total_size` returns a valid size for locally installed models - new route `list_models` returns a paged summary of model, name, description, tags and other essential info - fix a few type errors * consolidated all invokeai root pytest fixtures into a single location * Update invokeai/backend/model_manager/metadata/metadata_store.py Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com> * Small tweaks in response to review comments: - Remove flake8 configuration from pyproject.toml - Use `id` rather than `modelId` for huggingface `ModelInfo` object - Use `last_modified` rather than `LastModified` for huggingface `ModelInfo` object - Add `sha256` field to file metadata downloaded from huggingface - Add `Invoker` argument to the model installer `start()` and `stop()` routines (but made it optional in order to facilitate use of the service outside the API) - Removed redundant `PRAGMA foreign_keys` from metadata store initialization code. * Additional tweaks and minor bug fixes - Fix calculation of aggregate diffusers model size to only count the size of files, not files + directories (which gives different unit test results on different filesystems). - Refactor _get_metadata() and _get_download_urls() to have distinct code paths for Civitai, HuggingFace and URL sources. - Forward the `inplace` flag from the source to the job and added unit test for this. - Attach cached model metadata to the job rather than to the model install service. * fix unit test that was breaking on windows due to CR/LF changing size of test json files * fix ruff formatting * a few last minor fixes before merging: - Turn job `error` and `error_type` into properties derived from the exception. - Add TODO comment about the reason for handling temporary directory destruction manually rather than using tempfile.tmpdir(). * add unit tests for reporting HTTP download errors --------- Co-authored-by: Lincoln Stein <lstein@gmail.com> Co-authored-by: Ryan Dick <ryanjdick3@gmail.com> Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2024-01-14 19:54:53 +00:00
class ModelRepoVariant(str, Enum):
"""Various hugging face variants on the diffusers format."""
DEFAULT = "default" # model files without "fp16" or other qualifier
FP16 = "fp16"
FP32 = "fp32"
ONNX = "onnx"
OPENVINO = "openvino"
FLAX = "flax"
class ModelConfigBase(BaseModel):
"""Base class for model configuration information."""
path: str
name: str
base: BaseModelType
type: ModelType
format: ModelFormat
key: str = Field(description="unique key for model", default="<NOKEY>")
original_hash: Optional[str] = Field(
description="original fasthash of model contents", default=None
) # this is assigned at install time and will not change
current_hash: Optional[str] = Field(
description="current fasthash of model contents", default=None
) # if model is converted or otherwise modified, this will hold updated hash
description: Optional[str] = Field(default=None)
2023-11-13 23:15:17 +00:00
source: Optional[str] = Field(description="Model download source (URL or repo_id)", default=None)
last_modified: Optional[float] = Field(description="Timestamp for modification time", default_factory=time.time)
model_config = ConfigDict(
use_enum_values=False,
validate_assignment=True,
)
def update(self, attributes: Dict[str, Any]) -> None:
"""Update the object with fields in dict."""
for key, value in attributes.items():
setattr(self, key, value) # may raise a validation error
class _CheckpointConfig(ModelConfigBase):
"""Model config for checkpoint-style models."""
format: Literal[ModelFormat.Checkpoint] = ModelFormat.Checkpoint
config: str = Field(description="path to the checkpoint model config file")
class _DiffusersConfig(ModelConfigBase):
"""Model config for diffusers-style models."""
format: Literal[ModelFormat.Diffusers] = ModelFormat.Diffusers
2024-01-22 19:37:23 +00:00
repo_variant: Optional[ModelRepoVariant] = ModelRepoVariant.DEFAULT
2024-02-01 04:37:59 +00:00
class LoRAConfig(ModelConfigBase):
"""Model config for LoRA/Lycoris models."""
type: Literal[ModelType.Lora] = ModelType.Lora
format: Literal[ModelFormat.Lycoris, ModelFormat.Diffusers]
class VaeCheckpointConfig(ModelConfigBase):
"""Model config for standalone VAE models."""
type: Literal[ModelType.Vae] = ModelType.Vae
format: Literal[ModelFormat.Checkpoint] = ModelFormat.Checkpoint
class VaeDiffusersConfig(ModelConfigBase):
"""Model config for standalone VAE models (diffusers version)."""
type: Literal[ModelType.Vae] = ModelType.Vae
format: Literal[ModelFormat.Diffusers] = ModelFormat.Diffusers
class ControlNetDiffusersConfig(_DiffusersConfig):
"""Model config for ControlNet models (diffusers version)."""
type: Literal[ModelType.ControlNet] = ModelType.ControlNet
format: Literal[ModelFormat.Diffusers] = ModelFormat.Diffusers
2024-02-01 04:37:59 +00:00
class ControlNetCheckpointConfig(_CheckpointConfig):
"""Model config for ControlNet models (diffusers version)."""
type: Literal[ModelType.ControlNet] = ModelType.ControlNet
format: Literal[ModelFormat.Checkpoint] = ModelFormat.Checkpoint
class TextualInversionConfig(ModelConfigBase):
"""Model config for textual inversion embeddings."""
type: Literal[ModelType.TextualInversion] = ModelType.TextualInversion
format: Literal[ModelFormat.EmbeddingFile, ModelFormat.EmbeddingFolder]
class _MainConfig(ModelConfigBase):
"""Model config for main models."""
vae: Optional[str] = Field(default=None)
variant: ModelVariantType = ModelVariantType.Normal
ztsnr_training: bool = False
class MainCheckpointConfig(_CheckpointConfig, _MainConfig):
"""Model config for main checkpoint models."""
type: Literal[ModelType.Main] = ModelType.Main
class MainDiffusersConfig(_DiffusersConfig, _MainConfig):
"""Model config for main diffusers models."""
type: Literal[ModelType.Main] = ModelType.Main
prediction_type: SchedulerPredictionType = SchedulerPredictionType.Epsilon
upcast_attention: bool = False
2024-02-01 04:37:59 +00:00
class ONNXSD1Config(_MainConfig):
"""Model config for ONNX format models based on sd-1."""
type: Literal[ModelType.ONNX] = ModelType.ONNX
format: Literal[ModelFormat.Onnx, ModelFormat.Olive]
base: Literal[BaseModelType.StableDiffusion1] = BaseModelType.StableDiffusion1
prediction_type: SchedulerPredictionType = SchedulerPredictionType.Epsilon
upcast_attention: bool = False
class ONNXSD2Config(_MainConfig):
"""Model config for ONNX format models based on sd-2."""
type: Literal[ModelType.ONNX] = ModelType.ONNX
format: Literal[ModelFormat.Onnx, ModelFormat.Olive]
# No yaml config file for ONNX, so these are part of config
base: Literal[BaseModelType.StableDiffusion2] = BaseModelType.StableDiffusion2
prediction_type: SchedulerPredictionType = SchedulerPredictionType.VPrediction
upcast_attention: bool = True
class IPAdapterConfig(ModelConfigBase):
"""Model config for IP Adaptor format models."""
type: Literal[ModelType.IPAdapter] = ModelType.IPAdapter
format: Literal[ModelFormat.InvokeAI]
class CLIPVisionDiffusersConfig(ModelConfigBase):
"""Model config for ClipVision."""
type: Literal[ModelType.CLIPVision] = ModelType.CLIPVision
format: Literal[ModelFormat.Diffusers]
class T2IConfig(ModelConfigBase):
"""Model config for T2I."""
type: Literal[ModelType.T2IAdapter] = ModelType.T2IAdapter
format: Literal[ModelFormat.Diffusers]
2023-11-13 23:15:17 +00:00
_ONNXConfig = Annotated[Union[ONNXSD1Config, ONNXSD2Config], Field(discriminator="base")]
2023-11-11 00:14:29 +00:00
_ControlNetConfig = Annotated[
2023-11-13 23:12:45 +00:00
Union[ControlNetDiffusersConfig, ControlNetCheckpointConfig],
Field(discriminator="format"),
]
2023-11-13 23:15:17 +00:00
_VaeConfig = Annotated[Union[VaeDiffusersConfig, VaeCheckpointConfig], Field(discriminator="format")]
_MainModelConfig = Annotated[Union[MainDiffusersConfig, MainCheckpointConfig], Field(discriminator="format")]
AnyModelConfig = Union[
_MainModelConfig,
_ONNXConfig,
_VaeConfig,
_ControlNetConfig,
LoRAConfig,
TextualInversionConfig,
IPAdapterConfig,
CLIPVisionDiffusersConfig,
T2IConfig,
]
AnyModelConfigValidator = TypeAdapter(AnyModelConfig)
AnyModel = Union[ModelMixin, torch.nn.Module, IAIOnnxRuntimeModel]
# IMPLEMENTATION NOTE:
# The preferred alternative to the above is a discriminated Union as shown
# below. However, it breaks FastAPI when used as the input Body parameter in a route.
# This is a known issue. Please see:
# https://github.com/tiangolo/fastapi/discussions/9761 and
# https://github.com/tiangolo/fastapi/discussions/9287
# AnyModelConfig = Annotated[
# Union[
# _MainModelConfig,
# _ONNXConfig,
# _VaeConfig,
# _ControlNetConfig,
# LoRAConfig,
# TextualInversionConfig,
# IPAdapterConfig,
# CLIPVisionDiffusersConfig,
# T2IConfig,
# ],
# Field(discriminator="type"),
# ]
2023-11-11 00:14:29 +00:00
class ModelConfigFactory(object):
"""Class for parsing config dicts into StableDiffusion Config obects."""
@classmethod
def make_config(
cls,
model_data: Union[dict, AnyModelConfig],
key: Optional[str] = None,
dest_class: Optional[Type] = None,
timestamp: Optional[float] = None
) -> AnyModelConfig:
"""
Return the appropriate config object from raw dict values.
:param model_data: A raw dict corresponding the obect fields to be
parsed into a ModelConfigBase obect (or descendent), or a ModelConfigBase
object, which will be passed through unchanged.
:param dest_class: The config class to be returned. If not provided, will
be selected automatically.
"""
if isinstance(model_data, ModelConfigBase):
model = model_data
elif dest_class:
model = dest_class.validate_python(model_data)
else:
model = AnyModelConfigValidator.validate_python(model_data)
if key:
model.key = key
if timestamp:
model.last_modified = timestamp
return model