mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
add note about discriminated union and Body() issue; blackified
This commit is contained in:
parent
ef8dcf5fae
commit
8afe517204
@ -755,7 +755,10 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
denoising_end=self.denoising_end,
|
||||
)
|
||||
|
||||
(result_latents, result_attention_map_saver,) = pipeline.latents_from_embeddings(
|
||||
(
|
||||
result_latents,
|
||||
result_attention_map_saver,
|
||||
) = pipeline.latents_from_embeddings(
|
||||
latents=latents,
|
||||
timesteps=timesteps,
|
||||
init_timestep=init_timestep,
|
||||
|
@ -207,7 +207,7 @@ class IntegerMathInvocation(BaseInvocation):
|
||||
elif self.operation == "DIV":
|
||||
return IntegerOutput(value=int(self.a / self.b))
|
||||
elif self.operation == "EXP":
|
||||
return IntegerOutput(value=self.a ** self.b)
|
||||
return IntegerOutput(value=self.a**self.b)
|
||||
elif self.operation == "MOD":
|
||||
return IntegerOutput(value=self.a % self.b)
|
||||
elif self.operation == "ABS":
|
||||
@ -281,7 +281,7 @@ class FloatMathInvocation(BaseInvocation):
|
||||
elif self.operation == "DIV":
|
||||
return FloatOutput(value=self.a / self.b)
|
||||
elif self.operation == "EXP":
|
||||
return FloatOutput(value=self.a ** self.b)
|
||||
return FloatOutput(value=self.a**self.b)
|
||||
elif self.operation == "SQRT":
|
||||
return FloatOutput(value=np.sqrt(self.a))
|
||||
elif self.operation == "ABS":
|
||||
|
@ -33,7 +33,7 @@ def reshape_tensor(x, heads):
|
||||
class PerceiverAttention(nn.Module):
|
||||
def __init__(self, *, dim, dim_head=64, heads=8):
|
||||
super().__init__()
|
||||
self.scale = dim_head ** -0.5
|
||||
self.scale = dim_head**-0.5
|
||||
self.dim_head = dim_head
|
||||
self.heads = heads
|
||||
inner_dim = dim_head * heads
|
||||
@ -91,7 +91,7 @@ class Resampler(nn.Module):
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim ** 0.5)
|
||||
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)
|
||||
|
||||
self.proj_in = nn.Linear(embedding_dim, dim)
|
||||
|
||||
|
@ -6,7 +6,7 @@ import torch
|
||||
|
||||
from invokeai.backend.model_management.libc_util import LibcUtil, Struct_mallinfo2
|
||||
|
||||
GB = 2 ** 30 # 1 GB
|
||||
GB = 2**30 # 1 GB
|
||||
|
||||
|
||||
class MemorySnapshot:
|
||||
|
@ -49,7 +49,7 @@ DEFAULT_MAX_VRAM_CACHE_SIZE = 2.75
|
||||
# actual size of a gig
|
||||
GIG = 1073741824
|
||||
# Size of a MB in bytes.
|
||||
MB = 2 ** 20
|
||||
MB = 2**20
|
||||
|
||||
|
||||
@dataclass
|
||||
|
@ -268,7 +268,14 @@ AnyModelConfig = Union[
|
||||
T2IConfig,
|
||||
]
|
||||
|
||||
# Preferred alternative is a discriminated Union, but it breaks FastAPI when applied to a route.
|
||||
AnyModelConfigValidator = TypeAdapter(AnyModelConfig)
|
||||
|
||||
# IMPLEMENTATION NOTE:
|
||||
# The preferred alternative to the above is a discriminated Union as shown
|
||||
# below. However, it breaks FastAPI when used as the input Body parameter in a route.
|
||||
# This is a known issue. Please see:
|
||||
# https://github.com/tiangolo/fastapi/discussions/9761 and
|
||||
# https://github.com/tiangolo/fastapi/discussions/9287
|
||||
# AnyModelConfig = Annotated[
|
||||
# Union[
|
||||
# _MainModelConfig,
|
||||
@ -284,8 +291,6 @@ AnyModelConfig = Union[
|
||||
# Field(discriminator="type"),
|
||||
# ]
|
||||
|
||||
AnyModelConfigValidator = TypeAdapter(AnyModelConfig)
|
||||
|
||||
|
||||
class ModelConfigFactory(object):
|
||||
"""Class for parsing config dicts into StableDiffusion Config obects."""
|
||||
|
@ -261,7 +261,7 @@ class InvokeAICrossAttentionMixin:
|
||||
if q.shape[1] <= 4096: # (512x512) max q.shape[1]: 4096
|
||||
return self.einsum_lowest_level(q, k, v, None, None, None)
|
||||
else:
|
||||
slice_size = math.floor(2 ** 30 / (q.shape[0] * q.shape[1]))
|
||||
slice_size = math.floor(2**30 / (q.shape[0] * q.shape[1]))
|
||||
return self.einsum_op_slice_dim1(q, k, v, slice_size)
|
||||
|
||||
def einsum_op_mps_v2(self, q, k, v):
|
||||
|
@ -175,7 +175,10 @@ class InvokeAIDiffuserComponent:
|
||||
dim=0,
|
||||
),
|
||||
}
|
||||
(encoder_hidden_states, encoder_attention_mask,) = self._concat_conditionings_for_batch(
|
||||
(
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
) = self._concat_conditionings_for_batch(
|
||||
conditioning_data.unconditioned_embeddings.embeds,
|
||||
conditioning_data.text_embeddings.embeds,
|
||||
)
|
||||
@ -237,7 +240,10 @@ class InvokeAIDiffuserComponent:
|
||||
wants_cross_attention_control = len(cross_attention_control_types_to_do) > 0
|
||||
|
||||
if wants_cross_attention_control:
|
||||
(unconditioned_next_x, conditioned_next_x,) = self._apply_cross_attention_controlled_conditioning(
|
||||
(
|
||||
unconditioned_next_x,
|
||||
conditioned_next_x,
|
||||
) = self._apply_cross_attention_controlled_conditioning(
|
||||
sample,
|
||||
timestep,
|
||||
conditioning_data,
|
||||
@ -245,14 +251,20 @@ class InvokeAIDiffuserComponent:
|
||||
**kwargs,
|
||||
)
|
||||
elif self.sequential_guidance:
|
||||
(unconditioned_next_x, conditioned_next_x,) = self._apply_standard_conditioning_sequentially(
|
||||
(
|
||||
unconditioned_next_x,
|
||||
conditioned_next_x,
|
||||
) = self._apply_standard_conditioning_sequentially(
|
||||
sample,
|
||||
timestep,
|
||||
conditioning_data,
|
||||
**kwargs,
|
||||
)
|
||||
else:
|
||||
(unconditioned_next_x, conditioned_next_x,) = self._apply_standard_conditioning(
|
||||
(
|
||||
unconditioned_next_x,
|
||||
conditioned_next_x,
|
||||
) = self._apply_standard_conditioning(
|
||||
sample,
|
||||
timestep,
|
||||
conditioning_data,
|
||||
|
@ -470,7 +470,10 @@ class TextualInversionDataset(Dataset):
|
||||
|
||||
if self.center_crop:
|
||||
crop = min(img.shape[0], img.shape[1])
|
||||
(h, w,) = (
|
||||
(
|
||||
h,
|
||||
w,
|
||||
) = (
|
||||
img.shape[0],
|
||||
img.shape[1],
|
||||
)
|
||||
|
@ -203,7 +203,7 @@ class ChunkedSlicedAttnProcessor:
|
||||
if attn.upcast_attention:
|
||||
out_item_size = 4
|
||||
|
||||
chunk_size = 2 ** 29
|
||||
chunk_size = 2**29
|
||||
|
||||
out_size = query.shape[1] * key.shape[1] * out_item_size
|
||||
chunks_count = min(query.shape[1], math.ceil((out_size - 1) / chunk_size))
|
||||
|
@ -210,7 +210,7 @@ def parallel_data_prefetch(
|
||||
return gather_res
|
||||
|
||||
|
||||
def rand_perlin_2d(shape, res, device, fade=lambda t: 6 * t ** 5 - 15 * t ** 4 + 10 * t ** 3):
|
||||
def rand_perlin_2d(shape, res, device, fade=lambda t: 6 * t**5 - 15 * t**4 + 10 * t**3):
|
||||
delta = (res[0] / shape[0], res[1] / shape[1])
|
||||
d = (shape[0] // res[0], shape[1] // res[1])
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user