InvokeAI/invokeai/backend/model_manager/search.py

189 lines
6.4 KiB
Python
Raw Normal View History

# Copyright 2023, Lincoln D. Stein and the InvokeAI Team
"""
Abstract base class and implementation for recursive directory search for models.
Example usage:
```
from invokeai.backend.model_manager import ModelSearch, ModelProbe
def find_main_models(model: Path) -> bool:
info = ModelProbe.probe(model)
if info.model_type == 'main' and info.base_type == 'sd-1':
return True
else:
return False
search = ModelSearch(on_model_found=report_it)
found = search.search('/tmp/models')
print(found) # list of matching model paths
print(search.stats) # search stats
```
"""
import os
from abc import ABC, abstractmethod
from logging import Logger
from pathlib import Path
from typing import Callable, Optional, Set, Union
from pydantic import BaseModel, Field
2024-02-23 20:37:51 +00:00
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.backend.util.logging import InvokeAILogger
default_logger: Logger = InvokeAILogger.get_logger()
class SearchStats(BaseModel):
items_scanned: int = 0
models_found: int = 0
models_filtered: int = 0
class ModelSearchBase(ABC, BaseModel):
"""
Abstract directory traversal model search class
Usage:
search = ModelSearchBase(
on_search_started = search_started_callback,
on_search_completed = search_completed_callback,
on_model_found = model_found_callback,
)
models_found = search.search('/path/to/directory')
"""
# fmt: off
on_search_started : Optional[Callable[[Path], None]] = Field(default=None, description="Called just before the search starts.") # noqa E221
on_model_found : Optional[Callable[[Path], bool]] = Field(default=None, description="Called when a model is found.") # noqa E221
on_search_completed : Optional[Callable[[Set[Path]], None]] = Field(default=None, description="Called when search is complete.") # noqa E221
stats : SearchStats = Field(default_factory=SearchStats, description="Summary statistics after search") # noqa E221
logger : Logger = Field(default=default_logger, description="Logger instance.") # noqa E221
# fmt: on
class Config:
arbitrary_types_allowed = True
@abstractmethod
def search_started(self) -> None:
"""
Called before the scan starts.
Passes the root search directory to the Callable `on_search_started`.
"""
pass
@abstractmethod
def model_found(self, model: Path) -> None:
"""
Called when a model is found during search.
:param model: Model to process - could be a directory or checkpoint.
Passes the model's Path to the Callable `on_model_found`.
This Callable receives the path to the model and returns a boolean
to indicate whether the model should be returned in the search
results.
"""
pass
@abstractmethod
def search_completed(self) -> None:
"""
Called before the scan starts.
Passes the Set of found model Paths to the Callable `on_search_completed`.
"""
pass
@abstractmethod
def search(self, directory: Union[Path, str]) -> Set[Path]:
"""
Recursively search for models in `directory` and return a set of model paths.
If provided, the `on_search_started`, `on_model_found` and `on_search_completed`
Callables will be invoked during the search.
"""
pass
class ModelSearch(ModelSearchBase):
"""
Implementation of ModelSearch with callbacks.
Usage:
search = ModelSearch()
search.model_found = lambda path : 'anime' in path.as_posix()
found = search.list_models(['/tmp/models1','/tmp/models2'])
# returns all models that have 'anime' in the path
"""
models_found: Set[Path] = Field(default_factory=set)
2024-02-29 09:05:11 +00:00
config: InvokeAIAppConfig = InvokeAIAppConfig.get_config()
def search_started(self) -> None:
self.models_found = set()
if self.on_search_started:
self.on_search_started(self._directory)
def model_found(self, model: Path) -> None:
self.stats.models_found += 1
if self.on_model_found is None or self.on_model_found(model):
self.stats.models_filtered += 1
self.models_found.add(model)
def search_completed(self) -> None:
if self.on_search_completed is not None:
self.on_search_completed(self.models_found)
def search(self, directory: Union[Path, str]) -> Set[Path]:
self._directory = Path(directory)
self._directory = self._directory.resolve()
self.stats = SearchStats() # zero out
self.search_started() # This will initialize _models_found to empty
self._walk_directory(self._directory)
self.search_completed()
return self.models_found
def _walk_directory(self, path: Union[Path, str], max_depth: int = 20) -> None:
absolute_path = Path(path)
2024-02-29 09:05:11 +00:00
if (
len(absolute_path.parts) - len(self._directory.parts) > max_depth
or not absolute_path.exists()
or absolute_path.parent in self.models_found
):
return
entries = os.scandir(absolute_path.as_posix())
entries = [entry for entry in entries if not entry.name.startswith(".")]
dirs = [entry for entry in entries if entry.is_dir()]
file_names = [entry.name for entry in entries if entry.is_file()]
if any(
x in file_names
for x in [
"config.json",
"model_index.json",
"learned_embeds.bin",
"pytorch_lora_weights.bin",
"image_encoder.txt",
]
):
try:
self.model_found(absolute_path)
2024-02-23 20:37:51 +00:00
return
except KeyboardInterrupt:
raise
except Exception as e:
self.logger.warning(str(e))
return
for n in file_names:
2024-02-23 20:37:51 +00:00
if n.endswith((".ckpt", ".bin", ".pth", ".safetensors", ".pt")):
try:
self.model_found(absolute_path / n)
except KeyboardInterrupt:
raise
except Exception as e:
self.logger.warning(str(e))
for d in dirs:
self._walk_directory(absolute_path / d)