InvokeAI/invokeai/backend/util/devices.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

144 lines
5.5 KiB
Python
Raw Normal View History

"""Torch Device class provides torch device selection services."""
from typing import TYPE_CHECKING, Dict, Literal, Optional, Set, Union
import torch
from deprecated import deprecated
2023-08-18 15:13:28 +00:00
from invokeai.app.services.config.config_default import get_config
if TYPE_CHECKING:
from invokeai.backend.model_manager.config import AnyModel
from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase
# legacy APIs
TorchPrecisionNames = Literal["float32", "float16", "bfloat16"]
CPU_DEVICE = torch.device("cpu")
2023-03-03 05:02:15 +00:00
CUDA_DEVICE = torch.device("cuda")
MPS_DEVICE = torch.device("mps")
2023-07-27 14:54:01 +00:00
@deprecated("Use TorchDevice.choose_torch_dtype() instead.") # type: ignore
def choose_precision(device: torch.device) -> TorchPrecisionNames:
"""Return the string representation of the recommended torch device."""
torch_dtype = TorchDevice.choose_torch_dtype(device)
return PRECISION_TO_NAME[torch_dtype]
@deprecated("Use TorchDevice.choose_torch_device() instead.") # type: ignore
def choose_torch_device() -> torch.device:
"""Return the torch.device to use for accelerated inference."""
return TorchDevice.choose_torch_device()
@deprecated("Use TorchDevice.choose_torch_dtype() instead.") # type: ignore
def torch_dtype(device: torch.device) -> torch.dtype:
"""Return the torch precision for the recommended torch device."""
return TorchDevice.choose_torch_dtype(device)
NAME_TO_PRECISION: Dict[TorchPrecisionNames, torch.dtype] = {
"float32": torch.float32,
"float16": torch.float16,
"bfloat16": torch.bfloat16,
}
PRECISION_TO_NAME: Dict[torch.dtype, TorchPrecisionNames] = {v: k for k, v in NAME_TO_PRECISION.items()}
class TorchDevice:
"""Abstraction layer for torch devices."""
_model_cache: Optional["ModelCacheBase[AnyModel]"] = None
@classmethod
def set_model_cache(cls, cache: "ModelCacheBase[AnyModel]"):
"""Set the current model cache."""
cls._model_cache = cache
@classmethod
def choose_torch_device(cls) -> torch.device:
"""Return the torch.device to use for accelerated inference."""
if cls._model_cache:
return cls._model_cache.get_execution_device()
app_config = get_config()
if app_config.device != "auto":
device = torch.device(app_config.device)
elif torch.cuda.is_available():
device = CUDA_DEVICE
elif torch.backends.mps.is_available():
device = MPS_DEVICE
else:
device = CPU_DEVICE
return cls.normalize(device)
@classmethod
def execution_devices(cls) -> Set[torch.device]:
"""Return a list of torch.devices that can be used for accelerated inference."""
app_config = get_config()
if app_config.devices is None:
return cls._lookup_execution_devices()
return {torch.device(x) for x in app_config.devices}
@classmethod
def choose_torch_dtype(cls, device: Optional[torch.device] = None) -> torch.dtype:
"""Return the precision to use for accelerated inference."""
device = device or cls.choose_torch_device()
config = get_config()
if device.type == "cuda" and torch.cuda.is_available():
device_name = torch.cuda.get_device_name(device)
if "GeForce GTX 1660" in device_name or "GeForce GTX 1650" in device_name:
# These GPUs have limited support for float16
return cls._to_dtype("float32")
elif config.precision == "auto":
# Default to float16 for CUDA devices
return cls._to_dtype("float16")
else:
# Use the user-defined precision
return cls._to_dtype(config.precision)
elif device.type == "mps" and torch.backends.mps.is_available():
if config.precision == "auto":
# Default to float16 for MPS devices
return cls._to_dtype("float16")
else:
# Use the user-defined precision
return cls._to_dtype(config.precision)
# CPU / safe fallback
return cls._to_dtype("float32")
@classmethod
def get_torch_device_name(cls) -> str:
"""Return the device name for the current torch device."""
device = cls.choose_torch_device()
return torch.cuda.get_device_name(device) if device.type == "cuda" else device.type.upper()
@classmethod
def normalize(cls, device: Union[str, torch.device]) -> torch.device:
"""Add the device index to CUDA devices."""
device = torch.device(device)
if device.index is None and device.type == "cuda" and torch.cuda.is_available():
device = torch.device(device.type, torch.cuda.current_device())
return device
@classmethod
def empty_cache(cls) -> None:
"""Clear the GPU device cache."""
if torch.backends.mps.is_available():
torch.mps.empty_cache()
if torch.cuda.is_available():
torch.cuda.empty_cache()
@classmethod
def _to_dtype(cls, precision_name: TorchPrecisionNames) -> torch.dtype:
return NAME_TO_PRECISION[precision_name]
@classmethod
def _lookup_execution_devices(cls) -> Set[torch.device]:
if torch.cuda.is_available():
devices = {torch.device(f"cuda:{x}") for x in range(0, torch.cuda.device_count())}
elif torch.backends.mps.is_available():
devices = {torch.device("mps")}
else:
devices = {torch.device("cpu")}
return devices