mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
42 lines
1.6 KiB
Python
42 lines
1.6 KiB
Python
|
import numpy as np
|
||
|
import torch
|
||
|
from PIL.Image import Image
|
||
|
|
||
|
from invokeai.app.invocations.baseinvocation import BaseInvocation, InputField, InvocationContext, invocation
|
||
|
from invokeai.app.invocations.primitives import ConditioningField, ConditioningOutput, ImageField
|
||
|
|
||
|
|
||
|
@invocation(
|
||
|
"add_conditioning_mask",
|
||
|
title="Add Conditioning Mask",
|
||
|
tags=["conditioning"],
|
||
|
category="conditioning",
|
||
|
version="1.0.0",
|
||
|
)
|
||
|
class AddConditioningMaskInvocation(BaseInvocation):
|
||
|
"""Add a mask to an existing conditioning tensor."""
|
||
|
|
||
|
conditioning: ConditioningField = InputField(description="The conditioning tensor to add a mask to.")
|
||
|
image: ImageField = InputField(
|
||
|
description="A mask image to add to the conditioning tensor. Only the first channel of the image is used. "
|
||
|
"Pixels <128 are excluded from the mask, pixels >=128 are included in the mask."
|
||
|
)
|
||
|
|
||
|
@staticmethod
|
||
|
def convert_image_to_mask(image: Image) -> torch.Tensor:
|
||
|
"""Convert a PIL image to a uint8 mask tensor."""
|
||
|
np_image = np.array(image)
|
||
|
torch_image = torch.from_numpy(np_image[0, :, :])
|
||
|
mask = torch_image >= 128
|
||
|
return mask.to(dtype=torch.uint8)
|
||
|
|
||
|
def invoke(self, context: InvocationContext) -> ConditioningOutput:
|
||
|
image = context.services.images.get_pil_image(self.image.image_name)
|
||
|
mask = self.convert_image_to_mask(image)
|
||
|
|
||
|
mask_name = f"{context.graph_execution_state_id}__{self.id}_conditioning_mask"
|
||
|
context.services.latents.save(mask_name, mask)
|
||
|
|
||
|
self.conditioning.mask_name = mask_name
|
||
|
return ConditioningOutput(conditioning=self.conditioning)
|