use 🧨diffusers model (#1583)
* initial commit of DiffusionPipeline class
* spike: proof of concept using diffusers for txt2img
* doc: type hints for Generator
* refactor(model_cache): factor out load_ckpt
* model_cache: add ability to load a diffusers model pipeline
and update associated things in Generate & Generator to not instantly fail when that happens
* model_cache: fix model default image dimensions
* txt2img: support switching diffusers schedulers
* diffusers: let the scheduler do its scaling of the initial latents
Remove IPNDM scheduler; it is not behaving.
* web server: update image_progress callback for diffusers data
* diffusers: restore prompt weighting feature
* diffusers: fix set-sampler error following model switch
* diffusers: use InvokeAIDiffuserComponent for conditioning
* cross_attention_control: stub (no-op) implementations for diffusers
* model_cache: let offload_model work with DiffusionPipeline, sorta.
* models.yaml.example: add diffusers-format model, set as default
* test-invoke-conda: use diffusers-format model
test-invoke-conda: put huggingface-token where the library can use it
* environment-mac: upgrade to diffusers 0.7 (from 0.6)
this was already done for linux; mac must have been lost in the merge.
* preload_models: explicitly load diffusers models
In non-interactive mode too, as long as you're logged in.
* fix(model_cache): don't check `model.config` in diffusers format
clean-up from recent merge.
* diffusers integration: support img2img
* dev: upgrade to diffusers 0.8 (from 0.7.1)
We get to remove some code by using methods that were factored out in the base class.
* refactor: remove backported img2img.get_timesteps
now that we can use it directly from diffusers 0.8.1
* ci: use diffusers model
* dev: upgrade to diffusers 0.9 (from 0.8.1)
* lint: correct annotations for Python 3.9.
* lint: correct AttributeError.name reference for Python 3.9.
* CI: prefer diffusers-1.4 because it no longer requires a token
The RunwayML models still do.
* build: there's yet another place to update requirements?
* configure: try to download models even without token
Models in the CompVis and stabilityai repos no longer require them. (But runwayml still does.)
* configure: add troubleshooting info for config-not-found
* fix(configure): prepend root to config path
* fix(configure): remove second `default: true` from models example
* CI: simplify test-on-push logic now that we don't need secrets
The "test on push but only in forks" logic was only necessary when tests didn't work for PRs-from-forks.
* create an embedding_manager for diffusers
* internal: avoid importing diffusers DummyObject
see https://github.com/huggingface/diffusers/issues/1479
* fix "config attributes…not expected" diffusers warnings.
* fix deprecated scheduler construction
* work around an apparent MPS torch bug that causes conditioning to have no effect
* 🚧 post-rebase repair
* preliminary support for outpainting (no masking yet)
* monkey-patch diffusers.attention and use Invoke lowvram code
* add always_use_cpu arg to bypass MPS
* add cross-attention control support to diffusers (fails on MPS)
For unknown reasons MPS produces garbage output with .swap(). Use
--always_use_cpu arg to invoke.py for now to test this code on MPS.
* diffusers support for the inpainting model
* fix debug_image to not crash with non-RGB images.
* inpainting for the normal model [WIP]
This seems to be performing well until the LAST STEP, at which point it dissolves to confetti.
* fix off-by-one bug in cross-attention-control (#1774)
prompt token sequences begin with a "beginning-of-sequence" marker <bos> and end with a repeated "end-of-sequence" marker <eos> - to make a default prompt length of <bos> + 75 prompt tokens + <eos>. the .swap() code was failing to take the column for <bos> at index 0 into account. the changes here do that, and also add extra handling for a single <eos> (which may be redundant but which is included for completeness).
based on my understanding and some assumptions about how this all works, the reason .swap() nevertheless seemed to do the right thing, to some extent, is because over multiple steps the conditioning process in Stable Diffusion operates as a feedback loop. a change to token n-1 has flow-on effects to how the [1x4x64x64] latent tensor is modified by all the tokens after it, - and as the next step is processed, all the tokens before it as well. intuitively, a token's conditioning effects "echo" throughout the whole length of the prompt. so even though the token at n-1 was being edited when what the user actually wanted was to edit the token at n, it nevertheless still had some non-negligible effect, in roughly the right direction, often enough that it seemed like it was working properly.
* refactor common CrossAttention stuff into a mixin so that the old ldm code can still work if necessary
* inpainting for the normal model. I think it works this time.
* diffusers: reset num_vectors_per_token
sync with 44a00555718f1df173c60da0ed646cf700e29537
* diffusers: txt2img2img (hires_fix)
with so much slicing and dicing of pipeline methods to stitch them together
* refactor(diffusers): reduce some code duplication amongst the different tasks
* fixup! refactor(diffusers): reduce some code duplication amongst the different tasks
* diffusers: enable DPMSolver++ scheduler
* diffusers: upgrade to diffusers 0.10, add Heun scheduler
* diffusers(ModelCache): stopgap to make from_cpu compatible with diffusers
* CI: default to diffusers-1.5 now that runwayml token requirement is gone
* diffusers: update to 0.10 (and transformers to 4.25)
* diffusers: use xformers when available
diffusers no longer auto-enables this as of 0.10.2.
* diffusers: make masked img2img behave better with multi-step schedulers
re-randomizing the noise each step was confusing them.
* diffusers: work more better with more models.
fixed relative path problem with local models.
fixed models on hub not always having a `fp16` branch.
* diffusers: stopgap fix for attention_maps_callback crash after recent merge
* fixup import merge conflicts
correction for 061c5369a2247c6c92cd69606bcf54c4f1962a0b
* test: add tests/inpainting inputs for masked img2img
* diffusers(AddsMaskedGuidance): partial fix for k-schedulers
Prevents them from crashing, but results are still hot garbage.
* fix --safety_checker arg parsing
and add note to diffusers loader about where safety checker gets called
* generate: fix import error
* CI: don't try to read the old init location
* diffusers: support loading an alternate VAE
* CI: remove sh-syntax if-statement so it doesn't crash powershell
* CI: fold strings in yaml because backslash is not line-continuation in powershell
* attention maps callback stuff for diffusers
* build: fix syntax error in environment-mac
* diffusers: add INITIAL_MODELS with diffusers-compatible repos
* re-enable the embedding manager; closes #1778
* Squashed commit of the following:
commit e4a956abc37fcb5cf188388b76b617bc5c8fda7d
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:43:07 2022 +0100
import new load handling from EmbeddingManager and cleanup
commit c4abe91a5ba0d415b45bf734068385668b7a66e6
Merge: 032e856e 1efc6397
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:09:53 2022 +0100
Merge branch 'feature_textual_inversion_mgr' into dev/diffusers_with_textual_inversion_manager
commit 032e856eefb3bbc39534f5daafd25764bcfcef8b
Merge: 8b4f0fe9 bc515e24
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:08:01 2022 +0100
Merge remote-tracking branch 'upstream/dev/diffusers' into dev/diffusers_with_textual_inversion_manager
commit 1efc6397fc6e61c1aff4b0258b93089d61de5955
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:04:28 2022 +0100
cleanup and add performance notes
commit e400f804ac471a0ca2ba432fd658778b20c7bdab
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 14:45:07 2022 +0100
fix bug and update unit tests
commit deb9ae0ae1016750e93ce8275734061f7285a231
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 14:28:29 2022 +0100
textual inversion manager seems to work
commit 162e02505dec777e91a983c4d0fb52e950d25ff0
Merge: cbad4583 12769b3d
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:58:03 2022 +0100
Merge branch 'main' into feature_textual_inversion_mgr
commit cbad45836c6aace6871a90f2621a953f49433131
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:54:10 2022 +0100
use position embeddings
commit 070344c69b0e0db340a183857d0a787b348681d3
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:53:47 2022 +0100
Don't crash CLI on exceptions
commit b035ac8c6772dfd9ba41b8eeb9103181cda028f8
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:11:55 2022 +0100
add missing position_embeddings
commit 12769b3d3562ef71e0f54946b532ad077e10043c
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 13:33:25 2022 +0100
debugging why it don't work
commit bafb7215eabe1515ca5e8388fd3bb2f3ac5362cf
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 13:21:33 2022 +0100
debugging why it don't work
commit 664a6e9e146b42d96703f0cc8baf8f5efec04ee1
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 12:48:38 2022 +0100
use TextualInversionManager in place of embeddings (wip, doesn't work)
commit 8b4f0fe9d6e4e2643b36dfa27864294785d7ba4e
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 12:48:38 2022 +0100
use TextualInversionManager in place of embeddings (wip, doesn't work)
commit ffbe1ab11163ba712e353d89404e301d0e0c6cdf
Merge: 6e4dad60 023df37e
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:37:31 2022 +0100
Merge branch 'feature_textual_inversion_mgr' into dev/diffusers
commit 023df37efffa67434f77def7fc3c9dfb29f699fd
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:36:54 2022 +0100
cleanup
commit 05fac594eaf79d0058e3c48deee93df603f136c2
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:07:49 2022 +0100
tweak error checking
commit 009f32ed39a7280997c3ffab112adadee0b44279
Author: damian <null@damianstewart.com>
Date: Thu Dec 15 21:29:47 2022 +0100
unit tests passing for embeddings with vector length >1
commit beb1b08d9a98112ed2fe073580568e1a18698da3
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 13:39:09 2022 +0100
more explicit equality tests when overwriting
commit 44d8a5a7c85cdabc9ce3a54fd0769a10597b3ca9
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 13:30:13 2022 +0100
wip textual inversion manager (unit tests passing for 1v embedding overwriting)
commit 417c2b57d90924a839616bfb66804faab8039e4c
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 12:30:55 2022 +0100
wip textual inversion manager (unit tests passing for base stuff + padding)
commit 2e80872e3b6f7fd7d8eb8928822bd824b63cb2ff
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 10:57:57 2022 +0100
wip new TextualInversionManager
* stop using WeightedFrozenCLIPEmbedder
* store diffusion models locally
- configure_invokeai.py reconfigured to store diffusion models rather than
CompVis models
- hugging face caching model is used, but cache is set to ~/invokeai/models/repo_id
- models.yaml does **NOT** use path, just repo_id
- "repo_name" changed to "repo_id" to following hugging face conventions
- Models are loaded with full precision pending further work.
* allow non-local files during development
* path takes priority over repo_id
* MVP for model_cache and configure_invokeai
- Feature complete (almost)
- configure_invokeai.py downloads both .ckpt and diffuser models,
along with their VAEs. Both types of download are controlled by
a unified INITIAL_MODELS.yaml file.
- model_cache can load both type of model and switches back and forth
in CPU. No memory leaks detected
TO DO:
1. I have not yet turned on the LocalOnly flag for diffuser models, so
the code will check the Hugging Face repo for updates before using the
locally cached models. This will break firewalled systems. I am thinking
of putting in a global check for internet connectivity at startup time
and setting the LocalOnly flag based on this. It would be good to check
updates if there is connectivity.
2. I have not gone completely through INITIAL_MODELS.yaml to check which
models are available as diffusers and which are not. So models like
PaperCut and VoxelArt may not load properly. The runway and stability
models are checked, as well as the Trinart models.
3. Add stanzas for SD 2.0 and 2.1 in INITIAL_MODELS.yaml
REMAINING PROBLEMS NOT DIRECTLY RELATED TO MODEL_CACHE:
1. When loading a .ckpt file there are lots of messages like this:
Warning! ldm.modules.attention.CrossAttention is no longer being
maintained. Please use InvokeAICrossAttention instead.
I'm not sure how to address this.
2. The ckpt models ***don't actually run*** due to the lack of special-case
support for them in the generator objects. For example, here's the hard
crash you get when you run txt2img against the legacy waifu-diffusion-1.3
model:
```
>> An error occurred:
Traceback (most recent call last):
File "/data/lstein/InvokeAI/ldm/invoke/CLI.py", line 140, in main
main_loop(gen, opt)
File "/data/lstein/InvokeAI/ldm/invoke/CLI.py", line 371, in main_loop
gen.prompt2image(
File "/data/lstein/InvokeAI/ldm/generate.py", line 496, in prompt2image
results = generator.generate(
File "/data/lstein/InvokeAI/ldm/invoke/generator/base.py", line 108, in generate
image = make_image(x_T)
File "/data/lstein/InvokeAI/ldm/invoke/generator/txt2img.py", line 33, in make_image
pipeline_output = pipeline.image_from_embeddings(
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1265, in __getattr__
raise AttributeError("'{}' object has no attribute '{}'".format(
AttributeError: 'LatentDiffusion' object has no attribute 'image_from_embeddings'
```
3. The inpainting diffusion model isn't working. Here's the output of "banana
sushi" when inpainting-1.5 is loaded:
```
Traceback (most recent call last):
File "/data/lstein/InvokeAI/ldm/generate.py", line 496, in prompt2image
results = generator.generate(
File "/data/lstein/InvokeAI/ldm/invoke/generator/base.py", line 108, in generate
image = make_image(x_T)
File "/data/lstein/InvokeAI/ldm/invoke/generator/txt2img.py", line 33, in make_image
pipeline_output = pipeline.image_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 301, in image_from_embeddings
result_latents, result_attention_map_saver = self.latents_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 330, in latents_from_embeddings
result: PipelineIntermediateState = infer_latents_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 185, in __call__
for result in self.generator_method(*args, **kwargs):
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 367, in generate_latents_from_embeddings
step_output = self.step(batched_t, latents, guidance_scale,
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context
return func(*args, **kwargs)
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 409, in step
step_output = self.scheduler.step(noise_pred, timestep, latents, **extra_step_kwargs)
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/diffusers/schedulers/scheduling_lms_discrete.py", line 223, in step
pred_original_sample = sample - sigma * model_output
RuntimeError: The size of tensor a (9) must match the size of tensor b (4) at non-singleton dimension 1
```
* proper support for float32/float16
- configure script now correctly detects user's preference for
fp16/32 and downloads the correct diffuser version. If fp16
version not available, falls back to fp32 version.
- misc code cleanup and simplification in model_cache
* add on-the-fly conversion of .ckpt to diffusers models
1. On-the-fly conversion code can be found in the file ldm/invoke/ckpt_to_diffusers.py.
2. A new !optimize command has been added to the CLI. Should be ported to Web GUI.
User experience on the CLI is this:
```
invoke> !optimize /home/lstein/invokeai/models/ldm/stable-diffusion-v1/sd-v1-4.ckpt
INFO: Converting legacy weights file /home/lstein/invokeai/models/ldm/stable-diffusion-v1/sd-v1-4.ckpt to optimized diffuser model.
This operation will take 30-60s to complete.
Success. Optimized model is now located at /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
Writing new config file entry for sd-v1-4...
>> New configuration:
sd-v1-4:
description: Optimized version of sd-v1-4
format: diffusers
path: /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
OK to import [n]? y
>> Verifying that new model loads...
>> Current VRAM usage: 2.60G
>> Offloading stable-diffusion-2.1 to CPU
>> Loading diffusers model from /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
| Using faster float16 precision
You have disabled the safety checker for <class 'ldm.invoke.generator.diffusers_pipeline.StableDiffusionGeneratorPipeline'> by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion \
license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances,\
disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .
| training width x height = (512 x 512)
>> Model loaded in 3.48s
>> Max VRAM used to load the model: 2.17G
>> Current VRAM usage:2.17G
>> Textual inversions available:
>> Setting Sampler to k_lms (LMSDiscreteScheduler)
Keep model loaded? [y]
```
* add parallel set of generator files for ckpt legacy generation
* generation using legacy ckpt models now working
* diffusers: fix missing attention_maps_callback
fix for 23eb80b40421b2bb8f4b6d3dd30490d11c447b36
* associate legacy CrossAttention with .ckpt models
* enable autoconvert
New --autoconvert CLI option will scan a designated directory for
new .ckpt files, convert them into diffuser models, and import
them into models.yaml.
Works like this:
invoke.py --autoconvert /path/to/weights/directory
In ModelCache added two new methods:
autoconvert_weights(config_path, weights_directory_path, models_directory_path)
convert_and_import(ckpt_path, diffuser_path)
* diffusers: update to diffusers 0.11 (from 0.10.2)
* fix vae loading & width/height calculation
* refactor: encapsulate these conditioning data into one container
* diffusers: fix some noise-scaling issues by pushing the noise-mixing down to the common function
* add support for safetensors and accelerate
* set local_files_only when internet unreachable
* diffusers: fix error-handling path when model repo has no fp16 branch
* fix generatorinpaint error
Fixes :
"ModuleNotFoundError: No module named 'ldm.invoke.generatorinpaint'
https://github.com/invoke-ai/InvokeAI/pull/1583#issuecomment-1363634318
* quench diffuser safety-checker warning
* diffusers: support stochastic DDIM eta parameter
* fix conda env creation on macos
* fix cross-attention with diffusers 0.11
* diffusers: the VAE needs to be tiling as well as the U-Net
* diffusers: comment on subfolders
* diffusers: embiggen!
* diffusers: make model_cache.list_models serializable
* diffusers(inpaint): restore scaling functionality
* fix requirements clash between numba and numpy 1.24
* diffusers: allow inpainting model to do non-inpainting tasks
* start expanding model_cache functionality
* add import_ckpt_model() and import_diffuser_model() methods to model_manager
- in addition, model_cache.py is now renamed to model_manager.py
* allow "recommended" flag to be optional in INITIAL_MODELS.yaml
* configure_invokeai now downloads VAE diffusers in advance
* rename ModelCache to ModelManager
* remove support for `repo_name` in models.yaml
* check for and refuse to load embeddings trained on incompatible models
* models.yaml.example: s/repo_name/repo_id
and remove extra INITIAL_MODELS now that the main one has diffusers models in it.
* add MVP textual inversion script
* refactor(InvokeAIDiffuserComponent): factor out _combine()
* InvokeAIDiffuserComponent: implement threshold
* InvokeAIDiffuserComponent: diagnostic logs for threshold
...this does not look right
* add a curses-based frontend to textual inversion
- not quite working yet
- requires npyscreen installed
- on windows will also have the windows-curses requirement, but not added
to requirements yet
* add curses-based interface for textual inversion
* fix crash in convert_and_import()
- This corrects a "local variable referenced before assignment" error
in model_manager.convert_and_import()
* potential workaround for no 'state_dict' key error
- As reported in https://github.com/huggingface/diffusers/issues/1876
* create TI output dir if needed
* Update environment-lin-cuda.yml (#2159)
Fixing line 42 to be the proper order to define the transformers requirement: ~= instead of =~
* diffusers: update sampler-to-scheduler mapping
based on https://github.com/huggingface/diffusers/issues/277#issuecomment-1371428672
* improve user exp for ckt to diffusers conversion
- !optimize_models command now operates on an existing ckpt file entry in models.yaml
- replaces existing entry, rather than adding a new one
- offers to delete the ckpt file after conversion
* web: adapt progress callback to deal with old generator or new diffusers pipeline
* clean-up model_manager code
- add_model() verified to work for .ckpt local paths,
.ckpt remote URLs, diffusers local paths, and
diffusers repo_ids
- convert_and_import() verified to work for local and
remove .ckpt files
* handle edge cases for import_model() and convert_model()
* add support for safetensor .ckpt files
* fix name error
* code cleanup with pyflake
* improve model setting behavior
- If the user enters an invalid model name at startup time, will not
try to load it, warn, and use default model
- CLI UI enhancement: include currently active model in the command
line prompt.
* update test-invoke-pip.yml
- fix model cache path to point to runwayml/stable-diffusion-v1-5
- remove `skip-sd-weights` from configure_invokeai.py args
* exclude dev/diffusers from "fail for draft PRs"
* disable "fail on PR jobs"
* re-add `--skip-sd-weights` since no space
* update workflow environments
- include `INVOKE_MODEL_RECONFIGURE: '--yes'`
* clean up model load failure handling
- Allow CLI to run even when no model is defined or loadable.
- Inhibit stack trace when model load fails - only show last error
- Give user *option* to run configure_invokeai.py when no models
successfully load.
- Restart invokeai after reconfiguration.
* further edge-case handling
1) only one model in models.yaml file, and that model is broken
2) no models in models.yaml
3) models.yaml doesn't exist at all
* fix incorrect model status listing
- "cached" was not being returned from list_models()
- normalize handling of exceptions during model loading:
- Passing an invalid model name to generate.set_model() will return
a KeyError
- All other exceptions are returned as the appropriate Exception
* CI: do download weights (if not already cached)
* diffusers: fix scheduler loading in offline mode
* CI: fix model name (no longer has `diffusers-` prefix)
* Update txt2img2img.py (#2256)
* fixes to share models with HuggingFace cache system
- If HF_HOME environment variable is defined, then all huggingface models
are stored in that directory following the standard conventions.
- For seamless interoperability, set HF_HOME to ~/.cache/huggingface
- If HF_HOME not defined, then models are stored in ~/invokeai/models.
This is equivalent to setting HF_HOME to ~/invokeai/models
A future commit will add a migration mechanism so that this change doesn't
break previous installs.
* feat - make model storage compatible with hugging face caching system
This commit alters the InvokeAI model directory to be compatible with
hugging face, making it easier to share diffusers (and other models)
across different programs.
- If the HF_HOME environment variable is not set, then models are
cached in ~/invokeai/models in a format that is identical to the
HuggingFace cache.
- If HF_HOME is set, then models are cached wherever HF_HOME points.
- To enable sharing with other HuggingFace library clients, set
HF_HOME to ~/.cache/huggingface to set the default cache location
or to ~/invokeai/models to have huggingface cache inside InvokeAI.
* fixes to share models with HuggingFace cache system
- If HF_HOME environment variable is defined, then all huggingface models
are stored in that directory following the standard conventions.
- For seamless interoperability, set HF_HOME to ~/.cache/huggingface
- If HF_HOME not defined, then models are stored in ~/invokeai/models.
This is equivalent to setting HF_HOME to ~/invokeai/models
A future commit will add a migration mechanism so that this change doesn't
break previous installs.
* fix error "no attribute CkptInpaint"
* model_manager.list_models() returns entire model config stanza+status
* Initial Draft - Model Manager Diffusers
* added hash function to diffusers
* implement sha256 hashes on diffusers models
* Add Model Manager Support for Diffusers
* fix various problems with model manager
- in cli import functions, fix not enough values to unpack from
_get_name_and_desc()
- fix crash when using old-style vae: value with new-style diffuser
* rebuild frontend
* fix dictconfig-not-serializable issue
* fix NoneType' object is not subscriptable crash in model_manager
* fix "str has no attribute get" error in model_manager list_models()
* Add path and repo_id support for Diffusers Model Manager
Also fixes bugs
* Fix tooltip IT localization not working
* Add Version Number To WebUI
* Optimize Model Search
* Fix incorrect font on the Model Manager UI
* Fix image degradation on merge fixes - [Experimental]
This change should effectively fix a couple of things.
- Fix image degradation on subsequent merges of the canvas layers.
- Fix the slight transparent border that is left behind when filling the bounding box with a color.
- Fix the left over line of color when filling a bounding box with color.
So far there are no side effects for this. If any, please report.
* Add local model filtering for Diffusers / Checkpoints
* Go to home on modal close for the Add Modal UI
* Styling Fixes
* Model Manager Diffusers Localization Update
* Add Safe Tensor scanning to Model Manager
* Fix model edit form dispatching string values instead of numbers.
* Resolve VAE handling / edge cases for supplied repos
* defer injecting tokens for textual inversions until they're used for the first time
* squash a console warning
* implement model migration check
* add_model() overwrites previous config rather than merges
* fix model config file attribute merging
* fix precision handling in textual inversion script
* allow ckpt conversion script to work with safetensors .ckpts
Applied patch here:
https://github.com/huggingface/diffusers/commit/beb932c5d111872c5e45387e7b1b2b3dd0524a47
* fix name "args" is not defined crash in textual_inversion_training
* fix a second NameError: name 'args' is not defined crash
* fix loading of the safety checker from the global cache dir
* add installation step to textual inversion frontend
- After a successful training run, the script will copy learned_embeds.bin
to a subfolder of the embeddings directory.
- User given the option to delete the logs and intermediate checkpoints
(which together use 7-8G of space)
- If textual inversion training fails, reports the error gracefully.
* don't crash out on incompatible embeddings
- put try: blocks around places where the system tries to load an embedding
which is incompatible with the currently loaded model
* add support for checkpoint resuming
* textual inversion preferences are saved and restored between sessions
- Preferences are stored in a file named text-inversion-training/preferences.conf
- Currently the resume-from-checkpoint option is not working correctly. Possible
bug in textual_inversion_training.py?
* copy learned_embeddings.bin into right location
* add front end for diffusers model merging
- Front end doesn't do anything yet!!!!
- Made change to model name parsing in CLI to support ability to have merged models
with the "+" character in their names.
* improve inpainting experience
- recommend ckpt version of inpainting-1.5 to user
- fix get_noise() bug in ckpt version of omnibus.py
* update environment*yml
* tweak instructions to install HuggingFace token
* bump version number
* enhance update scripts
- update scripts will now fetch new INITIAL_MODELS.yaml so that
configure_invokeai.py will know about the diffusers versions.
* enhance invoke.sh/invoke.bat launchers
- added configure_invokeai.py to menu
- menu defaults to browser-based invoke
* remove conda workflow (#2321)
* fix `token_ids has shape torch.Size([79]) - expected [77]`
* update CHANGELOG.md with 2.3.* info
- Add information on how formats have changed and the upgrade process.
- Add short bug list.
Co-authored-by: Damian Stewart <d@damianstewart.com>
Co-authored-by: Damian Stewart <null@damianstewart.com>
Co-authored-by: Lincoln Stein <lincoln.stein@gmail.com>
Co-authored-by: Wybartel-luxmc <37852506+Wybartel-luxmc@users.noreply.github.com>
Co-authored-by: mauwii <Mauwii@outlook.de>
Co-authored-by: mickr777 <115216705+mickr777@users.noreply.github.com>
Co-authored-by: blessedcoolant <54517381+blessedcoolant@users.noreply.github.com>
Co-authored-by: Eugene Brodsky <ebr@users.noreply.github.com>
Co-authored-by: Matthias Wild <40327258+mauwii@users.noreply.github.com>
2023-01-15 14:22:46 +00:00
|
|
|
# coding=utf-8
|
|
|
|
# Copyright 2022 The HuggingFace Inc. team.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
#
|
|
|
|
# Adapted for use as a module by Lincoln Stein <lstein@gmail.com>
|
|
|
|
# Original file at: https://github.com/huggingface/diffusers/blob/main/scripts/convert_ldm_original_checkpoint_to_diffusers.py
|
|
|
|
""" Conversion script for the LDM checkpoints. """
|
|
|
|
|
|
|
|
import re
|
|
|
|
import torch
|
2023-02-03 15:04:32 +00:00
|
|
|
import warnings
|
use 🧨diffusers model (#1583)
* initial commit of DiffusionPipeline class
* spike: proof of concept using diffusers for txt2img
* doc: type hints for Generator
* refactor(model_cache): factor out load_ckpt
* model_cache: add ability to load a diffusers model pipeline
and update associated things in Generate & Generator to not instantly fail when that happens
* model_cache: fix model default image dimensions
* txt2img: support switching diffusers schedulers
* diffusers: let the scheduler do its scaling of the initial latents
Remove IPNDM scheduler; it is not behaving.
* web server: update image_progress callback for diffusers data
* diffusers: restore prompt weighting feature
* diffusers: fix set-sampler error following model switch
* diffusers: use InvokeAIDiffuserComponent for conditioning
* cross_attention_control: stub (no-op) implementations for diffusers
* model_cache: let offload_model work with DiffusionPipeline, sorta.
* models.yaml.example: add diffusers-format model, set as default
* test-invoke-conda: use diffusers-format model
test-invoke-conda: put huggingface-token where the library can use it
* environment-mac: upgrade to diffusers 0.7 (from 0.6)
this was already done for linux; mac must have been lost in the merge.
* preload_models: explicitly load diffusers models
In non-interactive mode too, as long as you're logged in.
* fix(model_cache): don't check `model.config` in diffusers format
clean-up from recent merge.
* diffusers integration: support img2img
* dev: upgrade to diffusers 0.8 (from 0.7.1)
We get to remove some code by using methods that were factored out in the base class.
* refactor: remove backported img2img.get_timesteps
now that we can use it directly from diffusers 0.8.1
* ci: use diffusers model
* dev: upgrade to diffusers 0.9 (from 0.8.1)
* lint: correct annotations for Python 3.9.
* lint: correct AttributeError.name reference for Python 3.9.
* CI: prefer diffusers-1.4 because it no longer requires a token
The RunwayML models still do.
* build: there's yet another place to update requirements?
* configure: try to download models even without token
Models in the CompVis and stabilityai repos no longer require them. (But runwayml still does.)
* configure: add troubleshooting info for config-not-found
* fix(configure): prepend root to config path
* fix(configure): remove second `default: true` from models example
* CI: simplify test-on-push logic now that we don't need secrets
The "test on push but only in forks" logic was only necessary when tests didn't work for PRs-from-forks.
* create an embedding_manager for diffusers
* internal: avoid importing diffusers DummyObject
see https://github.com/huggingface/diffusers/issues/1479
* fix "config attributes…not expected" diffusers warnings.
* fix deprecated scheduler construction
* work around an apparent MPS torch bug that causes conditioning to have no effect
* 🚧 post-rebase repair
* preliminary support for outpainting (no masking yet)
* monkey-patch diffusers.attention and use Invoke lowvram code
* add always_use_cpu arg to bypass MPS
* add cross-attention control support to diffusers (fails on MPS)
For unknown reasons MPS produces garbage output with .swap(). Use
--always_use_cpu arg to invoke.py for now to test this code on MPS.
* diffusers support for the inpainting model
* fix debug_image to not crash with non-RGB images.
* inpainting for the normal model [WIP]
This seems to be performing well until the LAST STEP, at which point it dissolves to confetti.
* fix off-by-one bug in cross-attention-control (#1774)
prompt token sequences begin with a "beginning-of-sequence" marker <bos> and end with a repeated "end-of-sequence" marker <eos> - to make a default prompt length of <bos> + 75 prompt tokens + <eos>. the .swap() code was failing to take the column for <bos> at index 0 into account. the changes here do that, and also add extra handling for a single <eos> (which may be redundant but which is included for completeness).
based on my understanding and some assumptions about how this all works, the reason .swap() nevertheless seemed to do the right thing, to some extent, is because over multiple steps the conditioning process in Stable Diffusion operates as a feedback loop. a change to token n-1 has flow-on effects to how the [1x4x64x64] latent tensor is modified by all the tokens after it, - and as the next step is processed, all the tokens before it as well. intuitively, a token's conditioning effects "echo" throughout the whole length of the prompt. so even though the token at n-1 was being edited when what the user actually wanted was to edit the token at n, it nevertheless still had some non-negligible effect, in roughly the right direction, often enough that it seemed like it was working properly.
* refactor common CrossAttention stuff into a mixin so that the old ldm code can still work if necessary
* inpainting for the normal model. I think it works this time.
* diffusers: reset num_vectors_per_token
sync with 44a00555718f1df173c60da0ed646cf700e29537
* diffusers: txt2img2img (hires_fix)
with so much slicing and dicing of pipeline methods to stitch them together
* refactor(diffusers): reduce some code duplication amongst the different tasks
* fixup! refactor(diffusers): reduce some code duplication amongst the different tasks
* diffusers: enable DPMSolver++ scheduler
* diffusers: upgrade to diffusers 0.10, add Heun scheduler
* diffusers(ModelCache): stopgap to make from_cpu compatible with diffusers
* CI: default to diffusers-1.5 now that runwayml token requirement is gone
* diffusers: update to 0.10 (and transformers to 4.25)
* diffusers: use xformers when available
diffusers no longer auto-enables this as of 0.10.2.
* diffusers: make masked img2img behave better with multi-step schedulers
re-randomizing the noise each step was confusing them.
* diffusers: work more better with more models.
fixed relative path problem with local models.
fixed models on hub not always having a `fp16` branch.
* diffusers: stopgap fix for attention_maps_callback crash after recent merge
* fixup import merge conflicts
correction for 061c5369a2247c6c92cd69606bcf54c4f1962a0b
* test: add tests/inpainting inputs for masked img2img
* diffusers(AddsMaskedGuidance): partial fix for k-schedulers
Prevents them from crashing, but results are still hot garbage.
* fix --safety_checker arg parsing
and add note to diffusers loader about where safety checker gets called
* generate: fix import error
* CI: don't try to read the old init location
* diffusers: support loading an alternate VAE
* CI: remove sh-syntax if-statement so it doesn't crash powershell
* CI: fold strings in yaml because backslash is not line-continuation in powershell
* attention maps callback stuff for diffusers
* build: fix syntax error in environment-mac
* diffusers: add INITIAL_MODELS with diffusers-compatible repos
* re-enable the embedding manager; closes #1778
* Squashed commit of the following:
commit e4a956abc37fcb5cf188388b76b617bc5c8fda7d
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:43:07 2022 +0100
import new load handling from EmbeddingManager and cleanup
commit c4abe91a5ba0d415b45bf734068385668b7a66e6
Merge: 032e856e 1efc6397
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:09:53 2022 +0100
Merge branch 'feature_textual_inversion_mgr' into dev/diffusers_with_textual_inversion_manager
commit 032e856eefb3bbc39534f5daafd25764bcfcef8b
Merge: 8b4f0fe9 bc515e24
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:08:01 2022 +0100
Merge remote-tracking branch 'upstream/dev/diffusers' into dev/diffusers_with_textual_inversion_manager
commit 1efc6397fc6e61c1aff4b0258b93089d61de5955
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:04:28 2022 +0100
cleanup and add performance notes
commit e400f804ac471a0ca2ba432fd658778b20c7bdab
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 14:45:07 2022 +0100
fix bug and update unit tests
commit deb9ae0ae1016750e93ce8275734061f7285a231
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 14:28:29 2022 +0100
textual inversion manager seems to work
commit 162e02505dec777e91a983c4d0fb52e950d25ff0
Merge: cbad4583 12769b3d
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:58:03 2022 +0100
Merge branch 'main' into feature_textual_inversion_mgr
commit cbad45836c6aace6871a90f2621a953f49433131
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:54:10 2022 +0100
use position embeddings
commit 070344c69b0e0db340a183857d0a787b348681d3
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:53:47 2022 +0100
Don't crash CLI on exceptions
commit b035ac8c6772dfd9ba41b8eeb9103181cda028f8
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:11:55 2022 +0100
add missing position_embeddings
commit 12769b3d3562ef71e0f54946b532ad077e10043c
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 13:33:25 2022 +0100
debugging why it don't work
commit bafb7215eabe1515ca5e8388fd3bb2f3ac5362cf
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 13:21:33 2022 +0100
debugging why it don't work
commit 664a6e9e146b42d96703f0cc8baf8f5efec04ee1
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 12:48:38 2022 +0100
use TextualInversionManager in place of embeddings (wip, doesn't work)
commit 8b4f0fe9d6e4e2643b36dfa27864294785d7ba4e
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 12:48:38 2022 +0100
use TextualInversionManager in place of embeddings (wip, doesn't work)
commit ffbe1ab11163ba712e353d89404e301d0e0c6cdf
Merge: 6e4dad60 023df37e
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:37:31 2022 +0100
Merge branch 'feature_textual_inversion_mgr' into dev/diffusers
commit 023df37efffa67434f77def7fc3c9dfb29f699fd
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:36:54 2022 +0100
cleanup
commit 05fac594eaf79d0058e3c48deee93df603f136c2
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:07:49 2022 +0100
tweak error checking
commit 009f32ed39a7280997c3ffab112adadee0b44279
Author: damian <null@damianstewart.com>
Date: Thu Dec 15 21:29:47 2022 +0100
unit tests passing for embeddings with vector length >1
commit beb1b08d9a98112ed2fe073580568e1a18698da3
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 13:39:09 2022 +0100
more explicit equality tests when overwriting
commit 44d8a5a7c85cdabc9ce3a54fd0769a10597b3ca9
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 13:30:13 2022 +0100
wip textual inversion manager (unit tests passing for 1v embedding overwriting)
commit 417c2b57d90924a839616bfb66804faab8039e4c
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 12:30:55 2022 +0100
wip textual inversion manager (unit tests passing for base stuff + padding)
commit 2e80872e3b6f7fd7d8eb8928822bd824b63cb2ff
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 10:57:57 2022 +0100
wip new TextualInversionManager
* stop using WeightedFrozenCLIPEmbedder
* store diffusion models locally
- configure_invokeai.py reconfigured to store diffusion models rather than
CompVis models
- hugging face caching model is used, but cache is set to ~/invokeai/models/repo_id
- models.yaml does **NOT** use path, just repo_id
- "repo_name" changed to "repo_id" to following hugging face conventions
- Models are loaded with full precision pending further work.
* allow non-local files during development
* path takes priority over repo_id
* MVP for model_cache and configure_invokeai
- Feature complete (almost)
- configure_invokeai.py downloads both .ckpt and diffuser models,
along with their VAEs. Both types of download are controlled by
a unified INITIAL_MODELS.yaml file.
- model_cache can load both type of model and switches back and forth
in CPU. No memory leaks detected
TO DO:
1. I have not yet turned on the LocalOnly flag for diffuser models, so
the code will check the Hugging Face repo for updates before using the
locally cached models. This will break firewalled systems. I am thinking
of putting in a global check for internet connectivity at startup time
and setting the LocalOnly flag based on this. It would be good to check
updates if there is connectivity.
2. I have not gone completely through INITIAL_MODELS.yaml to check which
models are available as diffusers and which are not. So models like
PaperCut and VoxelArt may not load properly. The runway and stability
models are checked, as well as the Trinart models.
3. Add stanzas for SD 2.0 and 2.1 in INITIAL_MODELS.yaml
REMAINING PROBLEMS NOT DIRECTLY RELATED TO MODEL_CACHE:
1. When loading a .ckpt file there are lots of messages like this:
Warning! ldm.modules.attention.CrossAttention is no longer being
maintained. Please use InvokeAICrossAttention instead.
I'm not sure how to address this.
2. The ckpt models ***don't actually run*** due to the lack of special-case
support for them in the generator objects. For example, here's the hard
crash you get when you run txt2img against the legacy waifu-diffusion-1.3
model:
```
>> An error occurred:
Traceback (most recent call last):
File "/data/lstein/InvokeAI/ldm/invoke/CLI.py", line 140, in main
main_loop(gen, opt)
File "/data/lstein/InvokeAI/ldm/invoke/CLI.py", line 371, in main_loop
gen.prompt2image(
File "/data/lstein/InvokeAI/ldm/generate.py", line 496, in prompt2image
results = generator.generate(
File "/data/lstein/InvokeAI/ldm/invoke/generator/base.py", line 108, in generate
image = make_image(x_T)
File "/data/lstein/InvokeAI/ldm/invoke/generator/txt2img.py", line 33, in make_image
pipeline_output = pipeline.image_from_embeddings(
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1265, in __getattr__
raise AttributeError("'{}' object has no attribute '{}'".format(
AttributeError: 'LatentDiffusion' object has no attribute 'image_from_embeddings'
```
3. The inpainting diffusion model isn't working. Here's the output of "banana
sushi" when inpainting-1.5 is loaded:
```
Traceback (most recent call last):
File "/data/lstein/InvokeAI/ldm/generate.py", line 496, in prompt2image
results = generator.generate(
File "/data/lstein/InvokeAI/ldm/invoke/generator/base.py", line 108, in generate
image = make_image(x_T)
File "/data/lstein/InvokeAI/ldm/invoke/generator/txt2img.py", line 33, in make_image
pipeline_output = pipeline.image_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 301, in image_from_embeddings
result_latents, result_attention_map_saver = self.latents_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 330, in latents_from_embeddings
result: PipelineIntermediateState = infer_latents_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 185, in __call__
for result in self.generator_method(*args, **kwargs):
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 367, in generate_latents_from_embeddings
step_output = self.step(batched_t, latents, guidance_scale,
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context
return func(*args, **kwargs)
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 409, in step
step_output = self.scheduler.step(noise_pred, timestep, latents, **extra_step_kwargs)
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/diffusers/schedulers/scheduling_lms_discrete.py", line 223, in step
pred_original_sample = sample - sigma * model_output
RuntimeError: The size of tensor a (9) must match the size of tensor b (4) at non-singleton dimension 1
```
* proper support for float32/float16
- configure script now correctly detects user's preference for
fp16/32 and downloads the correct diffuser version. If fp16
version not available, falls back to fp32 version.
- misc code cleanup and simplification in model_cache
* add on-the-fly conversion of .ckpt to diffusers models
1. On-the-fly conversion code can be found in the file ldm/invoke/ckpt_to_diffusers.py.
2. A new !optimize command has been added to the CLI. Should be ported to Web GUI.
User experience on the CLI is this:
```
invoke> !optimize /home/lstein/invokeai/models/ldm/stable-diffusion-v1/sd-v1-4.ckpt
INFO: Converting legacy weights file /home/lstein/invokeai/models/ldm/stable-diffusion-v1/sd-v1-4.ckpt to optimized diffuser model.
This operation will take 30-60s to complete.
Success. Optimized model is now located at /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
Writing new config file entry for sd-v1-4...
>> New configuration:
sd-v1-4:
description: Optimized version of sd-v1-4
format: diffusers
path: /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
OK to import [n]? y
>> Verifying that new model loads...
>> Current VRAM usage: 2.60G
>> Offloading stable-diffusion-2.1 to CPU
>> Loading diffusers model from /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
| Using faster float16 precision
You have disabled the safety checker for <class 'ldm.invoke.generator.diffusers_pipeline.StableDiffusionGeneratorPipeline'> by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion \
license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances,\
disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .
| training width x height = (512 x 512)
>> Model loaded in 3.48s
>> Max VRAM used to load the model: 2.17G
>> Current VRAM usage:2.17G
>> Textual inversions available:
>> Setting Sampler to k_lms (LMSDiscreteScheduler)
Keep model loaded? [y]
```
* add parallel set of generator files for ckpt legacy generation
* generation using legacy ckpt models now working
* diffusers: fix missing attention_maps_callback
fix for 23eb80b40421b2bb8f4b6d3dd30490d11c447b36
* associate legacy CrossAttention with .ckpt models
* enable autoconvert
New --autoconvert CLI option will scan a designated directory for
new .ckpt files, convert them into diffuser models, and import
them into models.yaml.
Works like this:
invoke.py --autoconvert /path/to/weights/directory
In ModelCache added two new methods:
autoconvert_weights(config_path, weights_directory_path, models_directory_path)
convert_and_import(ckpt_path, diffuser_path)
* diffusers: update to diffusers 0.11 (from 0.10.2)
* fix vae loading & width/height calculation
* refactor: encapsulate these conditioning data into one container
* diffusers: fix some noise-scaling issues by pushing the noise-mixing down to the common function
* add support for safetensors and accelerate
* set local_files_only when internet unreachable
* diffusers: fix error-handling path when model repo has no fp16 branch
* fix generatorinpaint error
Fixes :
"ModuleNotFoundError: No module named 'ldm.invoke.generatorinpaint'
https://github.com/invoke-ai/InvokeAI/pull/1583#issuecomment-1363634318
* quench diffuser safety-checker warning
* diffusers: support stochastic DDIM eta parameter
* fix conda env creation on macos
* fix cross-attention with diffusers 0.11
* diffusers: the VAE needs to be tiling as well as the U-Net
* diffusers: comment on subfolders
* diffusers: embiggen!
* diffusers: make model_cache.list_models serializable
* diffusers(inpaint): restore scaling functionality
* fix requirements clash between numba and numpy 1.24
* diffusers: allow inpainting model to do non-inpainting tasks
* start expanding model_cache functionality
* add import_ckpt_model() and import_diffuser_model() methods to model_manager
- in addition, model_cache.py is now renamed to model_manager.py
* allow "recommended" flag to be optional in INITIAL_MODELS.yaml
* configure_invokeai now downloads VAE diffusers in advance
* rename ModelCache to ModelManager
* remove support for `repo_name` in models.yaml
* check for and refuse to load embeddings trained on incompatible models
* models.yaml.example: s/repo_name/repo_id
and remove extra INITIAL_MODELS now that the main one has diffusers models in it.
* add MVP textual inversion script
* refactor(InvokeAIDiffuserComponent): factor out _combine()
* InvokeAIDiffuserComponent: implement threshold
* InvokeAIDiffuserComponent: diagnostic logs for threshold
...this does not look right
* add a curses-based frontend to textual inversion
- not quite working yet
- requires npyscreen installed
- on windows will also have the windows-curses requirement, but not added
to requirements yet
* add curses-based interface for textual inversion
* fix crash in convert_and_import()
- This corrects a "local variable referenced before assignment" error
in model_manager.convert_and_import()
* potential workaround for no 'state_dict' key error
- As reported in https://github.com/huggingface/diffusers/issues/1876
* create TI output dir if needed
* Update environment-lin-cuda.yml (#2159)
Fixing line 42 to be the proper order to define the transformers requirement: ~= instead of =~
* diffusers: update sampler-to-scheduler mapping
based on https://github.com/huggingface/diffusers/issues/277#issuecomment-1371428672
* improve user exp for ckt to diffusers conversion
- !optimize_models command now operates on an existing ckpt file entry in models.yaml
- replaces existing entry, rather than adding a new one
- offers to delete the ckpt file after conversion
* web: adapt progress callback to deal with old generator or new diffusers pipeline
* clean-up model_manager code
- add_model() verified to work for .ckpt local paths,
.ckpt remote URLs, diffusers local paths, and
diffusers repo_ids
- convert_and_import() verified to work for local and
remove .ckpt files
* handle edge cases for import_model() and convert_model()
* add support for safetensor .ckpt files
* fix name error
* code cleanup with pyflake
* improve model setting behavior
- If the user enters an invalid model name at startup time, will not
try to load it, warn, and use default model
- CLI UI enhancement: include currently active model in the command
line prompt.
* update test-invoke-pip.yml
- fix model cache path to point to runwayml/stable-diffusion-v1-5
- remove `skip-sd-weights` from configure_invokeai.py args
* exclude dev/diffusers from "fail for draft PRs"
* disable "fail on PR jobs"
* re-add `--skip-sd-weights` since no space
* update workflow environments
- include `INVOKE_MODEL_RECONFIGURE: '--yes'`
* clean up model load failure handling
- Allow CLI to run even when no model is defined or loadable.
- Inhibit stack trace when model load fails - only show last error
- Give user *option* to run configure_invokeai.py when no models
successfully load.
- Restart invokeai after reconfiguration.
* further edge-case handling
1) only one model in models.yaml file, and that model is broken
2) no models in models.yaml
3) models.yaml doesn't exist at all
* fix incorrect model status listing
- "cached" was not being returned from list_models()
- normalize handling of exceptions during model loading:
- Passing an invalid model name to generate.set_model() will return
a KeyError
- All other exceptions are returned as the appropriate Exception
* CI: do download weights (if not already cached)
* diffusers: fix scheduler loading in offline mode
* CI: fix model name (no longer has `diffusers-` prefix)
* Update txt2img2img.py (#2256)
* fixes to share models with HuggingFace cache system
- If HF_HOME environment variable is defined, then all huggingface models
are stored in that directory following the standard conventions.
- For seamless interoperability, set HF_HOME to ~/.cache/huggingface
- If HF_HOME not defined, then models are stored in ~/invokeai/models.
This is equivalent to setting HF_HOME to ~/invokeai/models
A future commit will add a migration mechanism so that this change doesn't
break previous installs.
* feat - make model storage compatible with hugging face caching system
This commit alters the InvokeAI model directory to be compatible with
hugging face, making it easier to share diffusers (and other models)
across different programs.
- If the HF_HOME environment variable is not set, then models are
cached in ~/invokeai/models in a format that is identical to the
HuggingFace cache.
- If HF_HOME is set, then models are cached wherever HF_HOME points.
- To enable sharing with other HuggingFace library clients, set
HF_HOME to ~/.cache/huggingface to set the default cache location
or to ~/invokeai/models to have huggingface cache inside InvokeAI.
* fixes to share models with HuggingFace cache system
- If HF_HOME environment variable is defined, then all huggingface models
are stored in that directory following the standard conventions.
- For seamless interoperability, set HF_HOME to ~/.cache/huggingface
- If HF_HOME not defined, then models are stored in ~/invokeai/models.
This is equivalent to setting HF_HOME to ~/invokeai/models
A future commit will add a migration mechanism so that this change doesn't
break previous installs.
* fix error "no attribute CkptInpaint"
* model_manager.list_models() returns entire model config stanza+status
* Initial Draft - Model Manager Diffusers
* added hash function to diffusers
* implement sha256 hashes on diffusers models
* Add Model Manager Support for Diffusers
* fix various problems with model manager
- in cli import functions, fix not enough values to unpack from
_get_name_and_desc()
- fix crash when using old-style vae: value with new-style diffuser
* rebuild frontend
* fix dictconfig-not-serializable issue
* fix NoneType' object is not subscriptable crash in model_manager
* fix "str has no attribute get" error in model_manager list_models()
* Add path and repo_id support for Diffusers Model Manager
Also fixes bugs
* Fix tooltip IT localization not working
* Add Version Number To WebUI
* Optimize Model Search
* Fix incorrect font on the Model Manager UI
* Fix image degradation on merge fixes - [Experimental]
This change should effectively fix a couple of things.
- Fix image degradation on subsequent merges of the canvas layers.
- Fix the slight transparent border that is left behind when filling the bounding box with a color.
- Fix the left over line of color when filling a bounding box with color.
So far there are no side effects for this. If any, please report.
* Add local model filtering for Diffusers / Checkpoints
* Go to home on modal close for the Add Modal UI
* Styling Fixes
* Model Manager Diffusers Localization Update
* Add Safe Tensor scanning to Model Manager
* Fix model edit form dispatching string values instead of numbers.
* Resolve VAE handling / edge cases for supplied repos
* defer injecting tokens for textual inversions until they're used for the first time
* squash a console warning
* implement model migration check
* add_model() overwrites previous config rather than merges
* fix model config file attribute merging
* fix precision handling in textual inversion script
* allow ckpt conversion script to work with safetensors .ckpts
Applied patch here:
https://github.com/huggingface/diffusers/commit/beb932c5d111872c5e45387e7b1b2b3dd0524a47
* fix name "args" is not defined crash in textual_inversion_training
* fix a second NameError: name 'args' is not defined crash
* fix loading of the safety checker from the global cache dir
* add installation step to textual inversion frontend
- After a successful training run, the script will copy learned_embeds.bin
to a subfolder of the embeddings directory.
- User given the option to delete the logs and intermediate checkpoints
(which together use 7-8G of space)
- If textual inversion training fails, reports the error gracefully.
* don't crash out on incompatible embeddings
- put try: blocks around places where the system tries to load an embedding
which is incompatible with the currently loaded model
* add support for checkpoint resuming
* textual inversion preferences are saved and restored between sessions
- Preferences are stored in a file named text-inversion-training/preferences.conf
- Currently the resume-from-checkpoint option is not working correctly. Possible
bug in textual_inversion_training.py?
* copy learned_embeddings.bin into right location
* add front end for diffusers model merging
- Front end doesn't do anything yet!!!!
- Made change to model name parsing in CLI to support ability to have merged models
with the "+" character in their names.
* improve inpainting experience
- recommend ckpt version of inpainting-1.5 to user
- fix get_noise() bug in ckpt version of omnibus.py
* update environment*yml
* tweak instructions to install HuggingFace token
* bump version number
* enhance update scripts
- update scripts will now fetch new INITIAL_MODELS.yaml so that
configure_invokeai.py will know about the diffusers versions.
* enhance invoke.sh/invoke.bat launchers
- added configure_invokeai.py to menu
- menu defaults to browser-based invoke
* remove conda workflow (#2321)
* fix `token_ids has shape torch.Size([79]) - expected [77]`
* update CHANGELOG.md with 2.3.* info
- Add information on how formats have changed and the upgrade process.
- Add short bug list.
Co-authored-by: Damian Stewart <d@damianstewart.com>
Co-authored-by: Damian Stewart <null@damianstewart.com>
Co-authored-by: Lincoln Stein <lincoln.stein@gmail.com>
Co-authored-by: Wybartel-luxmc <37852506+Wybartel-luxmc@users.noreply.github.com>
Co-authored-by: mauwii <Mauwii@outlook.de>
Co-authored-by: mickr777 <115216705+mickr777@users.noreply.github.com>
Co-authored-by: blessedcoolant <54517381+blessedcoolant@users.noreply.github.com>
Co-authored-by: Eugene Brodsky <ebr@users.noreply.github.com>
Co-authored-by: Matthias Wild <40327258+mauwii@users.noreply.github.com>
2023-01-15 14:22:46 +00:00
|
|
|
from pathlib import Path
|
2023-02-06 14:35:23 +00:00
|
|
|
from ldm.invoke.globals import (
|
|
|
|
global_cache_dir,
|
|
|
|
global_config_dir,
|
|
|
|
)
|
first phase of source tree restructure
This is the first phase of a big shifting of files and directories
in the source tree.
You will need to run `pip install -e .` before the code will work again!
Here's what's in the current commit:
1) Remove a lot of dead code that dealt with checkpoint and safetensor loading.
2) Entire ckpt_generator hierarchy is now gone!
3) ldm.invoke.generator.* => invokeai.generator.*
4) ldm.model.* => invokeai.model.*
5) ldm.invoke.model_manager => invokeai.model.model_manager
6) In addition, a number of frequently-accessed classes can be imported
from the invokeai.model and invokeai.generator modules:
from invokeai.generator import ( Generator, PipelineIntermediateState,
StableDiffusionGeneratorPipeline, infill_methods)
from invokeai.models import ( ModelManager, SDLegacyType
InvokeAIDiffuserComponent, AttentionMapSaver,
DDIMSampler, KSampler, PLMSSampler,
PostprocessingSettings )
2023-02-28 04:52:46 +00:00
|
|
|
from invokeai.models import ModelManager, SDLegacyType
|
use 🧨diffusers model (#1583)
* initial commit of DiffusionPipeline class
* spike: proof of concept using diffusers for txt2img
* doc: type hints for Generator
* refactor(model_cache): factor out load_ckpt
* model_cache: add ability to load a diffusers model pipeline
and update associated things in Generate & Generator to not instantly fail when that happens
* model_cache: fix model default image dimensions
* txt2img: support switching diffusers schedulers
* diffusers: let the scheduler do its scaling of the initial latents
Remove IPNDM scheduler; it is not behaving.
* web server: update image_progress callback for diffusers data
* diffusers: restore prompt weighting feature
* diffusers: fix set-sampler error following model switch
* diffusers: use InvokeAIDiffuserComponent for conditioning
* cross_attention_control: stub (no-op) implementations for diffusers
* model_cache: let offload_model work with DiffusionPipeline, sorta.
* models.yaml.example: add diffusers-format model, set as default
* test-invoke-conda: use diffusers-format model
test-invoke-conda: put huggingface-token where the library can use it
* environment-mac: upgrade to diffusers 0.7 (from 0.6)
this was already done for linux; mac must have been lost in the merge.
* preload_models: explicitly load diffusers models
In non-interactive mode too, as long as you're logged in.
* fix(model_cache): don't check `model.config` in diffusers format
clean-up from recent merge.
* diffusers integration: support img2img
* dev: upgrade to diffusers 0.8 (from 0.7.1)
We get to remove some code by using methods that were factored out in the base class.
* refactor: remove backported img2img.get_timesteps
now that we can use it directly from diffusers 0.8.1
* ci: use diffusers model
* dev: upgrade to diffusers 0.9 (from 0.8.1)
* lint: correct annotations for Python 3.9.
* lint: correct AttributeError.name reference for Python 3.9.
* CI: prefer diffusers-1.4 because it no longer requires a token
The RunwayML models still do.
* build: there's yet another place to update requirements?
* configure: try to download models even without token
Models in the CompVis and stabilityai repos no longer require them. (But runwayml still does.)
* configure: add troubleshooting info for config-not-found
* fix(configure): prepend root to config path
* fix(configure): remove second `default: true` from models example
* CI: simplify test-on-push logic now that we don't need secrets
The "test on push but only in forks" logic was only necessary when tests didn't work for PRs-from-forks.
* create an embedding_manager for diffusers
* internal: avoid importing diffusers DummyObject
see https://github.com/huggingface/diffusers/issues/1479
* fix "config attributes…not expected" diffusers warnings.
* fix deprecated scheduler construction
* work around an apparent MPS torch bug that causes conditioning to have no effect
* 🚧 post-rebase repair
* preliminary support for outpainting (no masking yet)
* monkey-patch diffusers.attention and use Invoke lowvram code
* add always_use_cpu arg to bypass MPS
* add cross-attention control support to diffusers (fails on MPS)
For unknown reasons MPS produces garbage output with .swap(). Use
--always_use_cpu arg to invoke.py for now to test this code on MPS.
* diffusers support for the inpainting model
* fix debug_image to not crash with non-RGB images.
* inpainting for the normal model [WIP]
This seems to be performing well until the LAST STEP, at which point it dissolves to confetti.
* fix off-by-one bug in cross-attention-control (#1774)
prompt token sequences begin with a "beginning-of-sequence" marker <bos> and end with a repeated "end-of-sequence" marker <eos> - to make a default prompt length of <bos> + 75 prompt tokens + <eos>. the .swap() code was failing to take the column for <bos> at index 0 into account. the changes here do that, and also add extra handling for a single <eos> (which may be redundant but which is included for completeness).
based on my understanding and some assumptions about how this all works, the reason .swap() nevertheless seemed to do the right thing, to some extent, is because over multiple steps the conditioning process in Stable Diffusion operates as a feedback loop. a change to token n-1 has flow-on effects to how the [1x4x64x64] latent tensor is modified by all the tokens after it, - and as the next step is processed, all the tokens before it as well. intuitively, a token's conditioning effects "echo" throughout the whole length of the prompt. so even though the token at n-1 was being edited when what the user actually wanted was to edit the token at n, it nevertheless still had some non-negligible effect, in roughly the right direction, often enough that it seemed like it was working properly.
* refactor common CrossAttention stuff into a mixin so that the old ldm code can still work if necessary
* inpainting for the normal model. I think it works this time.
* diffusers: reset num_vectors_per_token
sync with 44a00555718f1df173c60da0ed646cf700e29537
* diffusers: txt2img2img (hires_fix)
with so much slicing and dicing of pipeline methods to stitch them together
* refactor(diffusers): reduce some code duplication amongst the different tasks
* fixup! refactor(diffusers): reduce some code duplication amongst the different tasks
* diffusers: enable DPMSolver++ scheduler
* diffusers: upgrade to diffusers 0.10, add Heun scheduler
* diffusers(ModelCache): stopgap to make from_cpu compatible with diffusers
* CI: default to diffusers-1.5 now that runwayml token requirement is gone
* diffusers: update to 0.10 (and transformers to 4.25)
* diffusers: use xformers when available
diffusers no longer auto-enables this as of 0.10.2.
* diffusers: make masked img2img behave better with multi-step schedulers
re-randomizing the noise each step was confusing them.
* diffusers: work more better with more models.
fixed relative path problem with local models.
fixed models on hub not always having a `fp16` branch.
* diffusers: stopgap fix for attention_maps_callback crash after recent merge
* fixup import merge conflicts
correction for 061c5369a2247c6c92cd69606bcf54c4f1962a0b
* test: add tests/inpainting inputs for masked img2img
* diffusers(AddsMaskedGuidance): partial fix for k-schedulers
Prevents them from crashing, but results are still hot garbage.
* fix --safety_checker arg parsing
and add note to diffusers loader about where safety checker gets called
* generate: fix import error
* CI: don't try to read the old init location
* diffusers: support loading an alternate VAE
* CI: remove sh-syntax if-statement so it doesn't crash powershell
* CI: fold strings in yaml because backslash is not line-continuation in powershell
* attention maps callback stuff for diffusers
* build: fix syntax error in environment-mac
* diffusers: add INITIAL_MODELS with diffusers-compatible repos
* re-enable the embedding manager; closes #1778
* Squashed commit of the following:
commit e4a956abc37fcb5cf188388b76b617bc5c8fda7d
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:43:07 2022 +0100
import new load handling from EmbeddingManager and cleanup
commit c4abe91a5ba0d415b45bf734068385668b7a66e6
Merge: 032e856e 1efc6397
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:09:53 2022 +0100
Merge branch 'feature_textual_inversion_mgr' into dev/diffusers_with_textual_inversion_manager
commit 032e856eefb3bbc39534f5daafd25764bcfcef8b
Merge: 8b4f0fe9 bc515e24
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:08:01 2022 +0100
Merge remote-tracking branch 'upstream/dev/diffusers' into dev/diffusers_with_textual_inversion_manager
commit 1efc6397fc6e61c1aff4b0258b93089d61de5955
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:04:28 2022 +0100
cleanup and add performance notes
commit e400f804ac471a0ca2ba432fd658778b20c7bdab
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 14:45:07 2022 +0100
fix bug and update unit tests
commit deb9ae0ae1016750e93ce8275734061f7285a231
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 14:28:29 2022 +0100
textual inversion manager seems to work
commit 162e02505dec777e91a983c4d0fb52e950d25ff0
Merge: cbad4583 12769b3d
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:58:03 2022 +0100
Merge branch 'main' into feature_textual_inversion_mgr
commit cbad45836c6aace6871a90f2621a953f49433131
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:54:10 2022 +0100
use position embeddings
commit 070344c69b0e0db340a183857d0a787b348681d3
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:53:47 2022 +0100
Don't crash CLI on exceptions
commit b035ac8c6772dfd9ba41b8eeb9103181cda028f8
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:11:55 2022 +0100
add missing position_embeddings
commit 12769b3d3562ef71e0f54946b532ad077e10043c
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 13:33:25 2022 +0100
debugging why it don't work
commit bafb7215eabe1515ca5e8388fd3bb2f3ac5362cf
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 13:21:33 2022 +0100
debugging why it don't work
commit 664a6e9e146b42d96703f0cc8baf8f5efec04ee1
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 12:48:38 2022 +0100
use TextualInversionManager in place of embeddings (wip, doesn't work)
commit 8b4f0fe9d6e4e2643b36dfa27864294785d7ba4e
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 12:48:38 2022 +0100
use TextualInversionManager in place of embeddings (wip, doesn't work)
commit ffbe1ab11163ba712e353d89404e301d0e0c6cdf
Merge: 6e4dad60 023df37e
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:37:31 2022 +0100
Merge branch 'feature_textual_inversion_mgr' into dev/diffusers
commit 023df37efffa67434f77def7fc3c9dfb29f699fd
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:36:54 2022 +0100
cleanup
commit 05fac594eaf79d0058e3c48deee93df603f136c2
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:07:49 2022 +0100
tweak error checking
commit 009f32ed39a7280997c3ffab112adadee0b44279
Author: damian <null@damianstewart.com>
Date: Thu Dec 15 21:29:47 2022 +0100
unit tests passing for embeddings with vector length >1
commit beb1b08d9a98112ed2fe073580568e1a18698da3
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 13:39:09 2022 +0100
more explicit equality tests when overwriting
commit 44d8a5a7c85cdabc9ce3a54fd0769a10597b3ca9
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 13:30:13 2022 +0100
wip textual inversion manager (unit tests passing for 1v embedding overwriting)
commit 417c2b57d90924a839616bfb66804faab8039e4c
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 12:30:55 2022 +0100
wip textual inversion manager (unit tests passing for base stuff + padding)
commit 2e80872e3b6f7fd7d8eb8928822bd824b63cb2ff
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 10:57:57 2022 +0100
wip new TextualInversionManager
* stop using WeightedFrozenCLIPEmbedder
* store diffusion models locally
- configure_invokeai.py reconfigured to store diffusion models rather than
CompVis models
- hugging face caching model is used, but cache is set to ~/invokeai/models/repo_id
- models.yaml does **NOT** use path, just repo_id
- "repo_name" changed to "repo_id" to following hugging face conventions
- Models are loaded with full precision pending further work.
* allow non-local files during development
* path takes priority over repo_id
* MVP for model_cache and configure_invokeai
- Feature complete (almost)
- configure_invokeai.py downloads both .ckpt and diffuser models,
along with their VAEs. Both types of download are controlled by
a unified INITIAL_MODELS.yaml file.
- model_cache can load both type of model and switches back and forth
in CPU. No memory leaks detected
TO DO:
1. I have not yet turned on the LocalOnly flag for diffuser models, so
the code will check the Hugging Face repo for updates before using the
locally cached models. This will break firewalled systems. I am thinking
of putting in a global check for internet connectivity at startup time
and setting the LocalOnly flag based on this. It would be good to check
updates if there is connectivity.
2. I have not gone completely through INITIAL_MODELS.yaml to check which
models are available as diffusers and which are not. So models like
PaperCut and VoxelArt may not load properly. The runway and stability
models are checked, as well as the Trinart models.
3. Add stanzas for SD 2.0 and 2.1 in INITIAL_MODELS.yaml
REMAINING PROBLEMS NOT DIRECTLY RELATED TO MODEL_CACHE:
1. When loading a .ckpt file there are lots of messages like this:
Warning! ldm.modules.attention.CrossAttention is no longer being
maintained. Please use InvokeAICrossAttention instead.
I'm not sure how to address this.
2. The ckpt models ***don't actually run*** due to the lack of special-case
support for them in the generator objects. For example, here's the hard
crash you get when you run txt2img against the legacy waifu-diffusion-1.3
model:
```
>> An error occurred:
Traceback (most recent call last):
File "/data/lstein/InvokeAI/ldm/invoke/CLI.py", line 140, in main
main_loop(gen, opt)
File "/data/lstein/InvokeAI/ldm/invoke/CLI.py", line 371, in main_loop
gen.prompt2image(
File "/data/lstein/InvokeAI/ldm/generate.py", line 496, in prompt2image
results = generator.generate(
File "/data/lstein/InvokeAI/ldm/invoke/generator/base.py", line 108, in generate
image = make_image(x_T)
File "/data/lstein/InvokeAI/ldm/invoke/generator/txt2img.py", line 33, in make_image
pipeline_output = pipeline.image_from_embeddings(
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1265, in __getattr__
raise AttributeError("'{}' object has no attribute '{}'".format(
AttributeError: 'LatentDiffusion' object has no attribute 'image_from_embeddings'
```
3. The inpainting diffusion model isn't working. Here's the output of "banana
sushi" when inpainting-1.5 is loaded:
```
Traceback (most recent call last):
File "/data/lstein/InvokeAI/ldm/generate.py", line 496, in prompt2image
results = generator.generate(
File "/data/lstein/InvokeAI/ldm/invoke/generator/base.py", line 108, in generate
image = make_image(x_T)
File "/data/lstein/InvokeAI/ldm/invoke/generator/txt2img.py", line 33, in make_image
pipeline_output = pipeline.image_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 301, in image_from_embeddings
result_latents, result_attention_map_saver = self.latents_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 330, in latents_from_embeddings
result: PipelineIntermediateState = infer_latents_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 185, in __call__
for result in self.generator_method(*args, **kwargs):
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 367, in generate_latents_from_embeddings
step_output = self.step(batched_t, latents, guidance_scale,
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context
return func(*args, **kwargs)
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 409, in step
step_output = self.scheduler.step(noise_pred, timestep, latents, **extra_step_kwargs)
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/diffusers/schedulers/scheduling_lms_discrete.py", line 223, in step
pred_original_sample = sample - sigma * model_output
RuntimeError: The size of tensor a (9) must match the size of tensor b (4) at non-singleton dimension 1
```
* proper support for float32/float16
- configure script now correctly detects user's preference for
fp16/32 and downloads the correct diffuser version. If fp16
version not available, falls back to fp32 version.
- misc code cleanup and simplification in model_cache
* add on-the-fly conversion of .ckpt to diffusers models
1. On-the-fly conversion code can be found in the file ldm/invoke/ckpt_to_diffusers.py.
2. A new !optimize command has been added to the CLI. Should be ported to Web GUI.
User experience on the CLI is this:
```
invoke> !optimize /home/lstein/invokeai/models/ldm/stable-diffusion-v1/sd-v1-4.ckpt
INFO: Converting legacy weights file /home/lstein/invokeai/models/ldm/stable-diffusion-v1/sd-v1-4.ckpt to optimized diffuser model.
This operation will take 30-60s to complete.
Success. Optimized model is now located at /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
Writing new config file entry for sd-v1-4...
>> New configuration:
sd-v1-4:
description: Optimized version of sd-v1-4
format: diffusers
path: /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
OK to import [n]? y
>> Verifying that new model loads...
>> Current VRAM usage: 2.60G
>> Offloading stable-diffusion-2.1 to CPU
>> Loading diffusers model from /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
| Using faster float16 precision
You have disabled the safety checker for <class 'ldm.invoke.generator.diffusers_pipeline.StableDiffusionGeneratorPipeline'> by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion \
license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances,\
disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .
| training width x height = (512 x 512)
>> Model loaded in 3.48s
>> Max VRAM used to load the model: 2.17G
>> Current VRAM usage:2.17G
>> Textual inversions available:
>> Setting Sampler to k_lms (LMSDiscreteScheduler)
Keep model loaded? [y]
```
* add parallel set of generator files for ckpt legacy generation
* generation using legacy ckpt models now working
* diffusers: fix missing attention_maps_callback
fix for 23eb80b40421b2bb8f4b6d3dd30490d11c447b36
* associate legacy CrossAttention with .ckpt models
* enable autoconvert
New --autoconvert CLI option will scan a designated directory for
new .ckpt files, convert them into diffuser models, and import
them into models.yaml.
Works like this:
invoke.py --autoconvert /path/to/weights/directory
In ModelCache added two new methods:
autoconvert_weights(config_path, weights_directory_path, models_directory_path)
convert_and_import(ckpt_path, diffuser_path)
* diffusers: update to diffusers 0.11 (from 0.10.2)
* fix vae loading & width/height calculation
* refactor: encapsulate these conditioning data into one container
* diffusers: fix some noise-scaling issues by pushing the noise-mixing down to the common function
* add support for safetensors and accelerate
* set local_files_only when internet unreachable
* diffusers: fix error-handling path when model repo has no fp16 branch
* fix generatorinpaint error
Fixes :
"ModuleNotFoundError: No module named 'ldm.invoke.generatorinpaint'
https://github.com/invoke-ai/InvokeAI/pull/1583#issuecomment-1363634318
* quench diffuser safety-checker warning
* diffusers: support stochastic DDIM eta parameter
* fix conda env creation on macos
* fix cross-attention with diffusers 0.11
* diffusers: the VAE needs to be tiling as well as the U-Net
* diffusers: comment on subfolders
* diffusers: embiggen!
* diffusers: make model_cache.list_models serializable
* diffusers(inpaint): restore scaling functionality
* fix requirements clash between numba and numpy 1.24
* diffusers: allow inpainting model to do non-inpainting tasks
* start expanding model_cache functionality
* add import_ckpt_model() and import_diffuser_model() methods to model_manager
- in addition, model_cache.py is now renamed to model_manager.py
* allow "recommended" flag to be optional in INITIAL_MODELS.yaml
* configure_invokeai now downloads VAE diffusers in advance
* rename ModelCache to ModelManager
* remove support for `repo_name` in models.yaml
* check for and refuse to load embeddings trained on incompatible models
* models.yaml.example: s/repo_name/repo_id
and remove extra INITIAL_MODELS now that the main one has diffusers models in it.
* add MVP textual inversion script
* refactor(InvokeAIDiffuserComponent): factor out _combine()
* InvokeAIDiffuserComponent: implement threshold
* InvokeAIDiffuserComponent: diagnostic logs for threshold
...this does not look right
* add a curses-based frontend to textual inversion
- not quite working yet
- requires npyscreen installed
- on windows will also have the windows-curses requirement, but not added
to requirements yet
* add curses-based interface for textual inversion
* fix crash in convert_and_import()
- This corrects a "local variable referenced before assignment" error
in model_manager.convert_and_import()
* potential workaround for no 'state_dict' key error
- As reported in https://github.com/huggingface/diffusers/issues/1876
* create TI output dir if needed
* Update environment-lin-cuda.yml (#2159)
Fixing line 42 to be the proper order to define the transformers requirement: ~= instead of =~
* diffusers: update sampler-to-scheduler mapping
based on https://github.com/huggingface/diffusers/issues/277#issuecomment-1371428672
* improve user exp for ckt to diffusers conversion
- !optimize_models command now operates on an existing ckpt file entry in models.yaml
- replaces existing entry, rather than adding a new one
- offers to delete the ckpt file after conversion
* web: adapt progress callback to deal with old generator or new diffusers pipeline
* clean-up model_manager code
- add_model() verified to work for .ckpt local paths,
.ckpt remote URLs, diffusers local paths, and
diffusers repo_ids
- convert_and_import() verified to work for local and
remove .ckpt files
* handle edge cases for import_model() and convert_model()
* add support for safetensor .ckpt files
* fix name error
* code cleanup with pyflake
* improve model setting behavior
- If the user enters an invalid model name at startup time, will not
try to load it, warn, and use default model
- CLI UI enhancement: include currently active model in the command
line prompt.
* update test-invoke-pip.yml
- fix model cache path to point to runwayml/stable-diffusion-v1-5
- remove `skip-sd-weights` from configure_invokeai.py args
* exclude dev/diffusers from "fail for draft PRs"
* disable "fail on PR jobs"
* re-add `--skip-sd-weights` since no space
* update workflow environments
- include `INVOKE_MODEL_RECONFIGURE: '--yes'`
* clean up model load failure handling
- Allow CLI to run even when no model is defined or loadable.
- Inhibit stack trace when model load fails - only show last error
- Give user *option* to run configure_invokeai.py when no models
successfully load.
- Restart invokeai after reconfiguration.
* further edge-case handling
1) only one model in models.yaml file, and that model is broken
2) no models in models.yaml
3) models.yaml doesn't exist at all
* fix incorrect model status listing
- "cached" was not being returned from list_models()
- normalize handling of exceptions during model loading:
- Passing an invalid model name to generate.set_model() will return
a KeyError
- All other exceptions are returned as the appropriate Exception
* CI: do download weights (if not already cached)
* diffusers: fix scheduler loading in offline mode
* CI: fix model name (no longer has `diffusers-` prefix)
* Update txt2img2img.py (#2256)
* fixes to share models with HuggingFace cache system
- If HF_HOME environment variable is defined, then all huggingface models
are stored in that directory following the standard conventions.
- For seamless interoperability, set HF_HOME to ~/.cache/huggingface
- If HF_HOME not defined, then models are stored in ~/invokeai/models.
This is equivalent to setting HF_HOME to ~/invokeai/models
A future commit will add a migration mechanism so that this change doesn't
break previous installs.
* feat - make model storage compatible with hugging face caching system
This commit alters the InvokeAI model directory to be compatible with
hugging face, making it easier to share diffusers (and other models)
across different programs.
- If the HF_HOME environment variable is not set, then models are
cached in ~/invokeai/models in a format that is identical to the
HuggingFace cache.
- If HF_HOME is set, then models are cached wherever HF_HOME points.
- To enable sharing with other HuggingFace library clients, set
HF_HOME to ~/.cache/huggingface to set the default cache location
or to ~/invokeai/models to have huggingface cache inside InvokeAI.
* fixes to share models with HuggingFace cache system
- If HF_HOME environment variable is defined, then all huggingface models
are stored in that directory following the standard conventions.
- For seamless interoperability, set HF_HOME to ~/.cache/huggingface
- If HF_HOME not defined, then models are stored in ~/invokeai/models.
This is equivalent to setting HF_HOME to ~/invokeai/models
A future commit will add a migration mechanism so that this change doesn't
break previous installs.
* fix error "no attribute CkptInpaint"
* model_manager.list_models() returns entire model config stanza+status
* Initial Draft - Model Manager Diffusers
* added hash function to diffusers
* implement sha256 hashes on diffusers models
* Add Model Manager Support for Diffusers
* fix various problems with model manager
- in cli import functions, fix not enough values to unpack from
_get_name_and_desc()
- fix crash when using old-style vae: value with new-style diffuser
* rebuild frontend
* fix dictconfig-not-serializable issue
* fix NoneType' object is not subscriptable crash in model_manager
* fix "str has no attribute get" error in model_manager list_models()
* Add path and repo_id support for Diffusers Model Manager
Also fixes bugs
* Fix tooltip IT localization not working
* Add Version Number To WebUI
* Optimize Model Search
* Fix incorrect font on the Model Manager UI
* Fix image degradation on merge fixes - [Experimental]
This change should effectively fix a couple of things.
- Fix image degradation on subsequent merges of the canvas layers.
- Fix the slight transparent border that is left behind when filling the bounding box with a color.
- Fix the left over line of color when filling a bounding box with color.
So far there are no side effects for this. If any, please report.
* Add local model filtering for Diffusers / Checkpoints
* Go to home on modal close for the Add Modal UI
* Styling Fixes
* Model Manager Diffusers Localization Update
* Add Safe Tensor scanning to Model Manager
* Fix model edit form dispatching string values instead of numbers.
* Resolve VAE handling / edge cases for supplied repos
* defer injecting tokens for textual inversions until they're used for the first time
* squash a console warning
* implement model migration check
* add_model() overwrites previous config rather than merges
* fix model config file attribute merging
* fix precision handling in textual inversion script
* allow ckpt conversion script to work with safetensors .ckpts
Applied patch here:
https://github.com/huggingface/diffusers/commit/beb932c5d111872c5e45387e7b1b2b3dd0524a47
* fix name "args" is not defined crash in textual_inversion_training
* fix a second NameError: name 'args' is not defined crash
* fix loading of the safety checker from the global cache dir
* add installation step to textual inversion frontend
- After a successful training run, the script will copy learned_embeds.bin
to a subfolder of the embeddings directory.
- User given the option to delete the logs and intermediate checkpoints
(which together use 7-8G of space)
- If textual inversion training fails, reports the error gracefully.
* don't crash out on incompatible embeddings
- put try: blocks around places where the system tries to load an embedding
which is incompatible with the currently loaded model
* add support for checkpoint resuming
* textual inversion preferences are saved and restored between sessions
- Preferences are stored in a file named text-inversion-training/preferences.conf
- Currently the resume-from-checkpoint option is not working correctly. Possible
bug in textual_inversion_training.py?
* copy learned_embeddings.bin into right location
* add front end for diffusers model merging
- Front end doesn't do anything yet!!!!
- Made change to model name parsing in CLI to support ability to have merged models
with the "+" character in their names.
* improve inpainting experience
- recommend ckpt version of inpainting-1.5 to user
- fix get_noise() bug in ckpt version of omnibus.py
* update environment*yml
* tweak instructions to install HuggingFace token
* bump version number
* enhance update scripts
- update scripts will now fetch new INITIAL_MODELS.yaml so that
configure_invokeai.py will know about the diffusers versions.
* enhance invoke.sh/invoke.bat launchers
- added configure_invokeai.py to menu
- menu defaults to browser-based invoke
* remove conda workflow (#2321)
* fix `token_ids has shape torch.Size([79]) - expected [77]`
* update CHANGELOG.md with 2.3.* info
- Add information on how formats have changed and the upgrade process.
- Add short bug list.
Co-authored-by: Damian Stewart <d@damianstewart.com>
Co-authored-by: Damian Stewart <null@damianstewart.com>
Co-authored-by: Lincoln Stein <lincoln.stein@gmail.com>
Co-authored-by: Wybartel-luxmc <37852506+Wybartel-luxmc@users.noreply.github.com>
Co-authored-by: mauwii <Mauwii@outlook.de>
Co-authored-by: mickr777 <115216705+mickr777@users.noreply.github.com>
Co-authored-by: blessedcoolant <54517381+blessedcoolant@users.noreply.github.com>
Co-authored-by: Eugene Brodsky <ebr@users.noreply.github.com>
Co-authored-by: Matthias Wild <40327258+mauwii@users.noreply.github.com>
2023-01-15 14:22:46 +00:00
|
|
|
from safetensors.torch import load_file
|
2023-02-02 20:15:44 +00:00
|
|
|
from typing import Union
|
use 🧨diffusers model (#1583)
* initial commit of DiffusionPipeline class
* spike: proof of concept using diffusers for txt2img
* doc: type hints for Generator
* refactor(model_cache): factor out load_ckpt
* model_cache: add ability to load a diffusers model pipeline
and update associated things in Generate & Generator to not instantly fail when that happens
* model_cache: fix model default image dimensions
* txt2img: support switching diffusers schedulers
* diffusers: let the scheduler do its scaling of the initial latents
Remove IPNDM scheduler; it is not behaving.
* web server: update image_progress callback for diffusers data
* diffusers: restore prompt weighting feature
* diffusers: fix set-sampler error following model switch
* diffusers: use InvokeAIDiffuserComponent for conditioning
* cross_attention_control: stub (no-op) implementations for diffusers
* model_cache: let offload_model work with DiffusionPipeline, sorta.
* models.yaml.example: add diffusers-format model, set as default
* test-invoke-conda: use diffusers-format model
test-invoke-conda: put huggingface-token where the library can use it
* environment-mac: upgrade to diffusers 0.7 (from 0.6)
this was already done for linux; mac must have been lost in the merge.
* preload_models: explicitly load diffusers models
In non-interactive mode too, as long as you're logged in.
* fix(model_cache): don't check `model.config` in diffusers format
clean-up from recent merge.
* diffusers integration: support img2img
* dev: upgrade to diffusers 0.8 (from 0.7.1)
We get to remove some code by using methods that were factored out in the base class.
* refactor: remove backported img2img.get_timesteps
now that we can use it directly from diffusers 0.8.1
* ci: use diffusers model
* dev: upgrade to diffusers 0.9 (from 0.8.1)
* lint: correct annotations for Python 3.9.
* lint: correct AttributeError.name reference for Python 3.9.
* CI: prefer diffusers-1.4 because it no longer requires a token
The RunwayML models still do.
* build: there's yet another place to update requirements?
* configure: try to download models even without token
Models in the CompVis and stabilityai repos no longer require them. (But runwayml still does.)
* configure: add troubleshooting info for config-not-found
* fix(configure): prepend root to config path
* fix(configure): remove second `default: true` from models example
* CI: simplify test-on-push logic now that we don't need secrets
The "test on push but only in forks" logic was only necessary when tests didn't work for PRs-from-forks.
* create an embedding_manager for diffusers
* internal: avoid importing diffusers DummyObject
see https://github.com/huggingface/diffusers/issues/1479
* fix "config attributes…not expected" diffusers warnings.
* fix deprecated scheduler construction
* work around an apparent MPS torch bug that causes conditioning to have no effect
* 🚧 post-rebase repair
* preliminary support for outpainting (no masking yet)
* monkey-patch diffusers.attention and use Invoke lowvram code
* add always_use_cpu arg to bypass MPS
* add cross-attention control support to diffusers (fails on MPS)
For unknown reasons MPS produces garbage output with .swap(). Use
--always_use_cpu arg to invoke.py for now to test this code on MPS.
* diffusers support for the inpainting model
* fix debug_image to not crash with non-RGB images.
* inpainting for the normal model [WIP]
This seems to be performing well until the LAST STEP, at which point it dissolves to confetti.
* fix off-by-one bug in cross-attention-control (#1774)
prompt token sequences begin with a "beginning-of-sequence" marker <bos> and end with a repeated "end-of-sequence" marker <eos> - to make a default prompt length of <bos> + 75 prompt tokens + <eos>. the .swap() code was failing to take the column for <bos> at index 0 into account. the changes here do that, and also add extra handling for a single <eos> (which may be redundant but which is included for completeness).
based on my understanding and some assumptions about how this all works, the reason .swap() nevertheless seemed to do the right thing, to some extent, is because over multiple steps the conditioning process in Stable Diffusion operates as a feedback loop. a change to token n-1 has flow-on effects to how the [1x4x64x64] latent tensor is modified by all the tokens after it, - and as the next step is processed, all the tokens before it as well. intuitively, a token's conditioning effects "echo" throughout the whole length of the prompt. so even though the token at n-1 was being edited when what the user actually wanted was to edit the token at n, it nevertheless still had some non-negligible effect, in roughly the right direction, often enough that it seemed like it was working properly.
* refactor common CrossAttention stuff into a mixin so that the old ldm code can still work if necessary
* inpainting for the normal model. I think it works this time.
* diffusers: reset num_vectors_per_token
sync with 44a00555718f1df173c60da0ed646cf700e29537
* diffusers: txt2img2img (hires_fix)
with so much slicing and dicing of pipeline methods to stitch them together
* refactor(diffusers): reduce some code duplication amongst the different tasks
* fixup! refactor(diffusers): reduce some code duplication amongst the different tasks
* diffusers: enable DPMSolver++ scheduler
* diffusers: upgrade to diffusers 0.10, add Heun scheduler
* diffusers(ModelCache): stopgap to make from_cpu compatible with diffusers
* CI: default to diffusers-1.5 now that runwayml token requirement is gone
* diffusers: update to 0.10 (and transformers to 4.25)
* diffusers: use xformers when available
diffusers no longer auto-enables this as of 0.10.2.
* diffusers: make masked img2img behave better with multi-step schedulers
re-randomizing the noise each step was confusing them.
* diffusers: work more better with more models.
fixed relative path problem with local models.
fixed models on hub not always having a `fp16` branch.
* diffusers: stopgap fix for attention_maps_callback crash after recent merge
* fixup import merge conflicts
correction for 061c5369a2247c6c92cd69606bcf54c4f1962a0b
* test: add tests/inpainting inputs for masked img2img
* diffusers(AddsMaskedGuidance): partial fix for k-schedulers
Prevents them from crashing, but results are still hot garbage.
* fix --safety_checker arg parsing
and add note to diffusers loader about where safety checker gets called
* generate: fix import error
* CI: don't try to read the old init location
* diffusers: support loading an alternate VAE
* CI: remove sh-syntax if-statement so it doesn't crash powershell
* CI: fold strings in yaml because backslash is not line-continuation in powershell
* attention maps callback stuff for diffusers
* build: fix syntax error in environment-mac
* diffusers: add INITIAL_MODELS with diffusers-compatible repos
* re-enable the embedding manager; closes #1778
* Squashed commit of the following:
commit e4a956abc37fcb5cf188388b76b617bc5c8fda7d
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:43:07 2022 +0100
import new load handling from EmbeddingManager and cleanup
commit c4abe91a5ba0d415b45bf734068385668b7a66e6
Merge: 032e856e 1efc6397
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:09:53 2022 +0100
Merge branch 'feature_textual_inversion_mgr' into dev/diffusers_with_textual_inversion_manager
commit 032e856eefb3bbc39534f5daafd25764bcfcef8b
Merge: 8b4f0fe9 bc515e24
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:08:01 2022 +0100
Merge remote-tracking branch 'upstream/dev/diffusers' into dev/diffusers_with_textual_inversion_manager
commit 1efc6397fc6e61c1aff4b0258b93089d61de5955
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:04:28 2022 +0100
cleanup and add performance notes
commit e400f804ac471a0ca2ba432fd658778b20c7bdab
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 14:45:07 2022 +0100
fix bug and update unit tests
commit deb9ae0ae1016750e93ce8275734061f7285a231
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 14:28:29 2022 +0100
textual inversion manager seems to work
commit 162e02505dec777e91a983c4d0fb52e950d25ff0
Merge: cbad4583 12769b3d
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:58:03 2022 +0100
Merge branch 'main' into feature_textual_inversion_mgr
commit cbad45836c6aace6871a90f2621a953f49433131
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:54:10 2022 +0100
use position embeddings
commit 070344c69b0e0db340a183857d0a787b348681d3
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:53:47 2022 +0100
Don't crash CLI on exceptions
commit b035ac8c6772dfd9ba41b8eeb9103181cda028f8
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:11:55 2022 +0100
add missing position_embeddings
commit 12769b3d3562ef71e0f54946b532ad077e10043c
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 13:33:25 2022 +0100
debugging why it don't work
commit bafb7215eabe1515ca5e8388fd3bb2f3ac5362cf
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 13:21:33 2022 +0100
debugging why it don't work
commit 664a6e9e146b42d96703f0cc8baf8f5efec04ee1
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 12:48:38 2022 +0100
use TextualInversionManager in place of embeddings (wip, doesn't work)
commit 8b4f0fe9d6e4e2643b36dfa27864294785d7ba4e
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 12:48:38 2022 +0100
use TextualInversionManager in place of embeddings (wip, doesn't work)
commit ffbe1ab11163ba712e353d89404e301d0e0c6cdf
Merge: 6e4dad60 023df37e
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:37:31 2022 +0100
Merge branch 'feature_textual_inversion_mgr' into dev/diffusers
commit 023df37efffa67434f77def7fc3c9dfb29f699fd
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:36:54 2022 +0100
cleanup
commit 05fac594eaf79d0058e3c48deee93df603f136c2
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:07:49 2022 +0100
tweak error checking
commit 009f32ed39a7280997c3ffab112adadee0b44279
Author: damian <null@damianstewart.com>
Date: Thu Dec 15 21:29:47 2022 +0100
unit tests passing for embeddings with vector length >1
commit beb1b08d9a98112ed2fe073580568e1a18698da3
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 13:39:09 2022 +0100
more explicit equality tests when overwriting
commit 44d8a5a7c85cdabc9ce3a54fd0769a10597b3ca9
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 13:30:13 2022 +0100
wip textual inversion manager (unit tests passing for 1v embedding overwriting)
commit 417c2b57d90924a839616bfb66804faab8039e4c
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 12:30:55 2022 +0100
wip textual inversion manager (unit tests passing for base stuff + padding)
commit 2e80872e3b6f7fd7d8eb8928822bd824b63cb2ff
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 10:57:57 2022 +0100
wip new TextualInversionManager
* stop using WeightedFrozenCLIPEmbedder
* store diffusion models locally
- configure_invokeai.py reconfigured to store diffusion models rather than
CompVis models
- hugging face caching model is used, but cache is set to ~/invokeai/models/repo_id
- models.yaml does **NOT** use path, just repo_id
- "repo_name" changed to "repo_id" to following hugging face conventions
- Models are loaded with full precision pending further work.
* allow non-local files during development
* path takes priority over repo_id
* MVP for model_cache and configure_invokeai
- Feature complete (almost)
- configure_invokeai.py downloads both .ckpt and diffuser models,
along with their VAEs. Both types of download are controlled by
a unified INITIAL_MODELS.yaml file.
- model_cache can load both type of model and switches back and forth
in CPU. No memory leaks detected
TO DO:
1. I have not yet turned on the LocalOnly flag for diffuser models, so
the code will check the Hugging Face repo for updates before using the
locally cached models. This will break firewalled systems. I am thinking
of putting in a global check for internet connectivity at startup time
and setting the LocalOnly flag based on this. It would be good to check
updates if there is connectivity.
2. I have not gone completely through INITIAL_MODELS.yaml to check which
models are available as diffusers and which are not. So models like
PaperCut and VoxelArt may not load properly. The runway and stability
models are checked, as well as the Trinart models.
3. Add stanzas for SD 2.0 and 2.1 in INITIAL_MODELS.yaml
REMAINING PROBLEMS NOT DIRECTLY RELATED TO MODEL_CACHE:
1. When loading a .ckpt file there are lots of messages like this:
Warning! ldm.modules.attention.CrossAttention is no longer being
maintained. Please use InvokeAICrossAttention instead.
I'm not sure how to address this.
2. The ckpt models ***don't actually run*** due to the lack of special-case
support for them in the generator objects. For example, here's the hard
crash you get when you run txt2img against the legacy waifu-diffusion-1.3
model:
```
>> An error occurred:
Traceback (most recent call last):
File "/data/lstein/InvokeAI/ldm/invoke/CLI.py", line 140, in main
main_loop(gen, opt)
File "/data/lstein/InvokeAI/ldm/invoke/CLI.py", line 371, in main_loop
gen.prompt2image(
File "/data/lstein/InvokeAI/ldm/generate.py", line 496, in prompt2image
results = generator.generate(
File "/data/lstein/InvokeAI/ldm/invoke/generator/base.py", line 108, in generate
image = make_image(x_T)
File "/data/lstein/InvokeAI/ldm/invoke/generator/txt2img.py", line 33, in make_image
pipeline_output = pipeline.image_from_embeddings(
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1265, in __getattr__
raise AttributeError("'{}' object has no attribute '{}'".format(
AttributeError: 'LatentDiffusion' object has no attribute 'image_from_embeddings'
```
3. The inpainting diffusion model isn't working. Here's the output of "banana
sushi" when inpainting-1.5 is loaded:
```
Traceback (most recent call last):
File "/data/lstein/InvokeAI/ldm/generate.py", line 496, in prompt2image
results = generator.generate(
File "/data/lstein/InvokeAI/ldm/invoke/generator/base.py", line 108, in generate
image = make_image(x_T)
File "/data/lstein/InvokeAI/ldm/invoke/generator/txt2img.py", line 33, in make_image
pipeline_output = pipeline.image_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 301, in image_from_embeddings
result_latents, result_attention_map_saver = self.latents_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 330, in latents_from_embeddings
result: PipelineIntermediateState = infer_latents_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 185, in __call__
for result in self.generator_method(*args, **kwargs):
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 367, in generate_latents_from_embeddings
step_output = self.step(batched_t, latents, guidance_scale,
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context
return func(*args, **kwargs)
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 409, in step
step_output = self.scheduler.step(noise_pred, timestep, latents, **extra_step_kwargs)
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/diffusers/schedulers/scheduling_lms_discrete.py", line 223, in step
pred_original_sample = sample - sigma * model_output
RuntimeError: The size of tensor a (9) must match the size of tensor b (4) at non-singleton dimension 1
```
* proper support for float32/float16
- configure script now correctly detects user's preference for
fp16/32 and downloads the correct diffuser version. If fp16
version not available, falls back to fp32 version.
- misc code cleanup and simplification in model_cache
* add on-the-fly conversion of .ckpt to diffusers models
1. On-the-fly conversion code can be found in the file ldm/invoke/ckpt_to_diffusers.py.
2. A new !optimize command has been added to the CLI. Should be ported to Web GUI.
User experience on the CLI is this:
```
invoke> !optimize /home/lstein/invokeai/models/ldm/stable-diffusion-v1/sd-v1-4.ckpt
INFO: Converting legacy weights file /home/lstein/invokeai/models/ldm/stable-diffusion-v1/sd-v1-4.ckpt to optimized diffuser model.
This operation will take 30-60s to complete.
Success. Optimized model is now located at /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
Writing new config file entry for sd-v1-4...
>> New configuration:
sd-v1-4:
description: Optimized version of sd-v1-4
format: diffusers
path: /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
OK to import [n]? y
>> Verifying that new model loads...
>> Current VRAM usage: 2.60G
>> Offloading stable-diffusion-2.1 to CPU
>> Loading diffusers model from /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
| Using faster float16 precision
You have disabled the safety checker for <class 'ldm.invoke.generator.diffusers_pipeline.StableDiffusionGeneratorPipeline'> by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion \
license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances,\
disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .
| training width x height = (512 x 512)
>> Model loaded in 3.48s
>> Max VRAM used to load the model: 2.17G
>> Current VRAM usage:2.17G
>> Textual inversions available:
>> Setting Sampler to k_lms (LMSDiscreteScheduler)
Keep model loaded? [y]
```
* add parallel set of generator files for ckpt legacy generation
* generation using legacy ckpt models now working
* diffusers: fix missing attention_maps_callback
fix for 23eb80b40421b2bb8f4b6d3dd30490d11c447b36
* associate legacy CrossAttention with .ckpt models
* enable autoconvert
New --autoconvert CLI option will scan a designated directory for
new .ckpt files, convert them into diffuser models, and import
them into models.yaml.
Works like this:
invoke.py --autoconvert /path/to/weights/directory
In ModelCache added two new methods:
autoconvert_weights(config_path, weights_directory_path, models_directory_path)
convert_and_import(ckpt_path, diffuser_path)
* diffusers: update to diffusers 0.11 (from 0.10.2)
* fix vae loading & width/height calculation
* refactor: encapsulate these conditioning data into one container
* diffusers: fix some noise-scaling issues by pushing the noise-mixing down to the common function
* add support for safetensors and accelerate
* set local_files_only when internet unreachable
* diffusers: fix error-handling path when model repo has no fp16 branch
* fix generatorinpaint error
Fixes :
"ModuleNotFoundError: No module named 'ldm.invoke.generatorinpaint'
https://github.com/invoke-ai/InvokeAI/pull/1583#issuecomment-1363634318
* quench diffuser safety-checker warning
* diffusers: support stochastic DDIM eta parameter
* fix conda env creation on macos
* fix cross-attention with diffusers 0.11
* diffusers: the VAE needs to be tiling as well as the U-Net
* diffusers: comment on subfolders
* diffusers: embiggen!
* diffusers: make model_cache.list_models serializable
* diffusers(inpaint): restore scaling functionality
* fix requirements clash between numba and numpy 1.24
* diffusers: allow inpainting model to do non-inpainting tasks
* start expanding model_cache functionality
* add import_ckpt_model() and import_diffuser_model() methods to model_manager
- in addition, model_cache.py is now renamed to model_manager.py
* allow "recommended" flag to be optional in INITIAL_MODELS.yaml
* configure_invokeai now downloads VAE diffusers in advance
* rename ModelCache to ModelManager
* remove support for `repo_name` in models.yaml
* check for and refuse to load embeddings trained on incompatible models
* models.yaml.example: s/repo_name/repo_id
and remove extra INITIAL_MODELS now that the main one has diffusers models in it.
* add MVP textual inversion script
* refactor(InvokeAIDiffuserComponent): factor out _combine()
* InvokeAIDiffuserComponent: implement threshold
* InvokeAIDiffuserComponent: diagnostic logs for threshold
...this does not look right
* add a curses-based frontend to textual inversion
- not quite working yet
- requires npyscreen installed
- on windows will also have the windows-curses requirement, but not added
to requirements yet
* add curses-based interface for textual inversion
* fix crash in convert_and_import()
- This corrects a "local variable referenced before assignment" error
in model_manager.convert_and_import()
* potential workaround for no 'state_dict' key error
- As reported in https://github.com/huggingface/diffusers/issues/1876
* create TI output dir if needed
* Update environment-lin-cuda.yml (#2159)
Fixing line 42 to be the proper order to define the transformers requirement: ~= instead of =~
* diffusers: update sampler-to-scheduler mapping
based on https://github.com/huggingface/diffusers/issues/277#issuecomment-1371428672
* improve user exp for ckt to diffusers conversion
- !optimize_models command now operates on an existing ckpt file entry in models.yaml
- replaces existing entry, rather than adding a new one
- offers to delete the ckpt file after conversion
* web: adapt progress callback to deal with old generator or new diffusers pipeline
* clean-up model_manager code
- add_model() verified to work for .ckpt local paths,
.ckpt remote URLs, diffusers local paths, and
diffusers repo_ids
- convert_and_import() verified to work for local and
remove .ckpt files
* handle edge cases for import_model() and convert_model()
* add support for safetensor .ckpt files
* fix name error
* code cleanup with pyflake
* improve model setting behavior
- If the user enters an invalid model name at startup time, will not
try to load it, warn, and use default model
- CLI UI enhancement: include currently active model in the command
line prompt.
* update test-invoke-pip.yml
- fix model cache path to point to runwayml/stable-diffusion-v1-5
- remove `skip-sd-weights` from configure_invokeai.py args
* exclude dev/diffusers from "fail for draft PRs"
* disable "fail on PR jobs"
* re-add `--skip-sd-weights` since no space
* update workflow environments
- include `INVOKE_MODEL_RECONFIGURE: '--yes'`
* clean up model load failure handling
- Allow CLI to run even when no model is defined or loadable.
- Inhibit stack trace when model load fails - only show last error
- Give user *option* to run configure_invokeai.py when no models
successfully load.
- Restart invokeai after reconfiguration.
* further edge-case handling
1) only one model in models.yaml file, and that model is broken
2) no models in models.yaml
3) models.yaml doesn't exist at all
* fix incorrect model status listing
- "cached" was not being returned from list_models()
- normalize handling of exceptions during model loading:
- Passing an invalid model name to generate.set_model() will return
a KeyError
- All other exceptions are returned as the appropriate Exception
* CI: do download weights (if not already cached)
* diffusers: fix scheduler loading in offline mode
* CI: fix model name (no longer has `diffusers-` prefix)
* Update txt2img2img.py (#2256)
* fixes to share models with HuggingFace cache system
- If HF_HOME environment variable is defined, then all huggingface models
are stored in that directory following the standard conventions.
- For seamless interoperability, set HF_HOME to ~/.cache/huggingface
- If HF_HOME not defined, then models are stored in ~/invokeai/models.
This is equivalent to setting HF_HOME to ~/invokeai/models
A future commit will add a migration mechanism so that this change doesn't
break previous installs.
* feat - make model storage compatible with hugging face caching system
This commit alters the InvokeAI model directory to be compatible with
hugging face, making it easier to share diffusers (and other models)
across different programs.
- If the HF_HOME environment variable is not set, then models are
cached in ~/invokeai/models in a format that is identical to the
HuggingFace cache.
- If HF_HOME is set, then models are cached wherever HF_HOME points.
- To enable sharing with other HuggingFace library clients, set
HF_HOME to ~/.cache/huggingface to set the default cache location
or to ~/invokeai/models to have huggingface cache inside InvokeAI.
* fixes to share models with HuggingFace cache system
- If HF_HOME environment variable is defined, then all huggingface models
are stored in that directory following the standard conventions.
- For seamless interoperability, set HF_HOME to ~/.cache/huggingface
- If HF_HOME not defined, then models are stored in ~/invokeai/models.
This is equivalent to setting HF_HOME to ~/invokeai/models
A future commit will add a migration mechanism so that this change doesn't
break previous installs.
* fix error "no attribute CkptInpaint"
* model_manager.list_models() returns entire model config stanza+status
* Initial Draft - Model Manager Diffusers
* added hash function to diffusers
* implement sha256 hashes on diffusers models
* Add Model Manager Support for Diffusers
* fix various problems with model manager
- in cli import functions, fix not enough values to unpack from
_get_name_and_desc()
- fix crash when using old-style vae: value with new-style diffuser
* rebuild frontend
* fix dictconfig-not-serializable issue
* fix NoneType' object is not subscriptable crash in model_manager
* fix "str has no attribute get" error in model_manager list_models()
* Add path and repo_id support for Diffusers Model Manager
Also fixes bugs
* Fix tooltip IT localization not working
* Add Version Number To WebUI
* Optimize Model Search
* Fix incorrect font on the Model Manager UI
* Fix image degradation on merge fixes - [Experimental]
This change should effectively fix a couple of things.
- Fix image degradation on subsequent merges of the canvas layers.
- Fix the slight transparent border that is left behind when filling the bounding box with a color.
- Fix the left over line of color when filling a bounding box with color.
So far there are no side effects for this. If any, please report.
* Add local model filtering for Diffusers / Checkpoints
* Go to home on modal close for the Add Modal UI
* Styling Fixes
* Model Manager Diffusers Localization Update
* Add Safe Tensor scanning to Model Manager
* Fix model edit form dispatching string values instead of numbers.
* Resolve VAE handling / edge cases for supplied repos
* defer injecting tokens for textual inversions until they're used for the first time
* squash a console warning
* implement model migration check
* add_model() overwrites previous config rather than merges
* fix model config file attribute merging
* fix precision handling in textual inversion script
* allow ckpt conversion script to work with safetensors .ckpts
Applied patch here:
https://github.com/huggingface/diffusers/commit/beb932c5d111872c5e45387e7b1b2b3dd0524a47
* fix name "args" is not defined crash in textual_inversion_training
* fix a second NameError: name 'args' is not defined crash
* fix loading of the safety checker from the global cache dir
* add installation step to textual inversion frontend
- After a successful training run, the script will copy learned_embeds.bin
to a subfolder of the embeddings directory.
- User given the option to delete the logs and intermediate checkpoints
(which together use 7-8G of space)
- If textual inversion training fails, reports the error gracefully.
* don't crash out on incompatible embeddings
- put try: blocks around places where the system tries to load an embedding
which is incompatible with the currently loaded model
* add support for checkpoint resuming
* textual inversion preferences are saved and restored between sessions
- Preferences are stored in a file named text-inversion-training/preferences.conf
- Currently the resume-from-checkpoint option is not working correctly. Possible
bug in textual_inversion_training.py?
* copy learned_embeddings.bin into right location
* add front end for diffusers model merging
- Front end doesn't do anything yet!!!!
- Made change to model name parsing in CLI to support ability to have merged models
with the "+" character in their names.
* improve inpainting experience
- recommend ckpt version of inpainting-1.5 to user
- fix get_noise() bug in ckpt version of omnibus.py
* update environment*yml
* tweak instructions to install HuggingFace token
* bump version number
* enhance update scripts
- update scripts will now fetch new INITIAL_MODELS.yaml so that
configure_invokeai.py will know about the diffusers versions.
* enhance invoke.sh/invoke.bat launchers
- added configure_invokeai.py to menu
- menu defaults to browser-based invoke
* remove conda workflow (#2321)
* fix `token_ids has shape torch.Size([79]) - expected [77]`
* update CHANGELOG.md with 2.3.* info
- Add information on how formats have changed and the upgrade process.
- Add short bug list.
Co-authored-by: Damian Stewart <d@damianstewart.com>
Co-authored-by: Damian Stewart <null@damianstewart.com>
Co-authored-by: Lincoln Stein <lincoln.stein@gmail.com>
Co-authored-by: Wybartel-luxmc <37852506+Wybartel-luxmc@users.noreply.github.com>
Co-authored-by: mauwii <Mauwii@outlook.de>
Co-authored-by: mickr777 <115216705+mickr777@users.noreply.github.com>
Co-authored-by: blessedcoolant <54517381+blessedcoolant@users.noreply.github.com>
Co-authored-by: Eugene Brodsky <ebr@users.noreply.github.com>
Co-authored-by: Matthias Wild <40327258+mauwii@users.noreply.github.com>
2023-01-15 14:22:46 +00:00
|
|
|
|
|
|
|
try:
|
|
|
|
from omegaconf import OmegaConf
|
|
|
|
except ImportError:
|
|
|
|
raise ImportError(
|
|
|
|
"OmegaConf is required to convert the LDM checkpoints. Please install it with `pip install OmegaConf`."
|
|
|
|
)
|
|
|
|
|
|
|
|
from diffusers import (
|
|
|
|
AutoencoderKL,
|
|
|
|
DDIMScheduler,
|
|
|
|
DPMSolverMultistepScheduler,
|
|
|
|
EulerAncestralDiscreteScheduler,
|
|
|
|
EulerDiscreteScheduler,
|
|
|
|
HeunDiscreteScheduler,
|
|
|
|
LDMTextToImagePipeline,
|
|
|
|
LMSDiscreteScheduler,
|
|
|
|
PNDMScheduler,
|
|
|
|
StableDiffusionPipeline,
|
|
|
|
UNet2DConditionModel,
|
2023-02-03 15:14:51 +00:00
|
|
|
logging as dlogging,
|
use 🧨diffusers model (#1583)
* initial commit of DiffusionPipeline class
* spike: proof of concept using diffusers for txt2img
* doc: type hints for Generator
* refactor(model_cache): factor out load_ckpt
* model_cache: add ability to load a diffusers model pipeline
and update associated things in Generate & Generator to not instantly fail when that happens
* model_cache: fix model default image dimensions
* txt2img: support switching diffusers schedulers
* diffusers: let the scheduler do its scaling of the initial latents
Remove IPNDM scheduler; it is not behaving.
* web server: update image_progress callback for diffusers data
* diffusers: restore prompt weighting feature
* diffusers: fix set-sampler error following model switch
* diffusers: use InvokeAIDiffuserComponent for conditioning
* cross_attention_control: stub (no-op) implementations for diffusers
* model_cache: let offload_model work with DiffusionPipeline, sorta.
* models.yaml.example: add diffusers-format model, set as default
* test-invoke-conda: use diffusers-format model
test-invoke-conda: put huggingface-token where the library can use it
* environment-mac: upgrade to diffusers 0.7 (from 0.6)
this was already done for linux; mac must have been lost in the merge.
* preload_models: explicitly load diffusers models
In non-interactive mode too, as long as you're logged in.
* fix(model_cache): don't check `model.config` in diffusers format
clean-up from recent merge.
* diffusers integration: support img2img
* dev: upgrade to diffusers 0.8 (from 0.7.1)
We get to remove some code by using methods that were factored out in the base class.
* refactor: remove backported img2img.get_timesteps
now that we can use it directly from diffusers 0.8.1
* ci: use diffusers model
* dev: upgrade to diffusers 0.9 (from 0.8.1)
* lint: correct annotations for Python 3.9.
* lint: correct AttributeError.name reference for Python 3.9.
* CI: prefer diffusers-1.4 because it no longer requires a token
The RunwayML models still do.
* build: there's yet another place to update requirements?
* configure: try to download models even without token
Models in the CompVis and stabilityai repos no longer require them. (But runwayml still does.)
* configure: add troubleshooting info for config-not-found
* fix(configure): prepend root to config path
* fix(configure): remove second `default: true` from models example
* CI: simplify test-on-push logic now that we don't need secrets
The "test on push but only in forks" logic was only necessary when tests didn't work for PRs-from-forks.
* create an embedding_manager for diffusers
* internal: avoid importing diffusers DummyObject
see https://github.com/huggingface/diffusers/issues/1479
* fix "config attributes…not expected" diffusers warnings.
* fix deprecated scheduler construction
* work around an apparent MPS torch bug that causes conditioning to have no effect
* 🚧 post-rebase repair
* preliminary support for outpainting (no masking yet)
* monkey-patch diffusers.attention and use Invoke lowvram code
* add always_use_cpu arg to bypass MPS
* add cross-attention control support to diffusers (fails on MPS)
For unknown reasons MPS produces garbage output with .swap(). Use
--always_use_cpu arg to invoke.py for now to test this code on MPS.
* diffusers support for the inpainting model
* fix debug_image to not crash with non-RGB images.
* inpainting for the normal model [WIP]
This seems to be performing well until the LAST STEP, at which point it dissolves to confetti.
* fix off-by-one bug in cross-attention-control (#1774)
prompt token sequences begin with a "beginning-of-sequence" marker <bos> and end with a repeated "end-of-sequence" marker <eos> - to make a default prompt length of <bos> + 75 prompt tokens + <eos>. the .swap() code was failing to take the column for <bos> at index 0 into account. the changes here do that, and also add extra handling for a single <eos> (which may be redundant but which is included for completeness).
based on my understanding and some assumptions about how this all works, the reason .swap() nevertheless seemed to do the right thing, to some extent, is because over multiple steps the conditioning process in Stable Diffusion operates as a feedback loop. a change to token n-1 has flow-on effects to how the [1x4x64x64] latent tensor is modified by all the tokens after it, - and as the next step is processed, all the tokens before it as well. intuitively, a token's conditioning effects "echo" throughout the whole length of the prompt. so even though the token at n-1 was being edited when what the user actually wanted was to edit the token at n, it nevertheless still had some non-negligible effect, in roughly the right direction, often enough that it seemed like it was working properly.
* refactor common CrossAttention stuff into a mixin so that the old ldm code can still work if necessary
* inpainting for the normal model. I think it works this time.
* diffusers: reset num_vectors_per_token
sync with 44a00555718f1df173c60da0ed646cf700e29537
* diffusers: txt2img2img (hires_fix)
with so much slicing and dicing of pipeline methods to stitch them together
* refactor(diffusers): reduce some code duplication amongst the different tasks
* fixup! refactor(diffusers): reduce some code duplication amongst the different tasks
* diffusers: enable DPMSolver++ scheduler
* diffusers: upgrade to diffusers 0.10, add Heun scheduler
* diffusers(ModelCache): stopgap to make from_cpu compatible with diffusers
* CI: default to diffusers-1.5 now that runwayml token requirement is gone
* diffusers: update to 0.10 (and transformers to 4.25)
* diffusers: use xformers when available
diffusers no longer auto-enables this as of 0.10.2.
* diffusers: make masked img2img behave better with multi-step schedulers
re-randomizing the noise each step was confusing them.
* diffusers: work more better with more models.
fixed relative path problem with local models.
fixed models on hub not always having a `fp16` branch.
* diffusers: stopgap fix for attention_maps_callback crash after recent merge
* fixup import merge conflicts
correction for 061c5369a2247c6c92cd69606bcf54c4f1962a0b
* test: add tests/inpainting inputs for masked img2img
* diffusers(AddsMaskedGuidance): partial fix for k-schedulers
Prevents them from crashing, but results are still hot garbage.
* fix --safety_checker arg parsing
and add note to diffusers loader about where safety checker gets called
* generate: fix import error
* CI: don't try to read the old init location
* diffusers: support loading an alternate VAE
* CI: remove sh-syntax if-statement so it doesn't crash powershell
* CI: fold strings in yaml because backslash is not line-continuation in powershell
* attention maps callback stuff for diffusers
* build: fix syntax error in environment-mac
* diffusers: add INITIAL_MODELS with diffusers-compatible repos
* re-enable the embedding manager; closes #1778
* Squashed commit of the following:
commit e4a956abc37fcb5cf188388b76b617bc5c8fda7d
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:43:07 2022 +0100
import new load handling from EmbeddingManager and cleanup
commit c4abe91a5ba0d415b45bf734068385668b7a66e6
Merge: 032e856e 1efc6397
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:09:53 2022 +0100
Merge branch 'feature_textual_inversion_mgr' into dev/diffusers_with_textual_inversion_manager
commit 032e856eefb3bbc39534f5daafd25764bcfcef8b
Merge: 8b4f0fe9 bc515e24
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:08:01 2022 +0100
Merge remote-tracking branch 'upstream/dev/diffusers' into dev/diffusers_with_textual_inversion_manager
commit 1efc6397fc6e61c1aff4b0258b93089d61de5955
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:04:28 2022 +0100
cleanup and add performance notes
commit e400f804ac471a0ca2ba432fd658778b20c7bdab
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 14:45:07 2022 +0100
fix bug and update unit tests
commit deb9ae0ae1016750e93ce8275734061f7285a231
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 14:28:29 2022 +0100
textual inversion manager seems to work
commit 162e02505dec777e91a983c4d0fb52e950d25ff0
Merge: cbad4583 12769b3d
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:58:03 2022 +0100
Merge branch 'main' into feature_textual_inversion_mgr
commit cbad45836c6aace6871a90f2621a953f49433131
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:54:10 2022 +0100
use position embeddings
commit 070344c69b0e0db340a183857d0a787b348681d3
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:53:47 2022 +0100
Don't crash CLI on exceptions
commit b035ac8c6772dfd9ba41b8eeb9103181cda028f8
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:11:55 2022 +0100
add missing position_embeddings
commit 12769b3d3562ef71e0f54946b532ad077e10043c
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 13:33:25 2022 +0100
debugging why it don't work
commit bafb7215eabe1515ca5e8388fd3bb2f3ac5362cf
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 13:21:33 2022 +0100
debugging why it don't work
commit 664a6e9e146b42d96703f0cc8baf8f5efec04ee1
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 12:48:38 2022 +0100
use TextualInversionManager in place of embeddings (wip, doesn't work)
commit 8b4f0fe9d6e4e2643b36dfa27864294785d7ba4e
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 12:48:38 2022 +0100
use TextualInversionManager in place of embeddings (wip, doesn't work)
commit ffbe1ab11163ba712e353d89404e301d0e0c6cdf
Merge: 6e4dad60 023df37e
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:37:31 2022 +0100
Merge branch 'feature_textual_inversion_mgr' into dev/diffusers
commit 023df37efffa67434f77def7fc3c9dfb29f699fd
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:36:54 2022 +0100
cleanup
commit 05fac594eaf79d0058e3c48deee93df603f136c2
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:07:49 2022 +0100
tweak error checking
commit 009f32ed39a7280997c3ffab112adadee0b44279
Author: damian <null@damianstewart.com>
Date: Thu Dec 15 21:29:47 2022 +0100
unit tests passing for embeddings with vector length >1
commit beb1b08d9a98112ed2fe073580568e1a18698da3
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 13:39:09 2022 +0100
more explicit equality tests when overwriting
commit 44d8a5a7c85cdabc9ce3a54fd0769a10597b3ca9
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 13:30:13 2022 +0100
wip textual inversion manager (unit tests passing for 1v embedding overwriting)
commit 417c2b57d90924a839616bfb66804faab8039e4c
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 12:30:55 2022 +0100
wip textual inversion manager (unit tests passing for base stuff + padding)
commit 2e80872e3b6f7fd7d8eb8928822bd824b63cb2ff
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 10:57:57 2022 +0100
wip new TextualInversionManager
* stop using WeightedFrozenCLIPEmbedder
* store diffusion models locally
- configure_invokeai.py reconfigured to store diffusion models rather than
CompVis models
- hugging face caching model is used, but cache is set to ~/invokeai/models/repo_id
- models.yaml does **NOT** use path, just repo_id
- "repo_name" changed to "repo_id" to following hugging face conventions
- Models are loaded with full precision pending further work.
* allow non-local files during development
* path takes priority over repo_id
* MVP for model_cache and configure_invokeai
- Feature complete (almost)
- configure_invokeai.py downloads both .ckpt and diffuser models,
along with their VAEs. Both types of download are controlled by
a unified INITIAL_MODELS.yaml file.
- model_cache can load both type of model and switches back and forth
in CPU. No memory leaks detected
TO DO:
1. I have not yet turned on the LocalOnly flag for diffuser models, so
the code will check the Hugging Face repo for updates before using the
locally cached models. This will break firewalled systems. I am thinking
of putting in a global check for internet connectivity at startup time
and setting the LocalOnly flag based on this. It would be good to check
updates if there is connectivity.
2. I have not gone completely through INITIAL_MODELS.yaml to check which
models are available as diffusers and which are not. So models like
PaperCut and VoxelArt may not load properly. The runway and stability
models are checked, as well as the Trinart models.
3. Add stanzas for SD 2.0 and 2.1 in INITIAL_MODELS.yaml
REMAINING PROBLEMS NOT DIRECTLY RELATED TO MODEL_CACHE:
1. When loading a .ckpt file there are lots of messages like this:
Warning! ldm.modules.attention.CrossAttention is no longer being
maintained. Please use InvokeAICrossAttention instead.
I'm not sure how to address this.
2. The ckpt models ***don't actually run*** due to the lack of special-case
support for them in the generator objects. For example, here's the hard
crash you get when you run txt2img against the legacy waifu-diffusion-1.3
model:
```
>> An error occurred:
Traceback (most recent call last):
File "/data/lstein/InvokeAI/ldm/invoke/CLI.py", line 140, in main
main_loop(gen, opt)
File "/data/lstein/InvokeAI/ldm/invoke/CLI.py", line 371, in main_loop
gen.prompt2image(
File "/data/lstein/InvokeAI/ldm/generate.py", line 496, in prompt2image
results = generator.generate(
File "/data/lstein/InvokeAI/ldm/invoke/generator/base.py", line 108, in generate
image = make_image(x_T)
File "/data/lstein/InvokeAI/ldm/invoke/generator/txt2img.py", line 33, in make_image
pipeline_output = pipeline.image_from_embeddings(
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1265, in __getattr__
raise AttributeError("'{}' object has no attribute '{}'".format(
AttributeError: 'LatentDiffusion' object has no attribute 'image_from_embeddings'
```
3. The inpainting diffusion model isn't working. Here's the output of "banana
sushi" when inpainting-1.5 is loaded:
```
Traceback (most recent call last):
File "/data/lstein/InvokeAI/ldm/generate.py", line 496, in prompt2image
results = generator.generate(
File "/data/lstein/InvokeAI/ldm/invoke/generator/base.py", line 108, in generate
image = make_image(x_T)
File "/data/lstein/InvokeAI/ldm/invoke/generator/txt2img.py", line 33, in make_image
pipeline_output = pipeline.image_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 301, in image_from_embeddings
result_latents, result_attention_map_saver = self.latents_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 330, in latents_from_embeddings
result: PipelineIntermediateState = infer_latents_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 185, in __call__
for result in self.generator_method(*args, **kwargs):
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 367, in generate_latents_from_embeddings
step_output = self.step(batched_t, latents, guidance_scale,
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context
return func(*args, **kwargs)
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 409, in step
step_output = self.scheduler.step(noise_pred, timestep, latents, **extra_step_kwargs)
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/diffusers/schedulers/scheduling_lms_discrete.py", line 223, in step
pred_original_sample = sample - sigma * model_output
RuntimeError: The size of tensor a (9) must match the size of tensor b (4) at non-singleton dimension 1
```
* proper support for float32/float16
- configure script now correctly detects user's preference for
fp16/32 and downloads the correct diffuser version. If fp16
version not available, falls back to fp32 version.
- misc code cleanup and simplification in model_cache
* add on-the-fly conversion of .ckpt to diffusers models
1. On-the-fly conversion code can be found in the file ldm/invoke/ckpt_to_diffusers.py.
2. A new !optimize command has been added to the CLI. Should be ported to Web GUI.
User experience on the CLI is this:
```
invoke> !optimize /home/lstein/invokeai/models/ldm/stable-diffusion-v1/sd-v1-4.ckpt
INFO: Converting legacy weights file /home/lstein/invokeai/models/ldm/stable-diffusion-v1/sd-v1-4.ckpt to optimized diffuser model.
This operation will take 30-60s to complete.
Success. Optimized model is now located at /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
Writing new config file entry for sd-v1-4...
>> New configuration:
sd-v1-4:
description: Optimized version of sd-v1-4
format: diffusers
path: /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
OK to import [n]? y
>> Verifying that new model loads...
>> Current VRAM usage: 2.60G
>> Offloading stable-diffusion-2.1 to CPU
>> Loading diffusers model from /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
| Using faster float16 precision
You have disabled the safety checker for <class 'ldm.invoke.generator.diffusers_pipeline.StableDiffusionGeneratorPipeline'> by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion \
license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances,\
disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .
| training width x height = (512 x 512)
>> Model loaded in 3.48s
>> Max VRAM used to load the model: 2.17G
>> Current VRAM usage:2.17G
>> Textual inversions available:
>> Setting Sampler to k_lms (LMSDiscreteScheduler)
Keep model loaded? [y]
```
* add parallel set of generator files for ckpt legacy generation
* generation using legacy ckpt models now working
* diffusers: fix missing attention_maps_callback
fix for 23eb80b40421b2bb8f4b6d3dd30490d11c447b36
* associate legacy CrossAttention with .ckpt models
* enable autoconvert
New --autoconvert CLI option will scan a designated directory for
new .ckpt files, convert them into diffuser models, and import
them into models.yaml.
Works like this:
invoke.py --autoconvert /path/to/weights/directory
In ModelCache added two new methods:
autoconvert_weights(config_path, weights_directory_path, models_directory_path)
convert_and_import(ckpt_path, diffuser_path)
* diffusers: update to diffusers 0.11 (from 0.10.2)
* fix vae loading & width/height calculation
* refactor: encapsulate these conditioning data into one container
* diffusers: fix some noise-scaling issues by pushing the noise-mixing down to the common function
* add support for safetensors and accelerate
* set local_files_only when internet unreachable
* diffusers: fix error-handling path when model repo has no fp16 branch
* fix generatorinpaint error
Fixes :
"ModuleNotFoundError: No module named 'ldm.invoke.generatorinpaint'
https://github.com/invoke-ai/InvokeAI/pull/1583#issuecomment-1363634318
* quench diffuser safety-checker warning
* diffusers: support stochastic DDIM eta parameter
* fix conda env creation on macos
* fix cross-attention with diffusers 0.11
* diffusers: the VAE needs to be tiling as well as the U-Net
* diffusers: comment on subfolders
* diffusers: embiggen!
* diffusers: make model_cache.list_models serializable
* diffusers(inpaint): restore scaling functionality
* fix requirements clash between numba and numpy 1.24
* diffusers: allow inpainting model to do non-inpainting tasks
* start expanding model_cache functionality
* add import_ckpt_model() and import_diffuser_model() methods to model_manager
- in addition, model_cache.py is now renamed to model_manager.py
* allow "recommended" flag to be optional in INITIAL_MODELS.yaml
* configure_invokeai now downloads VAE diffusers in advance
* rename ModelCache to ModelManager
* remove support for `repo_name` in models.yaml
* check for and refuse to load embeddings trained on incompatible models
* models.yaml.example: s/repo_name/repo_id
and remove extra INITIAL_MODELS now that the main one has diffusers models in it.
* add MVP textual inversion script
* refactor(InvokeAIDiffuserComponent): factor out _combine()
* InvokeAIDiffuserComponent: implement threshold
* InvokeAIDiffuserComponent: diagnostic logs for threshold
...this does not look right
* add a curses-based frontend to textual inversion
- not quite working yet
- requires npyscreen installed
- on windows will also have the windows-curses requirement, but not added
to requirements yet
* add curses-based interface for textual inversion
* fix crash in convert_and_import()
- This corrects a "local variable referenced before assignment" error
in model_manager.convert_and_import()
* potential workaround for no 'state_dict' key error
- As reported in https://github.com/huggingface/diffusers/issues/1876
* create TI output dir if needed
* Update environment-lin-cuda.yml (#2159)
Fixing line 42 to be the proper order to define the transformers requirement: ~= instead of =~
* diffusers: update sampler-to-scheduler mapping
based on https://github.com/huggingface/diffusers/issues/277#issuecomment-1371428672
* improve user exp for ckt to diffusers conversion
- !optimize_models command now operates on an existing ckpt file entry in models.yaml
- replaces existing entry, rather than adding a new one
- offers to delete the ckpt file after conversion
* web: adapt progress callback to deal with old generator or new diffusers pipeline
* clean-up model_manager code
- add_model() verified to work for .ckpt local paths,
.ckpt remote URLs, diffusers local paths, and
diffusers repo_ids
- convert_and_import() verified to work for local and
remove .ckpt files
* handle edge cases for import_model() and convert_model()
* add support for safetensor .ckpt files
* fix name error
* code cleanup with pyflake
* improve model setting behavior
- If the user enters an invalid model name at startup time, will not
try to load it, warn, and use default model
- CLI UI enhancement: include currently active model in the command
line prompt.
* update test-invoke-pip.yml
- fix model cache path to point to runwayml/stable-diffusion-v1-5
- remove `skip-sd-weights` from configure_invokeai.py args
* exclude dev/diffusers from "fail for draft PRs"
* disable "fail on PR jobs"
* re-add `--skip-sd-weights` since no space
* update workflow environments
- include `INVOKE_MODEL_RECONFIGURE: '--yes'`
* clean up model load failure handling
- Allow CLI to run even when no model is defined or loadable.
- Inhibit stack trace when model load fails - only show last error
- Give user *option* to run configure_invokeai.py when no models
successfully load.
- Restart invokeai after reconfiguration.
* further edge-case handling
1) only one model in models.yaml file, and that model is broken
2) no models in models.yaml
3) models.yaml doesn't exist at all
* fix incorrect model status listing
- "cached" was not being returned from list_models()
- normalize handling of exceptions during model loading:
- Passing an invalid model name to generate.set_model() will return
a KeyError
- All other exceptions are returned as the appropriate Exception
* CI: do download weights (if not already cached)
* diffusers: fix scheduler loading in offline mode
* CI: fix model name (no longer has `diffusers-` prefix)
* Update txt2img2img.py (#2256)
* fixes to share models with HuggingFace cache system
- If HF_HOME environment variable is defined, then all huggingface models
are stored in that directory following the standard conventions.
- For seamless interoperability, set HF_HOME to ~/.cache/huggingface
- If HF_HOME not defined, then models are stored in ~/invokeai/models.
This is equivalent to setting HF_HOME to ~/invokeai/models
A future commit will add a migration mechanism so that this change doesn't
break previous installs.
* feat - make model storage compatible with hugging face caching system
This commit alters the InvokeAI model directory to be compatible with
hugging face, making it easier to share diffusers (and other models)
across different programs.
- If the HF_HOME environment variable is not set, then models are
cached in ~/invokeai/models in a format that is identical to the
HuggingFace cache.
- If HF_HOME is set, then models are cached wherever HF_HOME points.
- To enable sharing with other HuggingFace library clients, set
HF_HOME to ~/.cache/huggingface to set the default cache location
or to ~/invokeai/models to have huggingface cache inside InvokeAI.
* fixes to share models with HuggingFace cache system
- If HF_HOME environment variable is defined, then all huggingface models
are stored in that directory following the standard conventions.
- For seamless interoperability, set HF_HOME to ~/.cache/huggingface
- If HF_HOME not defined, then models are stored in ~/invokeai/models.
This is equivalent to setting HF_HOME to ~/invokeai/models
A future commit will add a migration mechanism so that this change doesn't
break previous installs.
* fix error "no attribute CkptInpaint"
* model_manager.list_models() returns entire model config stanza+status
* Initial Draft - Model Manager Diffusers
* added hash function to diffusers
* implement sha256 hashes on diffusers models
* Add Model Manager Support for Diffusers
* fix various problems with model manager
- in cli import functions, fix not enough values to unpack from
_get_name_and_desc()
- fix crash when using old-style vae: value with new-style diffuser
* rebuild frontend
* fix dictconfig-not-serializable issue
* fix NoneType' object is not subscriptable crash in model_manager
* fix "str has no attribute get" error in model_manager list_models()
* Add path and repo_id support for Diffusers Model Manager
Also fixes bugs
* Fix tooltip IT localization not working
* Add Version Number To WebUI
* Optimize Model Search
* Fix incorrect font on the Model Manager UI
* Fix image degradation on merge fixes - [Experimental]
This change should effectively fix a couple of things.
- Fix image degradation on subsequent merges of the canvas layers.
- Fix the slight transparent border that is left behind when filling the bounding box with a color.
- Fix the left over line of color when filling a bounding box with color.
So far there are no side effects for this. If any, please report.
* Add local model filtering for Diffusers / Checkpoints
* Go to home on modal close for the Add Modal UI
* Styling Fixes
* Model Manager Diffusers Localization Update
* Add Safe Tensor scanning to Model Manager
* Fix model edit form dispatching string values instead of numbers.
* Resolve VAE handling / edge cases for supplied repos
* defer injecting tokens for textual inversions until they're used for the first time
* squash a console warning
* implement model migration check
* add_model() overwrites previous config rather than merges
* fix model config file attribute merging
* fix precision handling in textual inversion script
* allow ckpt conversion script to work with safetensors .ckpts
Applied patch here:
https://github.com/huggingface/diffusers/commit/beb932c5d111872c5e45387e7b1b2b3dd0524a47
* fix name "args" is not defined crash in textual_inversion_training
* fix a second NameError: name 'args' is not defined crash
* fix loading of the safety checker from the global cache dir
* add installation step to textual inversion frontend
- After a successful training run, the script will copy learned_embeds.bin
to a subfolder of the embeddings directory.
- User given the option to delete the logs and intermediate checkpoints
(which together use 7-8G of space)
- If textual inversion training fails, reports the error gracefully.
* don't crash out on incompatible embeddings
- put try: blocks around places where the system tries to load an embedding
which is incompatible with the currently loaded model
* add support for checkpoint resuming
* textual inversion preferences are saved and restored between sessions
- Preferences are stored in a file named text-inversion-training/preferences.conf
- Currently the resume-from-checkpoint option is not working correctly. Possible
bug in textual_inversion_training.py?
* copy learned_embeddings.bin into right location
* add front end for diffusers model merging
- Front end doesn't do anything yet!!!!
- Made change to model name parsing in CLI to support ability to have merged models
with the "+" character in their names.
* improve inpainting experience
- recommend ckpt version of inpainting-1.5 to user
- fix get_noise() bug in ckpt version of omnibus.py
* update environment*yml
* tweak instructions to install HuggingFace token
* bump version number
* enhance update scripts
- update scripts will now fetch new INITIAL_MODELS.yaml so that
configure_invokeai.py will know about the diffusers versions.
* enhance invoke.sh/invoke.bat launchers
- added configure_invokeai.py to menu
- menu defaults to browser-based invoke
* remove conda workflow (#2321)
* fix `token_ids has shape torch.Size([79]) - expected [77]`
* update CHANGELOG.md with 2.3.* info
- Add information on how formats have changed and the upgrade process.
- Add short bug list.
Co-authored-by: Damian Stewart <d@damianstewart.com>
Co-authored-by: Damian Stewart <null@damianstewart.com>
Co-authored-by: Lincoln Stein <lincoln.stein@gmail.com>
Co-authored-by: Wybartel-luxmc <37852506+Wybartel-luxmc@users.noreply.github.com>
Co-authored-by: mauwii <Mauwii@outlook.de>
Co-authored-by: mickr777 <115216705+mickr777@users.noreply.github.com>
Co-authored-by: blessedcoolant <54517381+blessedcoolant@users.noreply.github.com>
Co-authored-by: Eugene Brodsky <ebr@users.noreply.github.com>
Co-authored-by: Matthias Wild <40327258+mauwii@users.noreply.github.com>
2023-01-15 14:22:46 +00:00
|
|
|
)
|
|
|
|
from diffusers.pipelines.latent_diffusion.pipeline_latent_diffusion import LDMBertConfig, LDMBertModel
|
|
|
|
from diffusers.pipelines.paint_by_example import PaintByExampleImageEncoder, PaintByExamplePipeline
|
2023-02-18 16:07:38 +00:00
|
|
|
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
2023-02-02 20:15:44 +00:00
|
|
|
from diffusers.utils import is_safetensors_available
|
use 🧨diffusers model (#1583)
* initial commit of DiffusionPipeline class
* spike: proof of concept using diffusers for txt2img
* doc: type hints for Generator
* refactor(model_cache): factor out load_ckpt
* model_cache: add ability to load a diffusers model pipeline
and update associated things in Generate & Generator to not instantly fail when that happens
* model_cache: fix model default image dimensions
* txt2img: support switching diffusers schedulers
* diffusers: let the scheduler do its scaling of the initial latents
Remove IPNDM scheduler; it is not behaving.
* web server: update image_progress callback for diffusers data
* diffusers: restore prompt weighting feature
* diffusers: fix set-sampler error following model switch
* diffusers: use InvokeAIDiffuserComponent for conditioning
* cross_attention_control: stub (no-op) implementations for diffusers
* model_cache: let offload_model work with DiffusionPipeline, sorta.
* models.yaml.example: add diffusers-format model, set as default
* test-invoke-conda: use diffusers-format model
test-invoke-conda: put huggingface-token where the library can use it
* environment-mac: upgrade to diffusers 0.7 (from 0.6)
this was already done for linux; mac must have been lost in the merge.
* preload_models: explicitly load diffusers models
In non-interactive mode too, as long as you're logged in.
* fix(model_cache): don't check `model.config` in diffusers format
clean-up from recent merge.
* diffusers integration: support img2img
* dev: upgrade to diffusers 0.8 (from 0.7.1)
We get to remove some code by using methods that were factored out in the base class.
* refactor: remove backported img2img.get_timesteps
now that we can use it directly from diffusers 0.8.1
* ci: use diffusers model
* dev: upgrade to diffusers 0.9 (from 0.8.1)
* lint: correct annotations for Python 3.9.
* lint: correct AttributeError.name reference for Python 3.9.
* CI: prefer diffusers-1.4 because it no longer requires a token
The RunwayML models still do.
* build: there's yet another place to update requirements?
* configure: try to download models even without token
Models in the CompVis and stabilityai repos no longer require them. (But runwayml still does.)
* configure: add troubleshooting info for config-not-found
* fix(configure): prepend root to config path
* fix(configure): remove second `default: true` from models example
* CI: simplify test-on-push logic now that we don't need secrets
The "test on push but only in forks" logic was only necessary when tests didn't work for PRs-from-forks.
* create an embedding_manager for diffusers
* internal: avoid importing diffusers DummyObject
see https://github.com/huggingface/diffusers/issues/1479
* fix "config attributes…not expected" diffusers warnings.
* fix deprecated scheduler construction
* work around an apparent MPS torch bug that causes conditioning to have no effect
* 🚧 post-rebase repair
* preliminary support for outpainting (no masking yet)
* monkey-patch diffusers.attention and use Invoke lowvram code
* add always_use_cpu arg to bypass MPS
* add cross-attention control support to diffusers (fails on MPS)
For unknown reasons MPS produces garbage output with .swap(). Use
--always_use_cpu arg to invoke.py for now to test this code on MPS.
* diffusers support for the inpainting model
* fix debug_image to not crash with non-RGB images.
* inpainting for the normal model [WIP]
This seems to be performing well until the LAST STEP, at which point it dissolves to confetti.
* fix off-by-one bug in cross-attention-control (#1774)
prompt token sequences begin with a "beginning-of-sequence" marker <bos> and end with a repeated "end-of-sequence" marker <eos> - to make a default prompt length of <bos> + 75 prompt tokens + <eos>. the .swap() code was failing to take the column for <bos> at index 0 into account. the changes here do that, and also add extra handling for a single <eos> (which may be redundant but which is included for completeness).
based on my understanding and some assumptions about how this all works, the reason .swap() nevertheless seemed to do the right thing, to some extent, is because over multiple steps the conditioning process in Stable Diffusion operates as a feedback loop. a change to token n-1 has flow-on effects to how the [1x4x64x64] latent tensor is modified by all the tokens after it, - and as the next step is processed, all the tokens before it as well. intuitively, a token's conditioning effects "echo" throughout the whole length of the prompt. so even though the token at n-1 was being edited when what the user actually wanted was to edit the token at n, it nevertheless still had some non-negligible effect, in roughly the right direction, often enough that it seemed like it was working properly.
* refactor common CrossAttention stuff into a mixin so that the old ldm code can still work if necessary
* inpainting for the normal model. I think it works this time.
* diffusers: reset num_vectors_per_token
sync with 44a00555718f1df173c60da0ed646cf700e29537
* diffusers: txt2img2img (hires_fix)
with so much slicing and dicing of pipeline methods to stitch them together
* refactor(diffusers): reduce some code duplication amongst the different tasks
* fixup! refactor(diffusers): reduce some code duplication amongst the different tasks
* diffusers: enable DPMSolver++ scheduler
* diffusers: upgrade to diffusers 0.10, add Heun scheduler
* diffusers(ModelCache): stopgap to make from_cpu compatible with diffusers
* CI: default to diffusers-1.5 now that runwayml token requirement is gone
* diffusers: update to 0.10 (and transformers to 4.25)
* diffusers: use xformers when available
diffusers no longer auto-enables this as of 0.10.2.
* diffusers: make masked img2img behave better with multi-step schedulers
re-randomizing the noise each step was confusing them.
* diffusers: work more better with more models.
fixed relative path problem with local models.
fixed models on hub not always having a `fp16` branch.
* diffusers: stopgap fix for attention_maps_callback crash after recent merge
* fixup import merge conflicts
correction for 061c5369a2247c6c92cd69606bcf54c4f1962a0b
* test: add tests/inpainting inputs for masked img2img
* diffusers(AddsMaskedGuidance): partial fix for k-schedulers
Prevents them from crashing, but results are still hot garbage.
* fix --safety_checker arg parsing
and add note to diffusers loader about where safety checker gets called
* generate: fix import error
* CI: don't try to read the old init location
* diffusers: support loading an alternate VAE
* CI: remove sh-syntax if-statement so it doesn't crash powershell
* CI: fold strings in yaml because backslash is not line-continuation in powershell
* attention maps callback stuff for diffusers
* build: fix syntax error in environment-mac
* diffusers: add INITIAL_MODELS with diffusers-compatible repos
* re-enable the embedding manager; closes #1778
* Squashed commit of the following:
commit e4a956abc37fcb5cf188388b76b617bc5c8fda7d
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:43:07 2022 +0100
import new load handling from EmbeddingManager and cleanup
commit c4abe91a5ba0d415b45bf734068385668b7a66e6
Merge: 032e856e 1efc6397
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:09:53 2022 +0100
Merge branch 'feature_textual_inversion_mgr' into dev/diffusers_with_textual_inversion_manager
commit 032e856eefb3bbc39534f5daafd25764bcfcef8b
Merge: 8b4f0fe9 bc515e24
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:08:01 2022 +0100
Merge remote-tracking branch 'upstream/dev/diffusers' into dev/diffusers_with_textual_inversion_manager
commit 1efc6397fc6e61c1aff4b0258b93089d61de5955
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:04:28 2022 +0100
cleanup and add performance notes
commit e400f804ac471a0ca2ba432fd658778b20c7bdab
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 14:45:07 2022 +0100
fix bug and update unit tests
commit deb9ae0ae1016750e93ce8275734061f7285a231
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 14:28:29 2022 +0100
textual inversion manager seems to work
commit 162e02505dec777e91a983c4d0fb52e950d25ff0
Merge: cbad4583 12769b3d
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:58:03 2022 +0100
Merge branch 'main' into feature_textual_inversion_mgr
commit cbad45836c6aace6871a90f2621a953f49433131
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:54:10 2022 +0100
use position embeddings
commit 070344c69b0e0db340a183857d0a787b348681d3
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:53:47 2022 +0100
Don't crash CLI on exceptions
commit b035ac8c6772dfd9ba41b8eeb9103181cda028f8
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:11:55 2022 +0100
add missing position_embeddings
commit 12769b3d3562ef71e0f54946b532ad077e10043c
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 13:33:25 2022 +0100
debugging why it don't work
commit bafb7215eabe1515ca5e8388fd3bb2f3ac5362cf
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 13:21:33 2022 +0100
debugging why it don't work
commit 664a6e9e146b42d96703f0cc8baf8f5efec04ee1
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 12:48:38 2022 +0100
use TextualInversionManager in place of embeddings (wip, doesn't work)
commit 8b4f0fe9d6e4e2643b36dfa27864294785d7ba4e
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 12:48:38 2022 +0100
use TextualInversionManager in place of embeddings (wip, doesn't work)
commit ffbe1ab11163ba712e353d89404e301d0e0c6cdf
Merge: 6e4dad60 023df37e
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:37:31 2022 +0100
Merge branch 'feature_textual_inversion_mgr' into dev/diffusers
commit 023df37efffa67434f77def7fc3c9dfb29f699fd
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:36:54 2022 +0100
cleanup
commit 05fac594eaf79d0058e3c48deee93df603f136c2
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:07:49 2022 +0100
tweak error checking
commit 009f32ed39a7280997c3ffab112adadee0b44279
Author: damian <null@damianstewart.com>
Date: Thu Dec 15 21:29:47 2022 +0100
unit tests passing for embeddings with vector length >1
commit beb1b08d9a98112ed2fe073580568e1a18698da3
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 13:39:09 2022 +0100
more explicit equality tests when overwriting
commit 44d8a5a7c85cdabc9ce3a54fd0769a10597b3ca9
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 13:30:13 2022 +0100
wip textual inversion manager (unit tests passing for 1v embedding overwriting)
commit 417c2b57d90924a839616bfb66804faab8039e4c
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 12:30:55 2022 +0100
wip textual inversion manager (unit tests passing for base stuff + padding)
commit 2e80872e3b6f7fd7d8eb8928822bd824b63cb2ff
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 10:57:57 2022 +0100
wip new TextualInversionManager
* stop using WeightedFrozenCLIPEmbedder
* store diffusion models locally
- configure_invokeai.py reconfigured to store diffusion models rather than
CompVis models
- hugging face caching model is used, but cache is set to ~/invokeai/models/repo_id
- models.yaml does **NOT** use path, just repo_id
- "repo_name" changed to "repo_id" to following hugging face conventions
- Models are loaded with full precision pending further work.
* allow non-local files during development
* path takes priority over repo_id
* MVP for model_cache and configure_invokeai
- Feature complete (almost)
- configure_invokeai.py downloads both .ckpt and diffuser models,
along with their VAEs. Both types of download are controlled by
a unified INITIAL_MODELS.yaml file.
- model_cache can load both type of model and switches back and forth
in CPU. No memory leaks detected
TO DO:
1. I have not yet turned on the LocalOnly flag for diffuser models, so
the code will check the Hugging Face repo for updates before using the
locally cached models. This will break firewalled systems. I am thinking
of putting in a global check for internet connectivity at startup time
and setting the LocalOnly flag based on this. It would be good to check
updates if there is connectivity.
2. I have not gone completely through INITIAL_MODELS.yaml to check which
models are available as diffusers and which are not. So models like
PaperCut and VoxelArt may not load properly. The runway and stability
models are checked, as well as the Trinart models.
3. Add stanzas for SD 2.0 and 2.1 in INITIAL_MODELS.yaml
REMAINING PROBLEMS NOT DIRECTLY RELATED TO MODEL_CACHE:
1. When loading a .ckpt file there are lots of messages like this:
Warning! ldm.modules.attention.CrossAttention is no longer being
maintained. Please use InvokeAICrossAttention instead.
I'm not sure how to address this.
2. The ckpt models ***don't actually run*** due to the lack of special-case
support for them in the generator objects. For example, here's the hard
crash you get when you run txt2img against the legacy waifu-diffusion-1.3
model:
```
>> An error occurred:
Traceback (most recent call last):
File "/data/lstein/InvokeAI/ldm/invoke/CLI.py", line 140, in main
main_loop(gen, opt)
File "/data/lstein/InvokeAI/ldm/invoke/CLI.py", line 371, in main_loop
gen.prompt2image(
File "/data/lstein/InvokeAI/ldm/generate.py", line 496, in prompt2image
results = generator.generate(
File "/data/lstein/InvokeAI/ldm/invoke/generator/base.py", line 108, in generate
image = make_image(x_T)
File "/data/lstein/InvokeAI/ldm/invoke/generator/txt2img.py", line 33, in make_image
pipeline_output = pipeline.image_from_embeddings(
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1265, in __getattr__
raise AttributeError("'{}' object has no attribute '{}'".format(
AttributeError: 'LatentDiffusion' object has no attribute 'image_from_embeddings'
```
3. The inpainting diffusion model isn't working. Here's the output of "banana
sushi" when inpainting-1.5 is loaded:
```
Traceback (most recent call last):
File "/data/lstein/InvokeAI/ldm/generate.py", line 496, in prompt2image
results = generator.generate(
File "/data/lstein/InvokeAI/ldm/invoke/generator/base.py", line 108, in generate
image = make_image(x_T)
File "/data/lstein/InvokeAI/ldm/invoke/generator/txt2img.py", line 33, in make_image
pipeline_output = pipeline.image_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 301, in image_from_embeddings
result_latents, result_attention_map_saver = self.latents_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 330, in latents_from_embeddings
result: PipelineIntermediateState = infer_latents_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 185, in __call__
for result in self.generator_method(*args, **kwargs):
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 367, in generate_latents_from_embeddings
step_output = self.step(batched_t, latents, guidance_scale,
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context
return func(*args, **kwargs)
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 409, in step
step_output = self.scheduler.step(noise_pred, timestep, latents, **extra_step_kwargs)
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/diffusers/schedulers/scheduling_lms_discrete.py", line 223, in step
pred_original_sample = sample - sigma * model_output
RuntimeError: The size of tensor a (9) must match the size of tensor b (4) at non-singleton dimension 1
```
* proper support for float32/float16
- configure script now correctly detects user's preference for
fp16/32 and downloads the correct diffuser version. If fp16
version not available, falls back to fp32 version.
- misc code cleanup and simplification in model_cache
* add on-the-fly conversion of .ckpt to diffusers models
1. On-the-fly conversion code can be found in the file ldm/invoke/ckpt_to_diffusers.py.
2. A new !optimize command has been added to the CLI. Should be ported to Web GUI.
User experience on the CLI is this:
```
invoke> !optimize /home/lstein/invokeai/models/ldm/stable-diffusion-v1/sd-v1-4.ckpt
INFO: Converting legacy weights file /home/lstein/invokeai/models/ldm/stable-diffusion-v1/sd-v1-4.ckpt to optimized diffuser model.
This operation will take 30-60s to complete.
Success. Optimized model is now located at /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
Writing new config file entry for sd-v1-4...
>> New configuration:
sd-v1-4:
description: Optimized version of sd-v1-4
format: diffusers
path: /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
OK to import [n]? y
>> Verifying that new model loads...
>> Current VRAM usage: 2.60G
>> Offloading stable-diffusion-2.1 to CPU
>> Loading diffusers model from /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
| Using faster float16 precision
You have disabled the safety checker for <class 'ldm.invoke.generator.diffusers_pipeline.StableDiffusionGeneratorPipeline'> by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion \
license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances,\
disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .
| training width x height = (512 x 512)
>> Model loaded in 3.48s
>> Max VRAM used to load the model: 2.17G
>> Current VRAM usage:2.17G
>> Textual inversions available:
>> Setting Sampler to k_lms (LMSDiscreteScheduler)
Keep model loaded? [y]
```
* add parallel set of generator files for ckpt legacy generation
* generation using legacy ckpt models now working
* diffusers: fix missing attention_maps_callback
fix for 23eb80b40421b2bb8f4b6d3dd30490d11c447b36
* associate legacy CrossAttention with .ckpt models
* enable autoconvert
New --autoconvert CLI option will scan a designated directory for
new .ckpt files, convert them into diffuser models, and import
them into models.yaml.
Works like this:
invoke.py --autoconvert /path/to/weights/directory
In ModelCache added two new methods:
autoconvert_weights(config_path, weights_directory_path, models_directory_path)
convert_and_import(ckpt_path, diffuser_path)
* diffusers: update to diffusers 0.11 (from 0.10.2)
* fix vae loading & width/height calculation
* refactor: encapsulate these conditioning data into one container
* diffusers: fix some noise-scaling issues by pushing the noise-mixing down to the common function
* add support for safetensors and accelerate
* set local_files_only when internet unreachable
* diffusers: fix error-handling path when model repo has no fp16 branch
* fix generatorinpaint error
Fixes :
"ModuleNotFoundError: No module named 'ldm.invoke.generatorinpaint'
https://github.com/invoke-ai/InvokeAI/pull/1583#issuecomment-1363634318
* quench diffuser safety-checker warning
* diffusers: support stochastic DDIM eta parameter
* fix conda env creation on macos
* fix cross-attention with diffusers 0.11
* diffusers: the VAE needs to be tiling as well as the U-Net
* diffusers: comment on subfolders
* diffusers: embiggen!
* diffusers: make model_cache.list_models serializable
* diffusers(inpaint): restore scaling functionality
* fix requirements clash between numba and numpy 1.24
* diffusers: allow inpainting model to do non-inpainting tasks
* start expanding model_cache functionality
* add import_ckpt_model() and import_diffuser_model() methods to model_manager
- in addition, model_cache.py is now renamed to model_manager.py
* allow "recommended" flag to be optional in INITIAL_MODELS.yaml
* configure_invokeai now downloads VAE diffusers in advance
* rename ModelCache to ModelManager
* remove support for `repo_name` in models.yaml
* check for and refuse to load embeddings trained on incompatible models
* models.yaml.example: s/repo_name/repo_id
and remove extra INITIAL_MODELS now that the main one has diffusers models in it.
* add MVP textual inversion script
* refactor(InvokeAIDiffuserComponent): factor out _combine()
* InvokeAIDiffuserComponent: implement threshold
* InvokeAIDiffuserComponent: diagnostic logs for threshold
...this does not look right
* add a curses-based frontend to textual inversion
- not quite working yet
- requires npyscreen installed
- on windows will also have the windows-curses requirement, but not added
to requirements yet
* add curses-based interface for textual inversion
* fix crash in convert_and_import()
- This corrects a "local variable referenced before assignment" error
in model_manager.convert_and_import()
* potential workaround for no 'state_dict' key error
- As reported in https://github.com/huggingface/diffusers/issues/1876
* create TI output dir if needed
* Update environment-lin-cuda.yml (#2159)
Fixing line 42 to be the proper order to define the transformers requirement: ~= instead of =~
* diffusers: update sampler-to-scheduler mapping
based on https://github.com/huggingface/diffusers/issues/277#issuecomment-1371428672
* improve user exp for ckt to diffusers conversion
- !optimize_models command now operates on an existing ckpt file entry in models.yaml
- replaces existing entry, rather than adding a new one
- offers to delete the ckpt file after conversion
* web: adapt progress callback to deal with old generator or new diffusers pipeline
* clean-up model_manager code
- add_model() verified to work for .ckpt local paths,
.ckpt remote URLs, diffusers local paths, and
diffusers repo_ids
- convert_and_import() verified to work for local and
remove .ckpt files
* handle edge cases for import_model() and convert_model()
* add support for safetensor .ckpt files
* fix name error
* code cleanup with pyflake
* improve model setting behavior
- If the user enters an invalid model name at startup time, will not
try to load it, warn, and use default model
- CLI UI enhancement: include currently active model in the command
line prompt.
* update test-invoke-pip.yml
- fix model cache path to point to runwayml/stable-diffusion-v1-5
- remove `skip-sd-weights` from configure_invokeai.py args
* exclude dev/diffusers from "fail for draft PRs"
* disable "fail on PR jobs"
* re-add `--skip-sd-weights` since no space
* update workflow environments
- include `INVOKE_MODEL_RECONFIGURE: '--yes'`
* clean up model load failure handling
- Allow CLI to run even when no model is defined or loadable.
- Inhibit stack trace when model load fails - only show last error
- Give user *option* to run configure_invokeai.py when no models
successfully load.
- Restart invokeai after reconfiguration.
* further edge-case handling
1) only one model in models.yaml file, and that model is broken
2) no models in models.yaml
3) models.yaml doesn't exist at all
* fix incorrect model status listing
- "cached" was not being returned from list_models()
- normalize handling of exceptions during model loading:
- Passing an invalid model name to generate.set_model() will return
a KeyError
- All other exceptions are returned as the appropriate Exception
* CI: do download weights (if not already cached)
* diffusers: fix scheduler loading in offline mode
* CI: fix model name (no longer has `diffusers-` prefix)
* Update txt2img2img.py (#2256)
* fixes to share models with HuggingFace cache system
- If HF_HOME environment variable is defined, then all huggingface models
are stored in that directory following the standard conventions.
- For seamless interoperability, set HF_HOME to ~/.cache/huggingface
- If HF_HOME not defined, then models are stored in ~/invokeai/models.
This is equivalent to setting HF_HOME to ~/invokeai/models
A future commit will add a migration mechanism so that this change doesn't
break previous installs.
* feat - make model storage compatible with hugging face caching system
This commit alters the InvokeAI model directory to be compatible with
hugging face, making it easier to share diffusers (and other models)
across different programs.
- If the HF_HOME environment variable is not set, then models are
cached in ~/invokeai/models in a format that is identical to the
HuggingFace cache.
- If HF_HOME is set, then models are cached wherever HF_HOME points.
- To enable sharing with other HuggingFace library clients, set
HF_HOME to ~/.cache/huggingface to set the default cache location
or to ~/invokeai/models to have huggingface cache inside InvokeAI.
* fixes to share models with HuggingFace cache system
- If HF_HOME environment variable is defined, then all huggingface models
are stored in that directory following the standard conventions.
- For seamless interoperability, set HF_HOME to ~/.cache/huggingface
- If HF_HOME not defined, then models are stored in ~/invokeai/models.
This is equivalent to setting HF_HOME to ~/invokeai/models
A future commit will add a migration mechanism so that this change doesn't
break previous installs.
* fix error "no attribute CkptInpaint"
* model_manager.list_models() returns entire model config stanza+status
* Initial Draft - Model Manager Diffusers
* added hash function to diffusers
* implement sha256 hashes on diffusers models
* Add Model Manager Support for Diffusers
* fix various problems with model manager
- in cli import functions, fix not enough values to unpack from
_get_name_and_desc()
- fix crash when using old-style vae: value with new-style diffuser
* rebuild frontend
* fix dictconfig-not-serializable issue
* fix NoneType' object is not subscriptable crash in model_manager
* fix "str has no attribute get" error in model_manager list_models()
* Add path and repo_id support for Diffusers Model Manager
Also fixes bugs
* Fix tooltip IT localization not working
* Add Version Number To WebUI
* Optimize Model Search
* Fix incorrect font on the Model Manager UI
* Fix image degradation on merge fixes - [Experimental]
This change should effectively fix a couple of things.
- Fix image degradation on subsequent merges of the canvas layers.
- Fix the slight transparent border that is left behind when filling the bounding box with a color.
- Fix the left over line of color when filling a bounding box with color.
So far there are no side effects for this. If any, please report.
* Add local model filtering for Diffusers / Checkpoints
* Go to home on modal close for the Add Modal UI
* Styling Fixes
* Model Manager Diffusers Localization Update
* Add Safe Tensor scanning to Model Manager
* Fix model edit form dispatching string values instead of numbers.
* Resolve VAE handling / edge cases for supplied repos
* defer injecting tokens for textual inversions until they're used for the first time
* squash a console warning
* implement model migration check
* add_model() overwrites previous config rather than merges
* fix model config file attribute merging
* fix precision handling in textual inversion script
* allow ckpt conversion script to work with safetensors .ckpts
Applied patch here:
https://github.com/huggingface/diffusers/commit/beb932c5d111872c5e45387e7b1b2b3dd0524a47
* fix name "args" is not defined crash in textual_inversion_training
* fix a second NameError: name 'args' is not defined crash
* fix loading of the safety checker from the global cache dir
* add installation step to textual inversion frontend
- After a successful training run, the script will copy learned_embeds.bin
to a subfolder of the embeddings directory.
- User given the option to delete the logs and intermediate checkpoints
(which together use 7-8G of space)
- If textual inversion training fails, reports the error gracefully.
* don't crash out on incompatible embeddings
- put try: blocks around places where the system tries to load an embedding
which is incompatible with the currently loaded model
* add support for checkpoint resuming
* textual inversion preferences are saved and restored between sessions
- Preferences are stored in a file named text-inversion-training/preferences.conf
- Currently the resume-from-checkpoint option is not working correctly. Possible
bug in textual_inversion_training.py?
* copy learned_embeddings.bin into right location
* add front end for diffusers model merging
- Front end doesn't do anything yet!!!!
- Made change to model name parsing in CLI to support ability to have merged models
with the "+" character in their names.
* improve inpainting experience
- recommend ckpt version of inpainting-1.5 to user
- fix get_noise() bug in ckpt version of omnibus.py
* update environment*yml
* tweak instructions to install HuggingFace token
* bump version number
* enhance update scripts
- update scripts will now fetch new INITIAL_MODELS.yaml so that
configure_invokeai.py will know about the diffusers versions.
* enhance invoke.sh/invoke.bat launchers
- added configure_invokeai.py to menu
- menu defaults to browser-based invoke
* remove conda workflow (#2321)
* fix `token_ids has shape torch.Size([79]) - expected [77]`
* update CHANGELOG.md with 2.3.* info
- Add information on how formats have changed and the upgrade process.
- Add short bug list.
Co-authored-by: Damian Stewart <d@damianstewart.com>
Co-authored-by: Damian Stewart <null@damianstewart.com>
Co-authored-by: Lincoln Stein <lincoln.stein@gmail.com>
Co-authored-by: Wybartel-luxmc <37852506+Wybartel-luxmc@users.noreply.github.com>
Co-authored-by: mauwii <Mauwii@outlook.de>
Co-authored-by: mickr777 <115216705+mickr777@users.noreply.github.com>
Co-authored-by: blessedcoolant <54517381+blessedcoolant@users.noreply.github.com>
Co-authored-by: Eugene Brodsky <ebr@users.noreply.github.com>
Co-authored-by: Matthias Wild <40327258+mauwii@users.noreply.github.com>
2023-01-15 14:22:46 +00:00
|
|
|
from transformers import AutoFeatureExtractor, BertTokenizerFast, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig
|
|
|
|
|
first phase of source tree restructure
This is the first phase of a big shifting of files and directories
in the source tree.
You will need to run `pip install -e .` before the code will work again!
Here's what's in the current commit:
1) Remove a lot of dead code that dealt with checkpoint and safetensor loading.
2) Entire ckpt_generator hierarchy is now gone!
3) ldm.invoke.generator.* => invokeai.generator.*
4) ldm.model.* => invokeai.model.*
5) ldm.invoke.model_manager => invokeai.model.model_manager
6) In addition, a number of frequently-accessed classes can be imported
from the invokeai.model and invokeai.generator modules:
from invokeai.generator import ( Generator, PipelineIntermediateState,
StableDiffusionGeneratorPipeline, infill_methods)
from invokeai.models import ( ModelManager, SDLegacyType
InvokeAIDiffuserComponent, AttentionMapSaver,
DDIMSampler, KSampler, PLMSSampler,
PostprocessingSettings )
2023-02-28 04:52:46 +00:00
|
|
|
from invokeai.generator import StableDiffusionGeneratorPipeline
|
2023-02-02 20:15:44 +00:00
|
|
|
|
use 🧨diffusers model (#1583)
* initial commit of DiffusionPipeline class
* spike: proof of concept using diffusers for txt2img
* doc: type hints for Generator
* refactor(model_cache): factor out load_ckpt
* model_cache: add ability to load a diffusers model pipeline
and update associated things in Generate & Generator to not instantly fail when that happens
* model_cache: fix model default image dimensions
* txt2img: support switching diffusers schedulers
* diffusers: let the scheduler do its scaling of the initial latents
Remove IPNDM scheduler; it is not behaving.
* web server: update image_progress callback for diffusers data
* diffusers: restore prompt weighting feature
* diffusers: fix set-sampler error following model switch
* diffusers: use InvokeAIDiffuserComponent for conditioning
* cross_attention_control: stub (no-op) implementations for diffusers
* model_cache: let offload_model work with DiffusionPipeline, sorta.
* models.yaml.example: add diffusers-format model, set as default
* test-invoke-conda: use diffusers-format model
test-invoke-conda: put huggingface-token where the library can use it
* environment-mac: upgrade to diffusers 0.7 (from 0.6)
this was already done for linux; mac must have been lost in the merge.
* preload_models: explicitly load diffusers models
In non-interactive mode too, as long as you're logged in.
* fix(model_cache): don't check `model.config` in diffusers format
clean-up from recent merge.
* diffusers integration: support img2img
* dev: upgrade to diffusers 0.8 (from 0.7.1)
We get to remove some code by using methods that were factored out in the base class.
* refactor: remove backported img2img.get_timesteps
now that we can use it directly from diffusers 0.8.1
* ci: use diffusers model
* dev: upgrade to diffusers 0.9 (from 0.8.1)
* lint: correct annotations for Python 3.9.
* lint: correct AttributeError.name reference for Python 3.9.
* CI: prefer diffusers-1.4 because it no longer requires a token
The RunwayML models still do.
* build: there's yet another place to update requirements?
* configure: try to download models even without token
Models in the CompVis and stabilityai repos no longer require them. (But runwayml still does.)
* configure: add troubleshooting info for config-not-found
* fix(configure): prepend root to config path
* fix(configure): remove second `default: true` from models example
* CI: simplify test-on-push logic now that we don't need secrets
The "test on push but only in forks" logic was only necessary when tests didn't work for PRs-from-forks.
* create an embedding_manager for diffusers
* internal: avoid importing diffusers DummyObject
see https://github.com/huggingface/diffusers/issues/1479
* fix "config attributes…not expected" diffusers warnings.
* fix deprecated scheduler construction
* work around an apparent MPS torch bug that causes conditioning to have no effect
* 🚧 post-rebase repair
* preliminary support for outpainting (no masking yet)
* monkey-patch diffusers.attention and use Invoke lowvram code
* add always_use_cpu arg to bypass MPS
* add cross-attention control support to diffusers (fails on MPS)
For unknown reasons MPS produces garbage output with .swap(). Use
--always_use_cpu arg to invoke.py for now to test this code on MPS.
* diffusers support for the inpainting model
* fix debug_image to not crash with non-RGB images.
* inpainting for the normal model [WIP]
This seems to be performing well until the LAST STEP, at which point it dissolves to confetti.
* fix off-by-one bug in cross-attention-control (#1774)
prompt token sequences begin with a "beginning-of-sequence" marker <bos> and end with a repeated "end-of-sequence" marker <eos> - to make a default prompt length of <bos> + 75 prompt tokens + <eos>. the .swap() code was failing to take the column for <bos> at index 0 into account. the changes here do that, and also add extra handling for a single <eos> (which may be redundant but which is included for completeness).
based on my understanding and some assumptions about how this all works, the reason .swap() nevertheless seemed to do the right thing, to some extent, is because over multiple steps the conditioning process in Stable Diffusion operates as a feedback loop. a change to token n-1 has flow-on effects to how the [1x4x64x64] latent tensor is modified by all the tokens after it, - and as the next step is processed, all the tokens before it as well. intuitively, a token's conditioning effects "echo" throughout the whole length of the prompt. so even though the token at n-1 was being edited when what the user actually wanted was to edit the token at n, it nevertheless still had some non-negligible effect, in roughly the right direction, often enough that it seemed like it was working properly.
* refactor common CrossAttention stuff into a mixin so that the old ldm code can still work if necessary
* inpainting for the normal model. I think it works this time.
* diffusers: reset num_vectors_per_token
sync with 44a00555718f1df173c60da0ed646cf700e29537
* diffusers: txt2img2img (hires_fix)
with so much slicing and dicing of pipeline methods to stitch them together
* refactor(diffusers): reduce some code duplication amongst the different tasks
* fixup! refactor(diffusers): reduce some code duplication amongst the different tasks
* diffusers: enable DPMSolver++ scheduler
* diffusers: upgrade to diffusers 0.10, add Heun scheduler
* diffusers(ModelCache): stopgap to make from_cpu compatible with diffusers
* CI: default to diffusers-1.5 now that runwayml token requirement is gone
* diffusers: update to 0.10 (and transformers to 4.25)
* diffusers: use xformers when available
diffusers no longer auto-enables this as of 0.10.2.
* diffusers: make masked img2img behave better with multi-step schedulers
re-randomizing the noise each step was confusing them.
* diffusers: work more better with more models.
fixed relative path problem with local models.
fixed models on hub not always having a `fp16` branch.
* diffusers: stopgap fix for attention_maps_callback crash after recent merge
* fixup import merge conflicts
correction for 061c5369a2247c6c92cd69606bcf54c4f1962a0b
* test: add tests/inpainting inputs for masked img2img
* diffusers(AddsMaskedGuidance): partial fix for k-schedulers
Prevents them from crashing, but results are still hot garbage.
* fix --safety_checker arg parsing
and add note to diffusers loader about where safety checker gets called
* generate: fix import error
* CI: don't try to read the old init location
* diffusers: support loading an alternate VAE
* CI: remove sh-syntax if-statement so it doesn't crash powershell
* CI: fold strings in yaml because backslash is not line-continuation in powershell
* attention maps callback stuff for diffusers
* build: fix syntax error in environment-mac
* diffusers: add INITIAL_MODELS with diffusers-compatible repos
* re-enable the embedding manager; closes #1778
* Squashed commit of the following:
commit e4a956abc37fcb5cf188388b76b617bc5c8fda7d
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:43:07 2022 +0100
import new load handling from EmbeddingManager and cleanup
commit c4abe91a5ba0d415b45bf734068385668b7a66e6
Merge: 032e856e 1efc6397
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:09:53 2022 +0100
Merge branch 'feature_textual_inversion_mgr' into dev/diffusers_with_textual_inversion_manager
commit 032e856eefb3bbc39534f5daafd25764bcfcef8b
Merge: 8b4f0fe9 bc515e24
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:08:01 2022 +0100
Merge remote-tracking branch 'upstream/dev/diffusers' into dev/diffusers_with_textual_inversion_manager
commit 1efc6397fc6e61c1aff4b0258b93089d61de5955
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:04:28 2022 +0100
cleanup and add performance notes
commit e400f804ac471a0ca2ba432fd658778b20c7bdab
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 14:45:07 2022 +0100
fix bug and update unit tests
commit deb9ae0ae1016750e93ce8275734061f7285a231
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 14:28:29 2022 +0100
textual inversion manager seems to work
commit 162e02505dec777e91a983c4d0fb52e950d25ff0
Merge: cbad4583 12769b3d
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:58:03 2022 +0100
Merge branch 'main' into feature_textual_inversion_mgr
commit cbad45836c6aace6871a90f2621a953f49433131
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:54:10 2022 +0100
use position embeddings
commit 070344c69b0e0db340a183857d0a787b348681d3
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:53:47 2022 +0100
Don't crash CLI on exceptions
commit b035ac8c6772dfd9ba41b8eeb9103181cda028f8
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:11:55 2022 +0100
add missing position_embeddings
commit 12769b3d3562ef71e0f54946b532ad077e10043c
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 13:33:25 2022 +0100
debugging why it don't work
commit bafb7215eabe1515ca5e8388fd3bb2f3ac5362cf
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 13:21:33 2022 +0100
debugging why it don't work
commit 664a6e9e146b42d96703f0cc8baf8f5efec04ee1
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 12:48:38 2022 +0100
use TextualInversionManager in place of embeddings (wip, doesn't work)
commit 8b4f0fe9d6e4e2643b36dfa27864294785d7ba4e
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 12:48:38 2022 +0100
use TextualInversionManager in place of embeddings (wip, doesn't work)
commit ffbe1ab11163ba712e353d89404e301d0e0c6cdf
Merge: 6e4dad60 023df37e
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:37:31 2022 +0100
Merge branch 'feature_textual_inversion_mgr' into dev/diffusers
commit 023df37efffa67434f77def7fc3c9dfb29f699fd
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:36:54 2022 +0100
cleanup
commit 05fac594eaf79d0058e3c48deee93df603f136c2
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:07:49 2022 +0100
tweak error checking
commit 009f32ed39a7280997c3ffab112adadee0b44279
Author: damian <null@damianstewart.com>
Date: Thu Dec 15 21:29:47 2022 +0100
unit tests passing for embeddings with vector length >1
commit beb1b08d9a98112ed2fe073580568e1a18698da3
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 13:39:09 2022 +0100
more explicit equality tests when overwriting
commit 44d8a5a7c85cdabc9ce3a54fd0769a10597b3ca9
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 13:30:13 2022 +0100
wip textual inversion manager (unit tests passing for 1v embedding overwriting)
commit 417c2b57d90924a839616bfb66804faab8039e4c
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 12:30:55 2022 +0100
wip textual inversion manager (unit tests passing for base stuff + padding)
commit 2e80872e3b6f7fd7d8eb8928822bd824b63cb2ff
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 10:57:57 2022 +0100
wip new TextualInversionManager
* stop using WeightedFrozenCLIPEmbedder
* store diffusion models locally
- configure_invokeai.py reconfigured to store diffusion models rather than
CompVis models
- hugging face caching model is used, but cache is set to ~/invokeai/models/repo_id
- models.yaml does **NOT** use path, just repo_id
- "repo_name" changed to "repo_id" to following hugging face conventions
- Models are loaded with full precision pending further work.
* allow non-local files during development
* path takes priority over repo_id
* MVP for model_cache and configure_invokeai
- Feature complete (almost)
- configure_invokeai.py downloads both .ckpt and diffuser models,
along with their VAEs. Both types of download are controlled by
a unified INITIAL_MODELS.yaml file.
- model_cache can load both type of model and switches back and forth
in CPU. No memory leaks detected
TO DO:
1. I have not yet turned on the LocalOnly flag for diffuser models, so
the code will check the Hugging Face repo for updates before using the
locally cached models. This will break firewalled systems. I am thinking
of putting in a global check for internet connectivity at startup time
and setting the LocalOnly flag based on this. It would be good to check
updates if there is connectivity.
2. I have not gone completely through INITIAL_MODELS.yaml to check which
models are available as diffusers and which are not. So models like
PaperCut and VoxelArt may not load properly. The runway and stability
models are checked, as well as the Trinart models.
3. Add stanzas for SD 2.0 and 2.1 in INITIAL_MODELS.yaml
REMAINING PROBLEMS NOT DIRECTLY RELATED TO MODEL_CACHE:
1. When loading a .ckpt file there are lots of messages like this:
Warning! ldm.modules.attention.CrossAttention is no longer being
maintained. Please use InvokeAICrossAttention instead.
I'm not sure how to address this.
2. The ckpt models ***don't actually run*** due to the lack of special-case
support for them in the generator objects. For example, here's the hard
crash you get when you run txt2img against the legacy waifu-diffusion-1.3
model:
```
>> An error occurred:
Traceback (most recent call last):
File "/data/lstein/InvokeAI/ldm/invoke/CLI.py", line 140, in main
main_loop(gen, opt)
File "/data/lstein/InvokeAI/ldm/invoke/CLI.py", line 371, in main_loop
gen.prompt2image(
File "/data/lstein/InvokeAI/ldm/generate.py", line 496, in prompt2image
results = generator.generate(
File "/data/lstein/InvokeAI/ldm/invoke/generator/base.py", line 108, in generate
image = make_image(x_T)
File "/data/lstein/InvokeAI/ldm/invoke/generator/txt2img.py", line 33, in make_image
pipeline_output = pipeline.image_from_embeddings(
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1265, in __getattr__
raise AttributeError("'{}' object has no attribute '{}'".format(
AttributeError: 'LatentDiffusion' object has no attribute 'image_from_embeddings'
```
3. The inpainting diffusion model isn't working. Here's the output of "banana
sushi" when inpainting-1.5 is loaded:
```
Traceback (most recent call last):
File "/data/lstein/InvokeAI/ldm/generate.py", line 496, in prompt2image
results = generator.generate(
File "/data/lstein/InvokeAI/ldm/invoke/generator/base.py", line 108, in generate
image = make_image(x_T)
File "/data/lstein/InvokeAI/ldm/invoke/generator/txt2img.py", line 33, in make_image
pipeline_output = pipeline.image_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 301, in image_from_embeddings
result_latents, result_attention_map_saver = self.latents_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 330, in latents_from_embeddings
result: PipelineIntermediateState = infer_latents_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 185, in __call__
for result in self.generator_method(*args, **kwargs):
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 367, in generate_latents_from_embeddings
step_output = self.step(batched_t, latents, guidance_scale,
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context
return func(*args, **kwargs)
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 409, in step
step_output = self.scheduler.step(noise_pred, timestep, latents, **extra_step_kwargs)
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/diffusers/schedulers/scheduling_lms_discrete.py", line 223, in step
pred_original_sample = sample - sigma * model_output
RuntimeError: The size of tensor a (9) must match the size of tensor b (4) at non-singleton dimension 1
```
* proper support for float32/float16
- configure script now correctly detects user's preference for
fp16/32 and downloads the correct diffuser version. If fp16
version not available, falls back to fp32 version.
- misc code cleanup and simplification in model_cache
* add on-the-fly conversion of .ckpt to diffusers models
1. On-the-fly conversion code can be found in the file ldm/invoke/ckpt_to_diffusers.py.
2. A new !optimize command has been added to the CLI. Should be ported to Web GUI.
User experience on the CLI is this:
```
invoke> !optimize /home/lstein/invokeai/models/ldm/stable-diffusion-v1/sd-v1-4.ckpt
INFO: Converting legacy weights file /home/lstein/invokeai/models/ldm/stable-diffusion-v1/sd-v1-4.ckpt to optimized diffuser model.
This operation will take 30-60s to complete.
Success. Optimized model is now located at /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
Writing new config file entry for sd-v1-4...
>> New configuration:
sd-v1-4:
description: Optimized version of sd-v1-4
format: diffusers
path: /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
OK to import [n]? y
>> Verifying that new model loads...
>> Current VRAM usage: 2.60G
>> Offloading stable-diffusion-2.1 to CPU
>> Loading diffusers model from /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
| Using faster float16 precision
You have disabled the safety checker for <class 'ldm.invoke.generator.diffusers_pipeline.StableDiffusionGeneratorPipeline'> by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion \
license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances,\
disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .
| training width x height = (512 x 512)
>> Model loaded in 3.48s
>> Max VRAM used to load the model: 2.17G
>> Current VRAM usage:2.17G
>> Textual inversions available:
>> Setting Sampler to k_lms (LMSDiscreteScheduler)
Keep model loaded? [y]
```
* add parallel set of generator files for ckpt legacy generation
* generation using legacy ckpt models now working
* diffusers: fix missing attention_maps_callback
fix for 23eb80b40421b2bb8f4b6d3dd30490d11c447b36
* associate legacy CrossAttention with .ckpt models
* enable autoconvert
New --autoconvert CLI option will scan a designated directory for
new .ckpt files, convert them into diffuser models, and import
them into models.yaml.
Works like this:
invoke.py --autoconvert /path/to/weights/directory
In ModelCache added two new methods:
autoconvert_weights(config_path, weights_directory_path, models_directory_path)
convert_and_import(ckpt_path, diffuser_path)
* diffusers: update to diffusers 0.11 (from 0.10.2)
* fix vae loading & width/height calculation
* refactor: encapsulate these conditioning data into one container
* diffusers: fix some noise-scaling issues by pushing the noise-mixing down to the common function
* add support for safetensors and accelerate
* set local_files_only when internet unreachable
* diffusers: fix error-handling path when model repo has no fp16 branch
* fix generatorinpaint error
Fixes :
"ModuleNotFoundError: No module named 'ldm.invoke.generatorinpaint'
https://github.com/invoke-ai/InvokeAI/pull/1583#issuecomment-1363634318
* quench diffuser safety-checker warning
* diffusers: support stochastic DDIM eta parameter
* fix conda env creation on macos
* fix cross-attention with diffusers 0.11
* diffusers: the VAE needs to be tiling as well as the U-Net
* diffusers: comment on subfolders
* diffusers: embiggen!
* diffusers: make model_cache.list_models serializable
* diffusers(inpaint): restore scaling functionality
* fix requirements clash between numba and numpy 1.24
* diffusers: allow inpainting model to do non-inpainting tasks
* start expanding model_cache functionality
* add import_ckpt_model() and import_diffuser_model() methods to model_manager
- in addition, model_cache.py is now renamed to model_manager.py
* allow "recommended" flag to be optional in INITIAL_MODELS.yaml
* configure_invokeai now downloads VAE diffusers in advance
* rename ModelCache to ModelManager
* remove support for `repo_name` in models.yaml
* check for and refuse to load embeddings trained on incompatible models
* models.yaml.example: s/repo_name/repo_id
and remove extra INITIAL_MODELS now that the main one has diffusers models in it.
* add MVP textual inversion script
* refactor(InvokeAIDiffuserComponent): factor out _combine()
* InvokeAIDiffuserComponent: implement threshold
* InvokeAIDiffuserComponent: diagnostic logs for threshold
...this does not look right
* add a curses-based frontend to textual inversion
- not quite working yet
- requires npyscreen installed
- on windows will also have the windows-curses requirement, but not added
to requirements yet
* add curses-based interface for textual inversion
* fix crash in convert_and_import()
- This corrects a "local variable referenced before assignment" error
in model_manager.convert_and_import()
* potential workaround for no 'state_dict' key error
- As reported in https://github.com/huggingface/diffusers/issues/1876
* create TI output dir if needed
* Update environment-lin-cuda.yml (#2159)
Fixing line 42 to be the proper order to define the transformers requirement: ~= instead of =~
* diffusers: update sampler-to-scheduler mapping
based on https://github.com/huggingface/diffusers/issues/277#issuecomment-1371428672
* improve user exp for ckt to diffusers conversion
- !optimize_models command now operates on an existing ckpt file entry in models.yaml
- replaces existing entry, rather than adding a new one
- offers to delete the ckpt file after conversion
* web: adapt progress callback to deal with old generator or new diffusers pipeline
* clean-up model_manager code
- add_model() verified to work for .ckpt local paths,
.ckpt remote URLs, diffusers local paths, and
diffusers repo_ids
- convert_and_import() verified to work for local and
remove .ckpt files
* handle edge cases for import_model() and convert_model()
* add support for safetensor .ckpt files
* fix name error
* code cleanup with pyflake
* improve model setting behavior
- If the user enters an invalid model name at startup time, will not
try to load it, warn, and use default model
- CLI UI enhancement: include currently active model in the command
line prompt.
* update test-invoke-pip.yml
- fix model cache path to point to runwayml/stable-diffusion-v1-5
- remove `skip-sd-weights` from configure_invokeai.py args
* exclude dev/diffusers from "fail for draft PRs"
* disable "fail on PR jobs"
* re-add `--skip-sd-weights` since no space
* update workflow environments
- include `INVOKE_MODEL_RECONFIGURE: '--yes'`
* clean up model load failure handling
- Allow CLI to run even when no model is defined or loadable.
- Inhibit stack trace when model load fails - only show last error
- Give user *option* to run configure_invokeai.py when no models
successfully load.
- Restart invokeai after reconfiguration.
* further edge-case handling
1) only one model in models.yaml file, and that model is broken
2) no models in models.yaml
3) models.yaml doesn't exist at all
* fix incorrect model status listing
- "cached" was not being returned from list_models()
- normalize handling of exceptions during model loading:
- Passing an invalid model name to generate.set_model() will return
a KeyError
- All other exceptions are returned as the appropriate Exception
* CI: do download weights (if not already cached)
* diffusers: fix scheduler loading in offline mode
* CI: fix model name (no longer has `diffusers-` prefix)
* Update txt2img2img.py (#2256)
* fixes to share models with HuggingFace cache system
- If HF_HOME environment variable is defined, then all huggingface models
are stored in that directory following the standard conventions.
- For seamless interoperability, set HF_HOME to ~/.cache/huggingface
- If HF_HOME not defined, then models are stored in ~/invokeai/models.
This is equivalent to setting HF_HOME to ~/invokeai/models
A future commit will add a migration mechanism so that this change doesn't
break previous installs.
* feat - make model storage compatible with hugging face caching system
This commit alters the InvokeAI model directory to be compatible with
hugging face, making it easier to share diffusers (and other models)
across different programs.
- If the HF_HOME environment variable is not set, then models are
cached in ~/invokeai/models in a format that is identical to the
HuggingFace cache.
- If HF_HOME is set, then models are cached wherever HF_HOME points.
- To enable sharing with other HuggingFace library clients, set
HF_HOME to ~/.cache/huggingface to set the default cache location
or to ~/invokeai/models to have huggingface cache inside InvokeAI.
* fixes to share models with HuggingFace cache system
- If HF_HOME environment variable is defined, then all huggingface models
are stored in that directory following the standard conventions.
- For seamless interoperability, set HF_HOME to ~/.cache/huggingface
- If HF_HOME not defined, then models are stored in ~/invokeai/models.
This is equivalent to setting HF_HOME to ~/invokeai/models
A future commit will add a migration mechanism so that this change doesn't
break previous installs.
* fix error "no attribute CkptInpaint"
* model_manager.list_models() returns entire model config stanza+status
* Initial Draft - Model Manager Diffusers
* added hash function to diffusers
* implement sha256 hashes on diffusers models
* Add Model Manager Support for Diffusers
* fix various problems with model manager
- in cli import functions, fix not enough values to unpack from
_get_name_and_desc()
- fix crash when using old-style vae: value with new-style diffuser
* rebuild frontend
* fix dictconfig-not-serializable issue
* fix NoneType' object is not subscriptable crash in model_manager
* fix "str has no attribute get" error in model_manager list_models()
* Add path and repo_id support for Diffusers Model Manager
Also fixes bugs
* Fix tooltip IT localization not working
* Add Version Number To WebUI
* Optimize Model Search
* Fix incorrect font on the Model Manager UI
* Fix image degradation on merge fixes - [Experimental]
This change should effectively fix a couple of things.
- Fix image degradation on subsequent merges of the canvas layers.
- Fix the slight transparent border that is left behind when filling the bounding box with a color.
- Fix the left over line of color when filling a bounding box with color.
So far there are no side effects for this. If any, please report.
* Add local model filtering for Diffusers / Checkpoints
* Go to home on modal close for the Add Modal UI
* Styling Fixes
* Model Manager Diffusers Localization Update
* Add Safe Tensor scanning to Model Manager
* Fix model edit form dispatching string values instead of numbers.
* Resolve VAE handling / edge cases for supplied repos
* defer injecting tokens for textual inversions until they're used for the first time
* squash a console warning
* implement model migration check
* add_model() overwrites previous config rather than merges
* fix model config file attribute merging
* fix precision handling in textual inversion script
* allow ckpt conversion script to work with safetensors .ckpts
Applied patch here:
https://github.com/huggingface/diffusers/commit/beb932c5d111872c5e45387e7b1b2b3dd0524a47
* fix name "args" is not defined crash in textual_inversion_training
* fix a second NameError: name 'args' is not defined crash
* fix loading of the safety checker from the global cache dir
* add installation step to textual inversion frontend
- After a successful training run, the script will copy learned_embeds.bin
to a subfolder of the embeddings directory.
- User given the option to delete the logs and intermediate checkpoints
(which together use 7-8G of space)
- If textual inversion training fails, reports the error gracefully.
* don't crash out on incompatible embeddings
- put try: blocks around places where the system tries to load an embedding
which is incompatible with the currently loaded model
* add support for checkpoint resuming
* textual inversion preferences are saved and restored between sessions
- Preferences are stored in a file named text-inversion-training/preferences.conf
- Currently the resume-from-checkpoint option is not working correctly. Possible
bug in textual_inversion_training.py?
* copy learned_embeddings.bin into right location
* add front end for diffusers model merging
- Front end doesn't do anything yet!!!!
- Made change to model name parsing in CLI to support ability to have merged models
with the "+" character in their names.
* improve inpainting experience
- recommend ckpt version of inpainting-1.5 to user
- fix get_noise() bug in ckpt version of omnibus.py
* update environment*yml
* tweak instructions to install HuggingFace token
* bump version number
* enhance update scripts
- update scripts will now fetch new INITIAL_MODELS.yaml so that
configure_invokeai.py will know about the diffusers versions.
* enhance invoke.sh/invoke.bat launchers
- added configure_invokeai.py to menu
- menu defaults to browser-based invoke
* remove conda workflow (#2321)
* fix `token_ids has shape torch.Size([79]) - expected [77]`
* update CHANGELOG.md with 2.3.* info
- Add information on how formats have changed and the upgrade process.
- Add short bug list.
Co-authored-by: Damian Stewart <d@damianstewart.com>
Co-authored-by: Damian Stewart <null@damianstewart.com>
Co-authored-by: Lincoln Stein <lincoln.stein@gmail.com>
Co-authored-by: Wybartel-luxmc <37852506+Wybartel-luxmc@users.noreply.github.com>
Co-authored-by: mauwii <Mauwii@outlook.de>
Co-authored-by: mickr777 <115216705+mickr777@users.noreply.github.com>
Co-authored-by: blessedcoolant <54517381+blessedcoolant@users.noreply.github.com>
Co-authored-by: Eugene Brodsky <ebr@users.noreply.github.com>
Co-authored-by: Matthias Wild <40327258+mauwii@users.noreply.github.com>
2023-01-15 14:22:46 +00:00
|
|
|
def shave_segments(path, n_shave_prefix_segments=1):
|
|
|
|
"""
|
|
|
|
Removes segments. Positive values shave the first segments, negative shave the last segments.
|
|
|
|
"""
|
|
|
|
if n_shave_prefix_segments >= 0:
|
|
|
|
return ".".join(path.split(".")[n_shave_prefix_segments:])
|
|
|
|
else:
|
|
|
|
return ".".join(path.split(".")[:n_shave_prefix_segments])
|
|
|
|
|
|
|
|
|
|
|
|
def renew_resnet_paths(old_list, n_shave_prefix_segments=0):
|
|
|
|
"""
|
|
|
|
Updates paths inside resnets to the new naming scheme (local renaming)
|
|
|
|
"""
|
|
|
|
mapping = []
|
|
|
|
for old_item in old_list:
|
|
|
|
new_item = old_item.replace("in_layers.0", "norm1")
|
|
|
|
new_item = new_item.replace("in_layers.2", "conv1")
|
|
|
|
|
|
|
|
new_item = new_item.replace("out_layers.0", "norm2")
|
|
|
|
new_item = new_item.replace("out_layers.3", "conv2")
|
|
|
|
|
|
|
|
new_item = new_item.replace("emb_layers.1", "time_emb_proj")
|
|
|
|
new_item = new_item.replace("skip_connection", "conv_shortcut")
|
|
|
|
|
|
|
|
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
|
|
|
|
|
|
|
|
mapping.append({"old": old_item, "new": new_item})
|
|
|
|
|
|
|
|
return mapping
|
|
|
|
|
|
|
|
|
|
|
|
def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0):
|
|
|
|
"""
|
|
|
|
Updates paths inside resnets to the new naming scheme (local renaming)
|
|
|
|
"""
|
|
|
|
mapping = []
|
|
|
|
for old_item in old_list:
|
|
|
|
new_item = old_item
|
|
|
|
|
|
|
|
new_item = new_item.replace("nin_shortcut", "conv_shortcut")
|
|
|
|
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
|
|
|
|
|
|
|
|
mapping.append({"old": old_item, "new": new_item})
|
|
|
|
|
|
|
|
return mapping
|
|
|
|
|
|
|
|
|
|
|
|
def renew_attention_paths(old_list, n_shave_prefix_segments=0):
|
|
|
|
"""
|
|
|
|
Updates paths inside attentions to the new naming scheme (local renaming)
|
|
|
|
"""
|
|
|
|
mapping = []
|
|
|
|
for old_item in old_list:
|
|
|
|
new_item = old_item
|
|
|
|
|
|
|
|
# new_item = new_item.replace('norm.weight', 'group_norm.weight')
|
|
|
|
# new_item = new_item.replace('norm.bias', 'group_norm.bias')
|
|
|
|
|
|
|
|
# new_item = new_item.replace('proj_out.weight', 'proj_attn.weight')
|
|
|
|
# new_item = new_item.replace('proj_out.bias', 'proj_attn.bias')
|
|
|
|
|
|
|
|
# new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
|
|
|
|
|
|
|
|
mapping.append({"old": old_item, "new": new_item})
|
|
|
|
|
|
|
|
return mapping
|
|
|
|
|
|
|
|
|
|
|
|
def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0):
|
|
|
|
"""
|
|
|
|
Updates paths inside attentions to the new naming scheme (local renaming)
|
|
|
|
"""
|
|
|
|
mapping = []
|
|
|
|
for old_item in old_list:
|
|
|
|
new_item = old_item
|
|
|
|
|
|
|
|
new_item = new_item.replace("norm.weight", "group_norm.weight")
|
|
|
|
new_item = new_item.replace("norm.bias", "group_norm.bias")
|
|
|
|
|
|
|
|
new_item = new_item.replace("q.weight", "query.weight")
|
|
|
|
new_item = new_item.replace("q.bias", "query.bias")
|
|
|
|
|
|
|
|
new_item = new_item.replace("k.weight", "key.weight")
|
|
|
|
new_item = new_item.replace("k.bias", "key.bias")
|
|
|
|
|
|
|
|
new_item = new_item.replace("v.weight", "value.weight")
|
|
|
|
new_item = new_item.replace("v.bias", "value.bias")
|
|
|
|
|
|
|
|
new_item = new_item.replace("proj_out.weight", "proj_attn.weight")
|
|
|
|
new_item = new_item.replace("proj_out.bias", "proj_attn.bias")
|
|
|
|
|
|
|
|
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
|
|
|
|
|
|
|
|
mapping.append({"old": old_item, "new": new_item})
|
|
|
|
|
|
|
|
return mapping
|
|
|
|
|
|
|
|
|
|
|
|
def assign_to_checkpoint(
|
|
|
|
paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None
|
|
|
|
):
|
|
|
|
"""
|
|
|
|
This does the final conversion step: take locally converted weights and apply a global renaming
|
|
|
|
to them. It splits attention layers, and takes into account additional replacements
|
|
|
|
that may arise.
|
|
|
|
|
|
|
|
Assigns the weights to the new checkpoint.
|
|
|
|
"""
|
|
|
|
assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys."
|
|
|
|
|
|
|
|
# Splits the attention layers into three variables.
|
|
|
|
if attention_paths_to_split is not None:
|
|
|
|
for path, path_map in attention_paths_to_split.items():
|
|
|
|
old_tensor = old_checkpoint[path]
|
|
|
|
channels = old_tensor.shape[0] // 3
|
|
|
|
|
|
|
|
target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1)
|
|
|
|
|
|
|
|
num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3
|
|
|
|
|
|
|
|
old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:])
|
|
|
|
query, key, value = old_tensor.split(channels // num_heads, dim=1)
|
|
|
|
|
|
|
|
checkpoint[path_map["query"]] = query.reshape(target_shape)
|
|
|
|
checkpoint[path_map["key"]] = key.reshape(target_shape)
|
|
|
|
checkpoint[path_map["value"]] = value.reshape(target_shape)
|
|
|
|
|
|
|
|
for path in paths:
|
|
|
|
new_path = path["new"]
|
|
|
|
|
|
|
|
# These have already been assigned
|
|
|
|
if attention_paths_to_split is not None and new_path in attention_paths_to_split:
|
|
|
|
continue
|
|
|
|
|
|
|
|
# Global renaming happens here
|
|
|
|
new_path = new_path.replace("middle_block.0", "mid_block.resnets.0")
|
|
|
|
new_path = new_path.replace("middle_block.1", "mid_block.attentions.0")
|
|
|
|
new_path = new_path.replace("middle_block.2", "mid_block.resnets.1")
|
|
|
|
|
|
|
|
if additional_replacements is not None:
|
|
|
|
for replacement in additional_replacements:
|
|
|
|
new_path = new_path.replace(replacement["old"], replacement["new"])
|
|
|
|
|
|
|
|
# proj_attn.weight has to be converted from conv 1D to linear
|
|
|
|
if "proj_attn.weight" in new_path:
|
|
|
|
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0]
|
|
|
|
else:
|
|
|
|
checkpoint[new_path] = old_checkpoint[path["old"]]
|
|
|
|
|
|
|
|
|
|
|
|
def conv_attn_to_linear(checkpoint):
|
|
|
|
keys = list(checkpoint.keys())
|
|
|
|
attn_keys = ["query.weight", "key.weight", "value.weight"]
|
|
|
|
for key in keys:
|
|
|
|
if ".".join(key.split(".")[-2:]) in attn_keys:
|
|
|
|
if checkpoint[key].ndim > 2:
|
|
|
|
checkpoint[key] = checkpoint[key][:, :, 0, 0]
|
|
|
|
elif "proj_attn.weight" in key:
|
|
|
|
if checkpoint[key].ndim > 2:
|
|
|
|
checkpoint[key] = checkpoint[key][:, :, 0]
|
|
|
|
|
|
|
|
|
|
|
|
def create_unet_diffusers_config(original_config, image_size: int):
|
|
|
|
"""
|
|
|
|
Creates a config for the diffusers based on the config of the LDM model.
|
|
|
|
"""
|
|
|
|
unet_params = original_config.model.params.unet_config.params
|
|
|
|
vae_params = original_config.model.params.first_stage_config.params.ddconfig
|
|
|
|
|
|
|
|
block_out_channels = [unet_params.model_channels * mult for mult in unet_params.channel_mult]
|
|
|
|
|
|
|
|
down_block_types = []
|
|
|
|
resolution = 1
|
|
|
|
for i in range(len(block_out_channels)):
|
|
|
|
block_type = "CrossAttnDownBlock2D" if resolution in unet_params.attention_resolutions else "DownBlock2D"
|
|
|
|
down_block_types.append(block_type)
|
|
|
|
if i != len(block_out_channels) - 1:
|
|
|
|
resolution *= 2
|
|
|
|
|
|
|
|
up_block_types = []
|
|
|
|
for i in range(len(block_out_channels)):
|
|
|
|
block_type = "CrossAttnUpBlock2D" if resolution in unet_params.attention_resolutions else "UpBlock2D"
|
|
|
|
up_block_types.append(block_type)
|
|
|
|
resolution //= 2
|
|
|
|
|
|
|
|
vae_scale_factor = 2 ** (len(vae_params.ch_mult) - 1)
|
|
|
|
|
|
|
|
head_dim = unet_params.num_heads if "num_heads" in unet_params else None
|
|
|
|
use_linear_projection = (
|
|
|
|
unet_params.use_linear_in_transformer if "use_linear_in_transformer" in unet_params else False
|
|
|
|
)
|
|
|
|
if use_linear_projection:
|
|
|
|
# stable diffusion 2-base-512 and 2-768
|
|
|
|
if head_dim is None:
|
|
|
|
head_dim = [5, 10, 20, 20]
|
|
|
|
|
|
|
|
config = dict(
|
|
|
|
sample_size=image_size // vae_scale_factor,
|
|
|
|
in_channels=unet_params.in_channels,
|
|
|
|
out_channels=unet_params.out_channels,
|
|
|
|
down_block_types=tuple(down_block_types),
|
|
|
|
up_block_types=tuple(up_block_types),
|
|
|
|
block_out_channels=tuple(block_out_channels),
|
|
|
|
layers_per_block=unet_params.num_res_blocks,
|
|
|
|
cross_attention_dim=unet_params.context_dim,
|
|
|
|
attention_head_dim=head_dim,
|
|
|
|
use_linear_projection=use_linear_projection,
|
|
|
|
)
|
|
|
|
|
|
|
|
return config
|
|
|
|
|
|
|
|
|
|
|
|
def create_vae_diffusers_config(original_config, image_size: int):
|
|
|
|
"""
|
|
|
|
Creates a config for the diffusers based on the config of the LDM model.
|
|
|
|
"""
|
|
|
|
vae_params = original_config.model.params.first_stage_config.params.ddconfig
|
|
|
|
_ = original_config.model.params.first_stage_config.params.embed_dim
|
|
|
|
|
|
|
|
block_out_channels = [vae_params.ch * mult for mult in vae_params.ch_mult]
|
|
|
|
down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels)
|
|
|
|
up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels)
|
|
|
|
|
|
|
|
config = dict(
|
|
|
|
sample_size=image_size,
|
|
|
|
in_channels=vae_params.in_channels,
|
|
|
|
out_channels=vae_params.out_ch,
|
|
|
|
down_block_types=tuple(down_block_types),
|
|
|
|
up_block_types=tuple(up_block_types),
|
|
|
|
block_out_channels=tuple(block_out_channels),
|
|
|
|
latent_channels=vae_params.z_channels,
|
|
|
|
layers_per_block=vae_params.num_res_blocks,
|
|
|
|
)
|
|
|
|
return config
|
|
|
|
|
|
|
|
|
|
|
|
def create_diffusers_schedular(original_config):
|
|
|
|
schedular = DDIMScheduler(
|
|
|
|
num_train_timesteps=original_config.model.params.timesteps,
|
|
|
|
beta_start=original_config.model.params.linear_start,
|
|
|
|
beta_end=original_config.model.params.linear_end,
|
|
|
|
beta_schedule="scaled_linear",
|
|
|
|
)
|
|
|
|
return schedular
|
|
|
|
|
|
|
|
|
|
|
|
def create_ldm_bert_config(original_config):
|
|
|
|
bert_params = original_config.model.params.cond_stage_config.params
|
|
|
|
config = LDMBertConfig(
|
|
|
|
d_model=bert_params.n_embed,
|
|
|
|
encoder_layers=bert_params.n_layer,
|
|
|
|
encoder_ffn_dim=bert_params.n_embed * 4,
|
|
|
|
)
|
|
|
|
return config
|
|
|
|
|
|
|
|
|
|
|
|
def convert_ldm_unet_checkpoint(checkpoint, config, path=None, extract_ema=False):
|
|
|
|
"""
|
|
|
|
Takes a state dict and a config, and returns a converted checkpoint.
|
|
|
|
"""
|
|
|
|
|
|
|
|
# extract state_dict for UNet
|
|
|
|
unet_state_dict = {}
|
|
|
|
keys = list(checkpoint.keys())
|
|
|
|
|
|
|
|
unet_key = "model.diffusion_model."
|
|
|
|
# at least a 100 parameters have to start with `model_ema` in order for the checkpoint to be EMA
|
|
|
|
if sum(k.startswith("model_ema") for k in keys) > 100:
|
2023-02-02 20:15:44 +00:00
|
|
|
print(f" | Checkpoint {path} has both EMA and non-EMA weights.")
|
use 🧨diffusers model (#1583)
* initial commit of DiffusionPipeline class
* spike: proof of concept using diffusers for txt2img
* doc: type hints for Generator
* refactor(model_cache): factor out load_ckpt
* model_cache: add ability to load a diffusers model pipeline
and update associated things in Generate & Generator to not instantly fail when that happens
* model_cache: fix model default image dimensions
* txt2img: support switching diffusers schedulers
* diffusers: let the scheduler do its scaling of the initial latents
Remove IPNDM scheduler; it is not behaving.
* web server: update image_progress callback for diffusers data
* diffusers: restore prompt weighting feature
* diffusers: fix set-sampler error following model switch
* diffusers: use InvokeAIDiffuserComponent for conditioning
* cross_attention_control: stub (no-op) implementations for diffusers
* model_cache: let offload_model work with DiffusionPipeline, sorta.
* models.yaml.example: add diffusers-format model, set as default
* test-invoke-conda: use diffusers-format model
test-invoke-conda: put huggingface-token where the library can use it
* environment-mac: upgrade to diffusers 0.7 (from 0.6)
this was already done for linux; mac must have been lost in the merge.
* preload_models: explicitly load diffusers models
In non-interactive mode too, as long as you're logged in.
* fix(model_cache): don't check `model.config` in diffusers format
clean-up from recent merge.
* diffusers integration: support img2img
* dev: upgrade to diffusers 0.8 (from 0.7.1)
We get to remove some code by using methods that were factored out in the base class.
* refactor: remove backported img2img.get_timesteps
now that we can use it directly from diffusers 0.8.1
* ci: use diffusers model
* dev: upgrade to diffusers 0.9 (from 0.8.1)
* lint: correct annotations for Python 3.9.
* lint: correct AttributeError.name reference for Python 3.9.
* CI: prefer diffusers-1.4 because it no longer requires a token
The RunwayML models still do.
* build: there's yet another place to update requirements?
* configure: try to download models even without token
Models in the CompVis and stabilityai repos no longer require them. (But runwayml still does.)
* configure: add troubleshooting info for config-not-found
* fix(configure): prepend root to config path
* fix(configure): remove second `default: true` from models example
* CI: simplify test-on-push logic now that we don't need secrets
The "test on push but only in forks" logic was only necessary when tests didn't work for PRs-from-forks.
* create an embedding_manager for diffusers
* internal: avoid importing diffusers DummyObject
see https://github.com/huggingface/diffusers/issues/1479
* fix "config attributes…not expected" diffusers warnings.
* fix deprecated scheduler construction
* work around an apparent MPS torch bug that causes conditioning to have no effect
* 🚧 post-rebase repair
* preliminary support for outpainting (no masking yet)
* monkey-patch diffusers.attention and use Invoke lowvram code
* add always_use_cpu arg to bypass MPS
* add cross-attention control support to diffusers (fails on MPS)
For unknown reasons MPS produces garbage output with .swap(). Use
--always_use_cpu arg to invoke.py for now to test this code on MPS.
* diffusers support for the inpainting model
* fix debug_image to not crash with non-RGB images.
* inpainting for the normal model [WIP]
This seems to be performing well until the LAST STEP, at which point it dissolves to confetti.
* fix off-by-one bug in cross-attention-control (#1774)
prompt token sequences begin with a "beginning-of-sequence" marker <bos> and end with a repeated "end-of-sequence" marker <eos> - to make a default prompt length of <bos> + 75 prompt tokens + <eos>. the .swap() code was failing to take the column for <bos> at index 0 into account. the changes here do that, and also add extra handling for a single <eos> (which may be redundant but which is included for completeness).
based on my understanding and some assumptions about how this all works, the reason .swap() nevertheless seemed to do the right thing, to some extent, is because over multiple steps the conditioning process in Stable Diffusion operates as a feedback loop. a change to token n-1 has flow-on effects to how the [1x4x64x64] latent tensor is modified by all the tokens after it, - and as the next step is processed, all the tokens before it as well. intuitively, a token's conditioning effects "echo" throughout the whole length of the prompt. so even though the token at n-1 was being edited when what the user actually wanted was to edit the token at n, it nevertheless still had some non-negligible effect, in roughly the right direction, often enough that it seemed like it was working properly.
* refactor common CrossAttention stuff into a mixin so that the old ldm code can still work if necessary
* inpainting for the normal model. I think it works this time.
* diffusers: reset num_vectors_per_token
sync with 44a00555718f1df173c60da0ed646cf700e29537
* diffusers: txt2img2img (hires_fix)
with so much slicing and dicing of pipeline methods to stitch them together
* refactor(diffusers): reduce some code duplication amongst the different tasks
* fixup! refactor(diffusers): reduce some code duplication amongst the different tasks
* diffusers: enable DPMSolver++ scheduler
* diffusers: upgrade to diffusers 0.10, add Heun scheduler
* diffusers(ModelCache): stopgap to make from_cpu compatible with diffusers
* CI: default to diffusers-1.5 now that runwayml token requirement is gone
* diffusers: update to 0.10 (and transformers to 4.25)
* diffusers: use xformers when available
diffusers no longer auto-enables this as of 0.10.2.
* diffusers: make masked img2img behave better with multi-step schedulers
re-randomizing the noise each step was confusing them.
* diffusers: work more better with more models.
fixed relative path problem with local models.
fixed models on hub not always having a `fp16` branch.
* diffusers: stopgap fix for attention_maps_callback crash after recent merge
* fixup import merge conflicts
correction for 061c5369a2247c6c92cd69606bcf54c4f1962a0b
* test: add tests/inpainting inputs for masked img2img
* diffusers(AddsMaskedGuidance): partial fix for k-schedulers
Prevents them from crashing, but results are still hot garbage.
* fix --safety_checker arg parsing
and add note to diffusers loader about where safety checker gets called
* generate: fix import error
* CI: don't try to read the old init location
* diffusers: support loading an alternate VAE
* CI: remove sh-syntax if-statement so it doesn't crash powershell
* CI: fold strings in yaml because backslash is not line-continuation in powershell
* attention maps callback stuff for diffusers
* build: fix syntax error in environment-mac
* diffusers: add INITIAL_MODELS with diffusers-compatible repos
* re-enable the embedding manager; closes #1778
* Squashed commit of the following:
commit e4a956abc37fcb5cf188388b76b617bc5c8fda7d
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:43:07 2022 +0100
import new load handling from EmbeddingManager and cleanup
commit c4abe91a5ba0d415b45bf734068385668b7a66e6
Merge: 032e856e 1efc6397
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:09:53 2022 +0100
Merge branch 'feature_textual_inversion_mgr' into dev/diffusers_with_textual_inversion_manager
commit 032e856eefb3bbc39534f5daafd25764bcfcef8b
Merge: 8b4f0fe9 bc515e24
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:08:01 2022 +0100
Merge remote-tracking branch 'upstream/dev/diffusers' into dev/diffusers_with_textual_inversion_manager
commit 1efc6397fc6e61c1aff4b0258b93089d61de5955
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:04:28 2022 +0100
cleanup and add performance notes
commit e400f804ac471a0ca2ba432fd658778b20c7bdab
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 14:45:07 2022 +0100
fix bug and update unit tests
commit deb9ae0ae1016750e93ce8275734061f7285a231
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 14:28:29 2022 +0100
textual inversion manager seems to work
commit 162e02505dec777e91a983c4d0fb52e950d25ff0
Merge: cbad4583 12769b3d
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:58:03 2022 +0100
Merge branch 'main' into feature_textual_inversion_mgr
commit cbad45836c6aace6871a90f2621a953f49433131
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:54:10 2022 +0100
use position embeddings
commit 070344c69b0e0db340a183857d0a787b348681d3
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:53:47 2022 +0100
Don't crash CLI on exceptions
commit b035ac8c6772dfd9ba41b8eeb9103181cda028f8
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:11:55 2022 +0100
add missing position_embeddings
commit 12769b3d3562ef71e0f54946b532ad077e10043c
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 13:33:25 2022 +0100
debugging why it don't work
commit bafb7215eabe1515ca5e8388fd3bb2f3ac5362cf
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 13:21:33 2022 +0100
debugging why it don't work
commit 664a6e9e146b42d96703f0cc8baf8f5efec04ee1
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 12:48:38 2022 +0100
use TextualInversionManager in place of embeddings (wip, doesn't work)
commit 8b4f0fe9d6e4e2643b36dfa27864294785d7ba4e
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 12:48:38 2022 +0100
use TextualInversionManager in place of embeddings (wip, doesn't work)
commit ffbe1ab11163ba712e353d89404e301d0e0c6cdf
Merge: 6e4dad60 023df37e
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:37:31 2022 +0100
Merge branch 'feature_textual_inversion_mgr' into dev/diffusers
commit 023df37efffa67434f77def7fc3c9dfb29f699fd
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:36:54 2022 +0100
cleanup
commit 05fac594eaf79d0058e3c48deee93df603f136c2
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:07:49 2022 +0100
tweak error checking
commit 009f32ed39a7280997c3ffab112adadee0b44279
Author: damian <null@damianstewart.com>
Date: Thu Dec 15 21:29:47 2022 +0100
unit tests passing for embeddings with vector length >1
commit beb1b08d9a98112ed2fe073580568e1a18698da3
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 13:39:09 2022 +0100
more explicit equality tests when overwriting
commit 44d8a5a7c85cdabc9ce3a54fd0769a10597b3ca9
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 13:30:13 2022 +0100
wip textual inversion manager (unit tests passing for 1v embedding overwriting)
commit 417c2b57d90924a839616bfb66804faab8039e4c
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 12:30:55 2022 +0100
wip textual inversion manager (unit tests passing for base stuff + padding)
commit 2e80872e3b6f7fd7d8eb8928822bd824b63cb2ff
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 10:57:57 2022 +0100
wip new TextualInversionManager
* stop using WeightedFrozenCLIPEmbedder
* store diffusion models locally
- configure_invokeai.py reconfigured to store diffusion models rather than
CompVis models
- hugging face caching model is used, but cache is set to ~/invokeai/models/repo_id
- models.yaml does **NOT** use path, just repo_id
- "repo_name" changed to "repo_id" to following hugging face conventions
- Models are loaded with full precision pending further work.
* allow non-local files during development
* path takes priority over repo_id
* MVP for model_cache and configure_invokeai
- Feature complete (almost)
- configure_invokeai.py downloads both .ckpt and diffuser models,
along with their VAEs. Both types of download are controlled by
a unified INITIAL_MODELS.yaml file.
- model_cache can load both type of model and switches back and forth
in CPU. No memory leaks detected
TO DO:
1. I have not yet turned on the LocalOnly flag for diffuser models, so
the code will check the Hugging Face repo for updates before using the
locally cached models. This will break firewalled systems. I am thinking
of putting in a global check for internet connectivity at startup time
and setting the LocalOnly flag based on this. It would be good to check
updates if there is connectivity.
2. I have not gone completely through INITIAL_MODELS.yaml to check which
models are available as diffusers and which are not. So models like
PaperCut and VoxelArt may not load properly. The runway and stability
models are checked, as well as the Trinart models.
3. Add stanzas for SD 2.0 and 2.1 in INITIAL_MODELS.yaml
REMAINING PROBLEMS NOT DIRECTLY RELATED TO MODEL_CACHE:
1. When loading a .ckpt file there are lots of messages like this:
Warning! ldm.modules.attention.CrossAttention is no longer being
maintained. Please use InvokeAICrossAttention instead.
I'm not sure how to address this.
2. The ckpt models ***don't actually run*** due to the lack of special-case
support for them in the generator objects. For example, here's the hard
crash you get when you run txt2img against the legacy waifu-diffusion-1.3
model:
```
>> An error occurred:
Traceback (most recent call last):
File "/data/lstein/InvokeAI/ldm/invoke/CLI.py", line 140, in main
main_loop(gen, opt)
File "/data/lstein/InvokeAI/ldm/invoke/CLI.py", line 371, in main_loop
gen.prompt2image(
File "/data/lstein/InvokeAI/ldm/generate.py", line 496, in prompt2image
results = generator.generate(
File "/data/lstein/InvokeAI/ldm/invoke/generator/base.py", line 108, in generate
image = make_image(x_T)
File "/data/lstein/InvokeAI/ldm/invoke/generator/txt2img.py", line 33, in make_image
pipeline_output = pipeline.image_from_embeddings(
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1265, in __getattr__
raise AttributeError("'{}' object has no attribute '{}'".format(
AttributeError: 'LatentDiffusion' object has no attribute 'image_from_embeddings'
```
3. The inpainting diffusion model isn't working. Here's the output of "banana
sushi" when inpainting-1.5 is loaded:
```
Traceback (most recent call last):
File "/data/lstein/InvokeAI/ldm/generate.py", line 496, in prompt2image
results = generator.generate(
File "/data/lstein/InvokeAI/ldm/invoke/generator/base.py", line 108, in generate
image = make_image(x_T)
File "/data/lstein/InvokeAI/ldm/invoke/generator/txt2img.py", line 33, in make_image
pipeline_output = pipeline.image_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 301, in image_from_embeddings
result_latents, result_attention_map_saver = self.latents_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 330, in latents_from_embeddings
result: PipelineIntermediateState = infer_latents_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 185, in __call__
for result in self.generator_method(*args, **kwargs):
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 367, in generate_latents_from_embeddings
step_output = self.step(batched_t, latents, guidance_scale,
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context
return func(*args, **kwargs)
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 409, in step
step_output = self.scheduler.step(noise_pred, timestep, latents, **extra_step_kwargs)
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/diffusers/schedulers/scheduling_lms_discrete.py", line 223, in step
pred_original_sample = sample - sigma * model_output
RuntimeError: The size of tensor a (9) must match the size of tensor b (4) at non-singleton dimension 1
```
* proper support for float32/float16
- configure script now correctly detects user's preference for
fp16/32 and downloads the correct diffuser version. If fp16
version not available, falls back to fp32 version.
- misc code cleanup and simplification in model_cache
* add on-the-fly conversion of .ckpt to diffusers models
1. On-the-fly conversion code can be found in the file ldm/invoke/ckpt_to_diffusers.py.
2. A new !optimize command has been added to the CLI. Should be ported to Web GUI.
User experience on the CLI is this:
```
invoke> !optimize /home/lstein/invokeai/models/ldm/stable-diffusion-v1/sd-v1-4.ckpt
INFO: Converting legacy weights file /home/lstein/invokeai/models/ldm/stable-diffusion-v1/sd-v1-4.ckpt to optimized diffuser model.
This operation will take 30-60s to complete.
Success. Optimized model is now located at /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
Writing new config file entry for sd-v1-4...
>> New configuration:
sd-v1-4:
description: Optimized version of sd-v1-4
format: diffusers
path: /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
OK to import [n]? y
>> Verifying that new model loads...
>> Current VRAM usage: 2.60G
>> Offloading stable-diffusion-2.1 to CPU
>> Loading diffusers model from /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
| Using faster float16 precision
You have disabled the safety checker for <class 'ldm.invoke.generator.diffusers_pipeline.StableDiffusionGeneratorPipeline'> by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion \
license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances,\
disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .
| training width x height = (512 x 512)
>> Model loaded in 3.48s
>> Max VRAM used to load the model: 2.17G
>> Current VRAM usage:2.17G
>> Textual inversions available:
>> Setting Sampler to k_lms (LMSDiscreteScheduler)
Keep model loaded? [y]
```
* add parallel set of generator files for ckpt legacy generation
* generation using legacy ckpt models now working
* diffusers: fix missing attention_maps_callback
fix for 23eb80b40421b2bb8f4b6d3dd30490d11c447b36
* associate legacy CrossAttention with .ckpt models
* enable autoconvert
New --autoconvert CLI option will scan a designated directory for
new .ckpt files, convert them into diffuser models, and import
them into models.yaml.
Works like this:
invoke.py --autoconvert /path/to/weights/directory
In ModelCache added two new methods:
autoconvert_weights(config_path, weights_directory_path, models_directory_path)
convert_and_import(ckpt_path, diffuser_path)
* diffusers: update to diffusers 0.11 (from 0.10.2)
* fix vae loading & width/height calculation
* refactor: encapsulate these conditioning data into one container
* diffusers: fix some noise-scaling issues by pushing the noise-mixing down to the common function
* add support for safetensors and accelerate
* set local_files_only when internet unreachable
* diffusers: fix error-handling path when model repo has no fp16 branch
* fix generatorinpaint error
Fixes :
"ModuleNotFoundError: No module named 'ldm.invoke.generatorinpaint'
https://github.com/invoke-ai/InvokeAI/pull/1583#issuecomment-1363634318
* quench diffuser safety-checker warning
* diffusers: support stochastic DDIM eta parameter
* fix conda env creation on macos
* fix cross-attention with diffusers 0.11
* diffusers: the VAE needs to be tiling as well as the U-Net
* diffusers: comment on subfolders
* diffusers: embiggen!
* diffusers: make model_cache.list_models serializable
* diffusers(inpaint): restore scaling functionality
* fix requirements clash between numba and numpy 1.24
* diffusers: allow inpainting model to do non-inpainting tasks
* start expanding model_cache functionality
* add import_ckpt_model() and import_diffuser_model() methods to model_manager
- in addition, model_cache.py is now renamed to model_manager.py
* allow "recommended" flag to be optional in INITIAL_MODELS.yaml
* configure_invokeai now downloads VAE diffusers in advance
* rename ModelCache to ModelManager
* remove support for `repo_name` in models.yaml
* check for and refuse to load embeddings trained on incompatible models
* models.yaml.example: s/repo_name/repo_id
and remove extra INITIAL_MODELS now that the main one has diffusers models in it.
* add MVP textual inversion script
* refactor(InvokeAIDiffuserComponent): factor out _combine()
* InvokeAIDiffuserComponent: implement threshold
* InvokeAIDiffuserComponent: diagnostic logs for threshold
...this does not look right
* add a curses-based frontend to textual inversion
- not quite working yet
- requires npyscreen installed
- on windows will also have the windows-curses requirement, but not added
to requirements yet
* add curses-based interface for textual inversion
* fix crash in convert_and_import()
- This corrects a "local variable referenced before assignment" error
in model_manager.convert_and_import()
* potential workaround for no 'state_dict' key error
- As reported in https://github.com/huggingface/diffusers/issues/1876
* create TI output dir if needed
* Update environment-lin-cuda.yml (#2159)
Fixing line 42 to be the proper order to define the transformers requirement: ~= instead of =~
* diffusers: update sampler-to-scheduler mapping
based on https://github.com/huggingface/diffusers/issues/277#issuecomment-1371428672
* improve user exp for ckt to diffusers conversion
- !optimize_models command now operates on an existing ckpt file entry in models.yaml
- replaces existing entry, rather than adding a new one
- offers to delete the ckpt file after conversion
* web: adapt progress callback to deal with old generator or new diffusers pipeline
* clean-up model_manager code
- add_model() verified to work for .ckpt local paths,
.ckpt remote URLs, diffusers local paths, and
diffusers repo_ids
- convert_and_import() verified to work for local and
remove .ckpt files
* handle edge cases for import_model() and convert_model()
* add support for safetensor .ckpt files
* fix name error
* code cleanup with pyflake
* improve model setting behavior
- If the user enters an invalid model name at startup time, will not
try to load it, warn, and use default model
- CLI UI enhancement: include currently active model in the command
line prompt.
* update test-invoke-pip.yml
- fix model cache path to point to runwayml/stable-diffusion-v1-5
- remove `skip-sd-weights` from configure_invokeai.py args
* exclude dev/diffusers from "fail for draft PRs"
* disable "fail on PR jobs"
* re-add `--skip-sd-weights` since no space
* update workflow environments
- include `INVOKE_MODEL_RECONFIGURE: '--yes'`
* clean up model load failure handling
- Allow CLI to run even when no model is defined or loadable.
- Inhibit stack trace when model load fails - only show last error
- Give user *option* to run configure_invokeai.py when no models
successfully load.
- Restart invokeai after reconfiguration.
* further edge-case handling
1) only one model in models.yaml file, and that model is broken
2) no models in models.yaml
3) models.yaml doesn't exist at all
* fix incorrect model status listing
- "cached" was not being returned from list_models()
- normalize handling of exceptions during model loading:
- Passing an invalid model name to generate.set_model() will return
a KeyError
- All other exceptions are returned as the appropriate Exception
* CI: do download weights (if not already cached)
* diffusers: fix scheduler loading in offline mode
* CI: fix model name (no longer has `diffusers-` prefix)
* Update txt2img2img.py (#2256)
* fixes to share models with HuggingFace cache system
- If HF_HOME environment variable is defined, then all huggingface models
are stored in that directory following the standard conventions.
- For seamless interoperability, set HF_HOME to ~/.cache/huggingface
- If HF_HOME not defined, then models are stored in ~/invokeai/models.
This is equivalent to setting HF_HOME to ~/invokeai/models
A future commit will add a migration mechanism so that this change doesn't
break previous installs.
* feat - make model storage compatible with hugging face caching system
This commit alters the InvokeAI model directory to be compatible with
hugging face, making it easier to share diffusers (and other models)
across different programs.
- If the HF_HOME environment variable is not set, then models are
cached in ~/invokeai/models in a format that is identical to the
HuggingFace cache.
- If HF_HOME is set, then models are cached wherever HF_HOME points.
- To enable sharing with other HuggingFace library clients, set
HF_HOME to ~/.cache/huggingface to set the default cache location
or to ~/invokeai/models to have huggingface cache inside InvokeAI.
* fixes to share models with HuggingFace cache system
- If HF_HOME environment variable is defined, then all huggingface models
are stored in that directory following the standard conventions.
- For seamless interoperability, set HF_HOME to ~/.cache/huggingface
- If HF_HOME not defined, then models are stored in ~/invokeai/models.
This is equivalent to setting HF_HOME to ~/invokeai/models
A future commit will add a migration mechanism so that this change doesn't
break previous installs.
* fix error "no attribute CkptInpaint"
* model_manager.list_models() returns entire model config stanza+status
* Initial Draft - Model Manager Diffusers
* added hash function to diffusers
* implement sha256 hashes on diffusers models
* Add Model Manager Support for Diffusers
* fix various problems with model manager
- in cli import functions, fix not enough values to unpack from
_get_name_and_desc()
- fix crash when using old-style vae: value with new-style diffuser
* rebuild frontend
* fix dictconfig-not-serializable issue
* fix NoneType' object is not subscriptable crash in model_manager
* fix "str has no attribute get" error in model_manager list_models()
* Add path and repo_id support for Diffusers Model Manager
Also fixes bugs
* Fix tooltip IT localization not working
* Add Version Number To WebUI
* Optimize Model Search
* Fix incorrect font on the Model Manager UI
* Fix image degradation on merge fixes - [Experimental]
This change should effectively fix a couple of things.
- Fix image degradation on subsequent merges of the canvas layers.
- Fix the slight transparent border that is left behind when filling the bounding box with a color.
- Fix the left over line of color when filling a bounding box with color.
So far there are no side effects for this. If any, please report.
* Add local model filtering for Diffusers / Checkpoints
* Go to home on modal close for the Add Modal UI
* Styling Fixes
* Model Manager Diffusers Localization Update
* Add Safe Tensor scanning to Model Manager
* Fix model edit form dispatching string values instead of numbers.
* Resolve VAE handling / edge cases for supplied repos
* defer injecting tokens for textual inversions until they're used for the first time
* squash a console warning
* implement model migration check
* add_model() overwrites previous config rather than merges
* fix model config file attribute merging
* fix precision handling in textual inversion script
* allow ckpt conversion script to work with safetensors .ckpts
Applied patch here:
https://github.com/huggingface/diffusers/commit/beb932c5d111872c5e45387e7b1b2b3dd0524a47
* fix name "args" is not defined crash in textual_inversion_training
* fix a second NameError: name 'args' is not defined crash
* fix loading of the safety checker from the global cache dir
* add installation step to textual inversion frontend
- After a successful training run, the script will copy learned_embeds.bin
to a subfolder of the embeddings directory.
- User given the option to delete the logs and intermediate checkpoints
(which together use 7-8G of space)
- If textual inversion training fails, reports the error gracefully.
* don't crash out on incompatible embeddings
- put try: blocks around places where the system tries to load an embedding
which is incompatible with the currently loaded model
* add support for checkpoint resuming
* textual inversion preferences are saved and restored between sessions
- Preferences are stored in a file named text-inversion-training/preferences.conf
- Currently the resume-from-checkpoint option is not working correctly. Possible
bug in textual_inversion_training.py?
* copy learned_embeddings.bin into right location
* add front end for diffusers model merging
- Front end doesn't do anything yet!!!!
- Made change to model name parsing in CLI to support ability to have merged models
with the "+" character in their names.
* improve inpainting experience
- recommend ckpt version of inpainting-1.5 to user
- fix get_noise() bug in ckpt version of omnibus.py
* update environment*yml
* tweak instructions to install HuggingFace token
* bump version number
* enhance update scripts
- update scripts will now fetch new INITIAL_MODELS.yaml so that
configure_invokeai.py will know about the diffusers versions.
* enhance invoke.sh/invoke.bat launchers
- added configure_invokeai.py to menu
- menu defaults to browser-based invoke
* remove conda workflow (#2321)
* fix `token_ids has shape torch.Size([79]) - expected [77]`
* update CHANGELOG.md with 2.3.* info
- Add information on how formats have changed and the upgrade process.
- Add short bug list.
Co-authored-by: Damian Stewart <d@damianstewart.com>
Co-authored-by: Damian Stewart <null@damianstewart.com>
Co-authored-by: Lincoln Stein <lincoln.stein@gmail.com>
Co-authored-by: Wybartel-luxmc <37852506+Wybartel-luxmc@users.noreply.github.com>
Co-authored-by: mauwii <Mauwii@outlook.de>
Co-authored-by: mickr777 <115216705+mickr777@users.noreply.github.com>
Co-authored-by: blessedcoolant <54517381+blessedcoolant@users.noreply.github.com>
Co-authored-by: Eugene Brodsky <ebr@users.noreply.github.com>
Co-authored-by: Matthias Wild <40327258+mauwii@users.noreply.github.com>
2023-01-15 14:22:46 +00:00
|
|
|
if extract_ema:
|
|
|
|
print(
|
2023-02-02 20:15:44 +00:00
|
|
|
' | Extracting EMA weights (usually better for inference)'
|
use 🧨diffusers model (#1583)
* initial commit of DiffusionPipeline class
* spike: proof of concept using diffusers for txt2img
* doc: type hints for Generator
* refactor(model_cache): factor out load_ckpt
* model_cache: add ability to load a diffusers model pipeline
and update associated things in Generate & Generator to not instantly fail when that happens
* model_cache: fix model default image dimensions
* txt2img: support switching diffusers schedulers
* diffusers: let the scheduler do its scaling of the initial latents
Remove IPNDM scheduler; it is not behaving.
* web server: update image_progress callback for diffusers data
* diffusers: restore prompt weighting feature
* diffusers: fix set-sampler error following model switch
* diffusers: use InvokeAIDiffuserComponent for conditioning
* cross_attention_control: stub (no-op) implementations for diffusers
* model_cache: let offload_model work with DiffusionPipeline, sorta.
* models.yaml.example: add diffusers-format model, set as default
* test-invoke-conda: use diffusers-format model
test-invoke-conda: put huggingface-token where the library can use it
* environment-mac: upgrade to diffusers 0.7 (from 0.6)
this was already done for linux; mac must have been lost in the merge.
* preload_models: explicitly load diffusers models
In non-interactive mode too, as long as you're logged in.
* fix(model_cache): don't check `model.config` in diffusers format
clean-up from recent merge.
* diffusers integration: support img2img
* dev: upgrade to diffusers 0.8 (from 0.7.1)
We get to remove some code by using methods that were factored out in the base class.
* refactor: remove backported img2img.get_timesteps
now that we can use it directly from diffusers 0.8.1
* ci: use diffusers model
* dev: upgrade to diffusers 0.9 (from 0.8.1)
* lint: correct annotations for Python 3.9.
* lint: correct AttributeError.name reference for Python 3.9.
* CI: prefer diffusers-1.4 because it no longer requires a token
The RunwayML models still do.
* build: there's yet another place to update requirements?
* configure: try to download models even without token
Models in the CompVis and stabilityai repos no longer require them. (But runwayml still does.)
* configure: add troubleshooting info for config-not-found
* fix(configure): prepend root to config path
* fix(configure): remove second `default: true` from models example
* CI: simplify test-on-push logic now that we don't need secrets
The "test on push but only in forks" logic was only necessary when tests didn't work for PRs-from-forks.
* create an embedding_manager for diffusers
* internal: avoid importing diffusers DummyObject
see https://github.com/huggingface/diffusers/issues/1479
* fix "config attributes…not expected" diffusers warnings.
* fix deprecated scheduler construction
* work around an apparent MPS torch bug that causes conditioning to have no effect
* 🚧 post-rebase repair
* preliminary support for outpainting (no masking yet)
* monkey-patch diffusers.attention and use Invoke lowvram code
* add always_use_cpu arg to bypass MPS
* add cross-attention control support to diffusers (fails on MPS)
For unknown reasons MPS produces garbage output with .swap(). Use
--always_use_cpu arg to invoke.py for now to test this code on MPS.
* diffusers support for the inpainting model
* fix debug_image to not crash with non-RGB images.
* inpainting for the normal model [WIP]
This seems to be performing well until the LAST STEP, at which point it dissolves to confetti.
* fix off-by-one bug in cross-attention-control (#1774)
prompt token sequences begin with a "beginning-of-sequence" marker <bos> and end with a repeated "end-of-sequence" marker <eos> - to make a default prompt length of <bos> + 75 prompt tokens + <eos>. the .swap() code was failing to take the column for <bos> at index 0 into account. the changes here do that, and also add extra handling for a single <eos> (which may be redundant but which is included for completeness).
based on my understanding and some assumptions about how this all works, the reason .swap() nevertheless seemed to do the right thing, to some extent, is because over multiple steps the conditioning process in Stable Diffusion operates as a feedback loop. a change to token n-1 has flow-on effects to how the [1x4x64x64] latent tensor is modified by all the tokens after it, - and as the next step is processed, all the tokens before it as well. intuitively, a token's conditioning effects "echo" throughout the whole length of the prompt. so even though the token at n-1 was being edited when what the user actually wanted was to edit the token at n, it nevertheless still had some non-negligible effect, in roughly the right direction, often enough that it seemed like it was working properly.
* refactor common CrossAttention stuff into a mixin so that the old ldm code can still work if necessary
* inpainting for the normal model. I think it works this time.
* diffusers: reset num_vectors_per_token
sync with 44a00555718f1df173c60da0ed646cf700e29537
* diffusers: txt2img2img (hires_fix)
with so much slicing and dicing of pipeline methods to stitch them together
* refactor(diffusers): reduce some code duplication amongst the different tasks
* fixup! refactor(diffusers): reduce some code duplication amongst the different tasks
* diffusers: enable DPMSolver++ scheduler
* diffusers: upgrade to diffusers 0.10, add Heun scheduler
* diffusers(ModelCache): stopgap to make from_cpu compatible with diffusers
* CI: default to diffusers-1.5 now that runwayml token requirement is gone
* diffusers: update to 0.10 (and transformers to 4.25)
* diffusers: use xformers when available
diffusers no longer auto-enables this as of 0.10.2.
* diffusers: make masked img2img behave better with multi-step schedulers
re-randomizing the noise each step was confusing them.
* diffusers: work more better with more models.
fixed relative path problem with local models.
fixed models on hub not always having a `fp16` branch.
* diffusers: stopgap fix for attention_maps_callback crash after recent merge
* fixup import merge conflicts
correction for 061c5369a2247c6c92cd69606bcf54c4f1962a0b
* test: add tests/inpainting inputs for masked img2img
* diffusers(AddsMaskedGuidance): partial fix for k-schedulers
Prevents them from crashing, but results are still hot garbage.
* fix --safety_checker arg parsing
and add note to diffusers loader about where safety checker gets called
* generate: fix import error
* CI: don't try to read the old init location
* diffusers: support loading an alternate VAE
* CI: remove sh-syntax if-statement so it doesn't crash powershell
* CI: fold strings in yaml because backslash is not line-continuation in powershell
* attention maps callback stuff for diffusers
* build: fix syntax error in environment-mac
* diffusers: add INITIAL_MODELS with diffusers-compatible repos
* re-enable the embedding manager; closes #1778
* Squashed commit of the following:
commit e4a956abc37fcb5cf188388b76b617bc5c8fda7d
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:43:07 2022 +0100
import new load handling from EmbeddingManager and cleanup
commit c4abe91a5ba0d415b45bf734068385668b7a66e6
Merge: 032e856e 1efc6397
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:09:53 2022 +0100
Merge branch 'feature_textual_inversion_mgr' into dev/diffusers_with_textual_inversion_manager
commit 032e856eefb3bbc39534f5daafd25764bcfcef8b
Merge: 8b4f0fe9 bc515e24
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:08:01 2022 +0100
Merge remote-tracking branch 'upstream/dev/diffusers' into dev/diffusers_with_textual_inversion_manager
commit 1efc6397fc6e61c1aff4b0258b93089d61de5955
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:04:28 2022 +0100
cleanup and add performance notes
commit e400f804ac471a0ca2ba432fd658778b20c7bdab
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 14:45:07 2022 +0100
fix bug and update unit tests
commit deb9ae0ae1016750e93ce8275734061f7285a231
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 14:28:29 2022 +0100
textual inversion manager seems to work
commit 162e02505dec777e91a983c4d0fb52e950d25ff0
Merge: cbad4583 12769b3d
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:58:03 2022 +0100
Merge branch 'main' into feature_textual_inversion_mgr
commit cbad45836c6aace6871a90f2621a953f49433131
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:54:10 2022 +0100
use position embeddings
commit 070344c69b0e0db340a183857d0a787b348681d3
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:53:47 2022 +0100
Don't crash CLI on exceptions
commit b035ac8c6772dfd9ba41b8eeb9103181cda028f8
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:11:55 2022 +0100
add missing position_embeddings
commit 12769b3d3562ef71e0f54946b532ad077e10043c
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 13:33:25 2022 +0100
debugging why it don't work
commit bafb7215eabe1515ca5e8388fd3bb2f3ac5362cf
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 13:21:33 2022 +0100
debugging why it don't work
commit 664a6e9e146b42d96703f0cc8baf8f5efec04ee1
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 12:48:38 2022 +0100
use TextualInversionManager in place of embeddings (wip, doesn't work)
commit 8b4f0fe9d6e4e2643b36dfa27864294785d7ba4e
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 12:48:38 2022 +0100
use TextualInversionManager in place of embeddings (wip, doesn't work)
commit ffbe1ab11163ba712e353d89404e301d0e0c6cdf
Merge: 6e4dad60 023df37e
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:37:31 2022 +0100
Merge branch 'feature_textual_inversion_mgr' into dev/diffusers
commit 023df37efffa67434f77def7fc3c9dfb29f699fd
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:36:54 2022 +0100
cleanup
commit 05fac594eaf79d0058e3c48deee93df603f136c2
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:07:49 2022 +0100
tweak error checking
commit 009f32ed39a7280997c3ffab112adadee0b44279
Author: damian <null@damianstewart.com>
Date: Thu Dec 15 21:29:47 2022 +0100
unit tests passing for embeddings with vector length >1
commit beb1b08d9a98112ed2fe073580568e1a18698da3
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 13:39:09 2022 +0100
more explicit equality tests when overwriting
commit 44d8a5a7c85cdabc9ce3a54fd0769a10597b3ca9
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 13:30:13 2022 +0100
wip textual inversion manager (unit tests passing for 1v embedding overwriting)
commit 417c2b57d90924a839616bfb66804faab8039e4c
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 12:30:55 2022 +0100
wip textual inversion manager (unit tests passing for base stuff + padding)
commit 2e80872e3b6f7fd7d8eb8928822bd824b63cb2ff
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 10:57:57 2022 +0100
wip new TextualInversionManager
* stop using WeightedFrozenCLIPEmbedder
* store diffusion models locally
- configure_invokeai.py reconfigured to store diffusion models rather than
CompVis models
- hugging face caching model is used, but cache is set to ~/invokeai/models/repo_id
- models.yaml does **NOT** use path, just repo_id
- "repo_name" changed to "repo_id" to following hugging face conventions
- Models are loaded with full precision pending further work.
* allow non-local files during development
* path takes priority over repo_id
* MVP for model_cache and configure_invokeai
- Feature complete (almost)
- configure_invokeai.py downloads both .ckpt and diffuser models,
along with their VAEs. Both types of download are controlled by
a unified INITIAL_MODELS.yaml file.
- model_cache can load both type of model and switches back and forth
in CPU. No memory leaks detected
TO DO:
1. I have not yet turned on the LocalOnly flag for diffuser models, so
the code will check the Hugging Face repo for updates before using the
locally cached models. This will break firewalled systems. I am thinking
of putting in a global check for internet connectivity at startup time
and setting the LocalOnly flag based on this. It would be good to check
updates if there is connectivity.
2. I have not gone completely through INITIAL_MODELS.yaml to check which
models are available as diffusers and which are not. So models like
PaperCut and VoxelArt may not load properly. The runway and stability
models are checked, as well as the Trinart models.
3. Add stanzas for SD 2.0 and 2.1 in INITIAL_MODELS.yaml
REMAINING PROBLEMS NOT DIRECTLY RELATED TO MODEL_CACHE:
1. When loading a .ckpt file there are lots of messages like this:
Warning! ldm.modules.attention.CrossAttention is no longer being
maintained. Please use InvokeAICrossAttention instead.
I'm not sure how to address this.
2. The ckpt models ***don't actually run*** due to the lack of special-case
support for them in the generator objects. For example, here's the hard
crash you get when you run txt2img against the legacy waifu-diffusion-1.3
model:
```
>> An error occurred:
Traceback (most recent call last):
File "/data/lstein/InvokeAI/ldm/invoke/CLI.py", line 140, in main
main_loop(gen, opt)
File "/data/lstein/InvokeAI/ldm/invoke/CLI.py", line 371, in main_loop
gen.prompt2image(
File "/data/lstein/InvokeAI/ldm/generate.py", line 496, in prompt2image
results = generator.generate(
File "/data/lstein/InvokeAI/ldm/invoke/generator/base.py", line 108, in generate
image = make_image(x_T)
File "/data/lstein/InvokeAI/ldm/invoke/generator/txt2img.py", line 33, in make_image
pipeline_output = pipeline.image_from_embeddings(
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1265, in __getattr__
raise AttributeError("'{}' object has no attribute '{}'".format(
AttributeError: 'LatentDiffusion' object has no attribute 'image_from_embeddings'
```
3. The inpainting diffusion model isn't working. Here's the output of "banana
sushi" when inpainting-1.5 is loaded:
```
Traceback (most recent call last):
File "/data/lstein/InvokeAI/ldm/generate.py", line 496, in prompt2image
results = generator.generate(
File "/data/lstein/InvokeAI/ldm/invoke/generator/base.py", line 108, in generate
image = make_image(x_T)
File "/data/lstein/InvokeAI/ldm/invoke/generator/txt2img.py", line 33, in make_image
pipeline_output = pipeline.image_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 301, in image_from_embeddings
result_latents, result_attention_map_saver = self.latents_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 330, in latents_from_embeddings
result: PipelineIntermediateState = infer_latents_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 185, in __call__
for result in self.generator_method(*args, **kwargs):
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 367, in generate_latents_from_embeddings
step_output = self.step(batched_t, latents, guidance_scale,
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context
return func(*args, **kwargs)
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 409, in step
step_output = self.scheduler.step(noise_pred, timestep, latents, **extra_step_kwargs)
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/diffusers/schedulers/scheduling_lms_discrete.py", line 223, in step
pred_original_sample = sample - sigma * model_output
RuntimeError: The size of tensor a (9) must match the size of tensor b (4) at non-singleton dimension 1
```
* proper support for float32/float16
- configure script now correctly detects user's preference for
fp16/32 and downloads the correct diffuser version. If fp16
version not available, falls back to fp32 version.
- misc code cleanup and simplification in model_cache
* add on-the-fly conversion of .ckpt to diffusers models
1. On-the-fly conversion code can be found in the file ldm/invoke/ckpt_to_diffusers.py.
2. A new !optimize command has been added to the CLI. Should be ported to Web GUI.
User experience on the CLI is this:
```
invoke> !optimize /home/lstein/invokeai/models/ldm/stable-diffusion-v1/sd-v1-4.ckpt
INFO: Converting legacy weights file /home/lstein/invokeai/models/ldm/stable-diffusion-v1/sd-v1-4.ckpt to optimized diffuser model.
This operation will take 30-60s to complete.
Success. Optimized model is now located at /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
Writing new config file entry for sd-v1-4...
>> New configuration:
sd-v1-4:
description: Optimized version of sd-v1-4
format: diffusers
path: /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
OK to import [n]? y
>> Verifying that new model loads...
>> Current VRAM usage: 2.60G
>> Offloading stable-diffusion-2.1 to CPU
>> Loading diffusers model from /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
| Using faster float16 precision
You have disabled the safety checker for <class 'ldm.invoke.generator.diffusers_pipeline.StableDiffusionGeneratorPipeline'> by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion \
license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances,\
disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .
| training width x height = (512 x 512)
>> Model loaded in 3.48s
>> Max VRAM used to load the model: 2.17G
>> Current VRAM usage:2.17G
>> Textual inversions available:
>> Setting Sampler to k_lms (LMSDiscreteScheduler)
Keep model loaded? [y]
```
* add parallel set of generator files for ckpt legacy generation
* generation using legacy ckpt models now working
* diffusers: fix missing attention_maps_callback
fix for 23eb80b40421b2bb8f4b6d3dd30490d11c447b36
* associate legacy CrossAttention with .ckpt models
* enable autoconvert
New --autoconvert CLI option will scan a designated directory for
new .ckpt files, convert them into diffuser models, and import
them into models.yaml.
Works like this:
invoke.py --autoconvert /path/to/weights/directory
In ModelCache added two new methods:
autoconvert_weights(config_path, weights_directory_path, models_directory_path)
convert_and_import(ckpt_path, diffuser_path)
* diffusers: update to diffusers 0.11 (from 0.10.2)
* fix vae loading & width/height calculation
* refactor: encapsulate these conditioning data into one container
* diffusers: fix some noise-scaling issues by pushing the noise-mixing down to the common function
* add support for safetensors and accelerate
* set local_files_only when internet unreachable
* diffusers: fix error-handling path when model repo has no fp16 branch
* fix generatorinpaint error
Fixes :
"ModuleNotFoundError: No module named 'ldm.invoke.generatorinpaint'
https://github.com/invoke-ai/InvokeAI/pull/1583#issuecomment-1363634318
* quench diffuser safety-checker warning
* diffusers: support stochastic DDIM eta parameter
* fix conda env creation on macos
* fix cross-attention with diffusers 0.11
* diffusers: the VAE needs to be tiling as well as the U-Net
* diffusers: comment on subfolders
* diffusers: embiggen!
* diffusers: make model_cache.list_models serializable
* diffusers(inpaint): restore scaling functionality
* fix requirements clash between numba and numpy 1.24
* diffusers: allow inpainting model to do non-inpainting tasks
* start expanding model_cache functionality
* add import_ckpt_model() and import_diffuser_model() methods to model_manager
- in addition, model_cache.py is now renamed to model_manager.py
* allow "recommended" flag to be optional in INITIAL_MODELS.yaml
* configure_invokeai now downloads VAE diffusers in advance
* rename ModelCache to ModelManager
* remove support for `repo_name` in models.yaml
* check for and refuse to load embeddings trained on incompatible models
* models.yaml.example: s/repo_name/repo_id
and remove extra INITIAL_MODELS now that the main one has diffusers models in it.
* add MVP textual inversion script
* refactor(InvokeAIDiffuserComponent): factor out _combine()
* InvokeAIDiffuserComponent: implement threshold
* InvokeAIDiffuserComponent: diagnostic logs for threshold
...this does not look right
* add a curses-based frontend to textual inversion
- not quite working yet
- requires npyscreen installed
- on windows will also have the windows-curses requirement, but not added
to requirements yet
* add curses-based interface for textual inversion
* fix crash in convert_and_import()
- This corrects a "local variable referenced before assignment" error
in model_manager.convert_and_import()
* potential workaround for no 'state_dict' key error
- As reported in https://github.com/huggingface/diffusers/issues/1876
* create TI output dir if needed
* Update environment-lin-cuda.yml (#2159)
Fixing line 42 to be the proper order to define the transformers requirement: ~= instead of =~
* diffusers: update sampler-to-scheduler mapping
based on https://github.com/huggingface/diffusers/issues/277#issuecomment-1371428672
* improve user exp for ckt to diffusers conversion
- !optimize_models command now operates on an existing ckpt file entry in models.yaml
- replaces existing entry, rather than adding a new one
- offers to delete the ckpt file after conversion
* web: adapt progress callback to deal with old generator or new diffusers pipeline
* clean-up model_manager code
- add_model() verified to work for .ckpt local paths,
.ckpt remote URLs, diffusers local paths, and
diffusers repo_ids
- convert_and_import() verified to work for local and
remove .ckpt files
* handle edge cases for import_model() and convert_model()
* add support for safetensor .ckpt files
* fix name error
* code cleanup with pyflake
* improve model setting behavior
- If the user enters an invalid model name at startup time, will not
try to load it, warn, and use default model
- CLI UI enhancement: include currently active model in the command
line prompt.
* update test-invoke-pip.yml
- fix model cache path to point to runwayml/stable-diffusion-v1-5
- remove `skip-sd-weights` from configure_invokeai.py args
* exclude dev/diffusers from "fail for draft PRs"
* disable "fail on PR jobs"
* re-add `--skip-sd-weights` since no space
* update workflow environments
- include `INVOKE_MODEL_RECONFIGURE: '--yes'`
* clean up model load failure handling
- Allow CLI to run even when no model is defined or loadable.
- Inhibit stack trace when model load fails - only show last error
- Give user *option* to run configure_invokeai.py when no models
successfully load.
- Restart invokeai after reconfiguration.
* further edge-case handling
1) only one model in models.yaml file, and that model is broken
2) no models in models.yaml
3) models.yaml doesn't exist at all
* fix incorrect model status listing
- "cached" was not being returned from list_models()
- normalize handling of exceptions during model loading:
- Passing an invalid model name to generate.set_model() will return
a KeyError
- All other exceptions are returned as the appropriate Exception
* CI: do download weights (if not already cached)
* diffusers: fix scheduler loading in offline mode
* CI: fix model name (no longer has `diffusers-` prefix)
* Update txt2img2img.py (#2256)
* fixes to share models with HuggingFace cache system
- If HF_HOME environment variable is defined, then all huggingface models
are stored in that directory following the standard conventions.
- For seamless interoperability, set HF_HOME to ~/.cache/huggingface
- If HF_HOME not defined, then models are stored in ~/invokeai/models.
This is equivalent to setting HF_HOME to ~/invokeai/models
A future commit will add a migration mechanism so that this change doesn't
break previous installs.
* feat - make model storage compatible with hugging face caching system
This commit alters the InvokeAI model directory to be compatible with
hugging face, making it easier to share diffusers (and other models)
across different programs.
- If the HF_HOME environment variable is not set, then models are
cached in ~/invokeai/models in a format that is identical to the
HuggingFace cache.
- If HF_HOME is set, then models are cached wherever HF_HOME points.
- To enable sharing with other HuggingFace library clients, set
HF_HOME to ~/.cache/huggingface to set the default cache location
or to ~/invokeai/models to have huggingface cache inside InvokeAI.
* fixes to share models with HuggingFace cache system
- If HF_HOME environment variable is defined, then all huggingface models
are stored in that directory following the standard conventions.
- For seamless interoperability, set HF_HOME to ~/.cache/huggingface
- If HF_HOME not defined, then models are stored in ~/invokeai/models.
This is equivalent to setting HF_HOME to ~/invokeai/models
A future commit will add a migration mechanism so that this change doesn't
break previous installs.
* fix error "no attribute CkptInpaint"
* model_manager.list_models() returns entire model config stanza+status
* Initial Draft - Model Manager Diffusers
* added hash function to diffusers
* implement sha256 hashes on diffusers models
* Add Model Manager Support for Diffusers
* fix various problems with model manager
- in cli import functions, fix not enough values to unpack from
_get_name_and_desc()
- fix crash when using old-style vae: value with new-style diffuser
* rebuild frontend
* fix dictconfig-not-serializable issue
* fix NoneType' object is not subscriptable crash in model_manager
* fix "str has no attribute get" error in model_manager list_models()
* Add path and repo_id support for Diffusers Model Manager
Also fixes bugs
* Fix tooltip IT localization not working
* Add Version Number To WebUI
* Optimize Model Search
* Fix incorrect font on the Model Manager UI
* Fix image degradation on merge fixes - [Experimental]
This change should effectively fix a couple of things.
- Fix image degradation on subsequent merges of the canvas layers.
- Fix the slight transparent border that is left behind when filling the bounding box with a color.
- Fix the left over line of color when filling a bounding box with color.
So far there are no side effects for this. If any, please report.
* Add local model filtering for Diffusers / Checkpoints
* Go to home on modal close for the Add Modal UI
* Styling Fixes
* Model Manager Diffusers Localization Update
* Add Safe Tensor scanning to Model Manager
* Fix model edit form dispatching string values instead of numbers.
* Resolve VAE handling / edge cases for supplied repos
* defer injecting tokens for textual inversions until they're used for the first time
* squash a console warning
* implement model migration check
* add_model() overwrites previous config rather than merges
* fix model config file attribute merging
* fix precision handling in textual inversion script
* allow ckpt conversion script to work with safetensors .ckpts
Applied patch here:
https://github.com/huggingface/diffusers/commit/beb932c5d111872c5e45387e7b1b2b3dd0524a47
* fix name "args" is not defined crash in textual_inversion_training
* fix a second NameError: name 'args' is not defined crash
* fix loading of the safety checker from the global cache dir
* add installation step to textual inversion frontend
- After a successful training run, the script will copy learned_embeds.bin
to a subfolder of the embeddings directory.
- User given the option to delete the logs and intermediate checkpoints
(which together use 7-8G of space)
- If textual inversion training fails, reports the error gracefully.
* don't crash out on incompatible embeddings
- put try: blocks around places where the system tries to load an embedding
which is incompatible with the currently loaded model
* add support for checkpoint resuming
* textual inversion preferences are saved and restored between sessions
- Preferences are stored in a file named text-inversion-training/preferences.conf
- Currently the resume-from-checkpoint option is not working correctly. Possible
bug in textual_inversion_training.py?
* copy learned_embeddings.bin into right location
* add front end for diffusers model merging
- Front end doesn't do anything yet!!!!
- Made change to model name parsing in CLI to support ability to have merged models
with the "+" character in their names.
* improve inpainting experience
- recommend ckpt version of inpainting-1.5 to user
- fix get_noise() bug in ckpt version of omnibus.py
* update environment*yml
* tweak instructions to install HuggingFace token
* bump version number
* enhance update scripts
- update scripts will now fetch new INITIAL_MODELS.yaml so that
configure_invokeai.py will know about the diffusers versions.
* enhance invoke.sh/invoke.bat launchers
- added configure_invokeai.py to menu
- menu defaults to browser-based invoke
* remove conda workflow (#2321)
* fix `token_ids has shape torch.Size([79]) - expected [77]`
* update CHANGELOG.md with 2.3.* info
- Add information on how formats have changed and the upgrade process.
- Add short bug list.
Co-authored-by: Damian Stewart <d@damianstewart.com>
Co-authored-by: Damian Stewart <null@damianstewart.com>
Co-authored-by: Lincoln Stein <lincoln.stein@gmail.com>
Co-authored-by: Wybartel-luxmc <37852506+Wybartel-luxmc@users.noreply.github.com>
Co-authored-by: mauwii <Mauwii@outlook.de>
Co-authored-by: mickr777 <115216705+mickr777@users.noreply.github.com>
Co-authored-by: blessedcoolant <54517381+blessedcoolant@users.noreply.github.com>
Co-authored-by: Eugene Brodsky <ebr@users.noreply.github.com>
Co-authored-by: Matthias Wild <40327258+mauwii@users.noreply.github.com>
2023-01-15 14:22:46 +00:00
|
|
|
)
|
|
|
|
for key in keys:
|
|
|
|
if key.startswith("model.diffusion_model"):
|
|
|
|
flat_ema_key = "model_ema." + "".join(key.split(".")[1:])
|
|
|
|
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(flat_ema_key)
|
|
|
|
else:
|
|
|
|
print(
|
2023-02-02 20:15:44 +00:00
|
|
|
' | Extracting only the non-EMA weights (usually better for fine-tuning)'
|
use 🧨diffusers model (#1583)
* initial commit of DiffusionPipeline class
* spike: proof of concept using diffusers for txt2img
* doc: type hints for Generator
* refactor(model_cache): factor out load_ckpt
* model_cache: add ability to load a diffusers model pipeline
and update associated things in Generate & Generator to not instantly fail when that happens
* model_cache: fix model default image dimensions
* txt2img: support switching diffusers schedulers
* diffusers: let the scheduler do its scaling of the initial latents
Remove IPNDM scheduler; it is not behaving.
* web server: update image_progress callback for diffusers data
* diffusers: restore prompt weighting feature
* diffusers: fix set-sampler error following model switch
* diffusers: use InvokeAIDiffuserComponent for conditioning
* cross_attention_control: stub (no-op) implementations for diffusers
* model_cache: let offload_model work with DiffusionPipeline, sorta.
* models.yaml.example: add diffusers-format model, set as default
* test-invoke-conda: use diffusers-format model
test-invoke-conda: put huggingface-token where the library can use it
* environment-mac: upgrade to diffusers 0.7 (from 0.6)
this was already done for linux; mac must have been lost in the merge.
* preload_models: explicitly load diffusers models
In non-interactive mode too, as long as you're logged in.
* fix(model_cache): don't check `model.config` in diffusers format
clean-up from recent merge.
* diffusers integration: support img2img
* dev: upgrade to diffusers 0.8 (from 0.7.1)
We get to remove some code by using methods that were factored out in the base class.
* refactor: remove backported img2img.get_timesteps
now that we can use it directly from diffusers 0.8.1
* ci: use diffusers model
* dev: upgrade to diffusers 0.9 (from 0.8.1)
* lint: correct annotations for Python 3.9.
* lint: correct AttributeError.name reference for Python 3.9.
* CI: prefer diffusers-1.4 because it no longer requires a token
The RunwayML models still do.
* build: there's yet another place to update requirements?
* configure: try to download models even without token
Models in the CompVis and stabilityai repos no longer require them. (But runwayml still does.)
* configure: add troubleshooting info for config-not-found
* fix(configure): prepend root to config path
* fix(configure): remove second `default: true` from models example
* CI: simplify test-on-push logic now that we don't need secrets
The "test on push but only in forks" logic was only necessary when tests didn't work for PRs-from-forks.
* create an embedding_manager for diffusers
* internal: avoid importing diffusers DummyObject
see https://github.com/huggingface/diffusers/issues/1479
* fix "config attributes…not expected" diffusers warnings.
* fix deprecated scheduler construction
* work around an apparent MPS torch bug that causes conditioning to have no effect
* 🚧 post-rebase repair
* preliminary support for outpainting (no masking yet)
* monkey-patch diffusers.attention and use Invoke lowvram code
* add always_use_cpu arg to bypass MPS
* add cross-attention control support to diffusers (fails on MPS)
For unknown reasons MPS produces garbage output with .swap(). Use
--always_use_cpu arg to invoke.py for now to test this code on MPS.
* diffusers support for the inpainting model
* fix debug_image to not crash with non-RGB images.
* inpainting for the normal model [WIP]
This seems to be performing well until the LAST STEP, at which point it dissolves to confetti.
* fix off-by-one bug in cross-attention-control (#1774)
prompt token sequences begin with a "beginning-of-sequence" marker <bos> and end with a repeated "end-of-sequence" marker <eos> - to make a default prompt length of <bos> + 75 prompt tokens + <eos>. the .swap() code was failing to take the column for <bos> at index 0 into account. the changes here do that, and also add extra handling for a single <eos> (which may be redundant but which is included for completeness).
based on my understanding and some assumptions about how this all works, the reason .swap() nevertheless seemed to do the right thing, to some extent, is because over multiple steps the conditioning process in Stable Diffusion operates as a feedback loop. a change to token n-1 has flow-on effects to how the [1x4x64x64] latent tensor is modified by all the tokens after it, - and as the next step is processed, all the tokens before it as well. intuitively, a token's conditioning effects "echo" throughout the whole length of the prompt. so even though the token at n-1 was being edited when what the user actually wanted was to edit the token at n, it nevertheless still had some non-negligible effect, in roughly the right direction, often enough that it seemed like it was working properly.
* refactor common CrossAttention stuff into a mixin so that the old ldm code can still work if necessary
* inpainting for the normal model. I think it works this time.
* diffusers: reset num_vectors_per_token
sync with 44a00555718f1df173c60da0ed646cf700e29537
* diffusers: txt2img2img (hires_fix)
with so much slicing and dicing of pipeline methods to stitch them together
* refactor(diffusers): reduce some code duplication amongst the different tasks
* fixup! refactor(diffusers): reduce some code duplication amongst the different tasks
* diffusers: enable DPMSolver++ scheduler
* diffusers: upgrade to diffusers 0.10, add Heun scheduler
* diffusers(ModelCache): stopgap to make from_cpu compatible with diffusers
* CI: default to diffusers-1.5 now that runwayml token requirement is gone
* diffusers: update to 0.10 (and transformers to 4.25)
* diffusers: use xformers when available
diffusers no longer auto-enables this as of 0.10.2.
* diffusers: make masked img2img behave better with multi-step schedulers
re-randomizing the noise each step was confusing them.
* diffusers: work more better with more models.
fixed relative path problem with local models.
fixed models on hub not always having a `fp16` branch.
* diffusers: stopgap fix for attention_maps_callback crash after recent merge
* fixup import merge conflicts
correction for 061c5369a2247c6c92cd69606bcf54c4f1962a0b
* test: add tests/inpainting inputs for masked img2img
* diffusers(AddsMaskedGuidance): partial fix for k-schedulers
Prevents them from crashing, but results are still hot garbage.
* fix --safety_checker arg parsing
and add note to diffusers loader about where safety checker gets called
* generate: fix import error
* CI: don't try to read the old init location
* diffusers: support loading an alternate VAE
* CI: remove sh-syntax if-statement so it doesn't crash powershell
* CI: fold strings in yaml because backslash is not line-continuation in powershell
* attention maps callback stuff for diffusers
* build: fix syntax error in environment-mac
* diffusers: add INITIAL_MODELS with diffusers-compatible repos
* re-enable the embedding manager; closes #1778
* Squashed commit of the following:
commit e4a956abc37fcb5cf188388b76b617bc5c8fda7d
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:43:07 2022 +0100
import new load handling from EmbeddingManager and cleanup
commit c4abe91a5ba0d415b45bf734068385668b7a66e6
Merge: 032e856e 1efc6397
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:09:53 2022 +0100
Merge branch 'feature_textual_inversion_mgr' into dev/diffusers_with_textual_inversion_manager
commit 032e856eefb3bbc39534f5daafd25764bcfcef8b
Merge: 8b4f0fe9 bc515e24
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:08:01 2022 +0100
Merge remote-tracking branch 'upstream/dev/diffusers' into dev/diffusers_with_textual_inversion_manager
commit 1efc6397fc6e61c1aff4b0258b93089d61de5955
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:04:28 2022 +0100
cleanup and add performance notes
commit e400f804ac471a0ca2ba432fd658778b20c7bdab
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 14:45:07 2022 +0100
fix bug and update unit tests
commit deb9ae0ae1016750e93ce8275734061f7285a231
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 14:28:29 2022 +0100
textual inversion manager seems to work
commit 162e02505dec777e91a983c4d0fb52e950d25ff0
Merge: cbad4583 12769b3d
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:58:03 2022 +0100
Merge branch 'main' into feature_textual_inversion_mgr
commit cbad45836c6aace6871a90f2621a953f49433131
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:54:10 2022 +0100
use position embeddings
commit 070344c69b0e0db340a183857d0a787b348681d3
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:53:47 2022 +0100
Don't crash CLI on exceptions
commit b035ac8c6772dfd9ba41b8eeb9103181cda028f8
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:11:55 2022 +0100
add missing position_embeddings
commit 12769b3d3562ef71e0f54946b532ad077e10043c
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 13:33:25 2022 +0100
debugging why it don't work
commit bafb7215eabe1515ca5e8388fd3bb2f3ac5362cf
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 13:21:33 2022 +0100
debugging why it don't work
commit 664a6e9e146b42d96703f0cc8baf8f5efec04ee1
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 12:48:38 2022 +0100
use TextualInversionManager in place of embeddings (wip, doesn't work)
commit 8b4f0fe9d6e4e2643b36dfa27864294785d7ba4e
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 12:48:38 2022 +0100
use TextualInversionManager in place of embeddings (wip, doesn't work)
commit ffbe1ab11163ba712e353d89404e301d0e0c6cdf
Merge: 6e4dad60 023df37e
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:37:31 2022 +0100
Merge branch 'feature_textual_inversion_mgr' into dev/diffusers
commit 023df37efffa67434f77def7fc3c9dfb29f699fd
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:36:54 2022 +0100
cleanup
commit 05fac594eaf79d0058e3c48deee93df603f136c2
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:07:49 2022 +0100
tweak error checking
commit 009f32ed39a7280997c3ffab112adadee0b44279
Author: damian <null@damianstewart.com>
Date: Thu Dec 15 21:29:47 2022 +0100
unit tests passing for embeddings with vector length >1
commit beb1b08d9a98112ed2fe073580568e1a18698da3
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 13:39:09 2022 +0100
more explicit equality tests when overwriting
commit 44d8a5a7c85cdabc9ce3a54fd0769a10597b3ca9
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 13:30:13 2022 +0100
wip textual inversion manager (unit tests passing for 1v embedding overwriting)
commit 417c2b57d90924a839616bfb66804faab8039e4c
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 12:30:55 2022 +0100
wip textual inversion manager (unit tests passing for base stuff + padding)
commit 2e80872e3b6f7fd7d8eb8928822bd824b63cb2ff
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 10:57:57 2022 +0100
wip new TextualInversionManager
* stop using WeightedFrozenCLIPEmbedder
* store diffusion models locally
- configure_invokeai.py reconfigured to store diffusion models rather than
CompVis models
- hugging face caching model is used, but cache is set to ~/invokeai/models/repo_id
- models.yaml does **NOT** use path, just repo_id
- "repo_name" changed to "repo_id" to following hugging face conventions
- Models are loaded with full precision pending further work.
* allow non-local files during development
* path takes priority over repo_id
* MVP for model_cache and configure_invokeai
- Feature complete (almost)
- configure_invokeai.py downloads both .ckpt and diffuser models,
along with their VAEs. Both types of download are controlled by
a unified INITIAL_MODELS.yaml file.
- model_cache can load both type of model and switches back and forth
in CPU. No memory leaks detected
TO DO:
1. I have not yet turned on the LocalOnly flag for diffuser models, so
the code will check the Hugging Face repo for updates before using the
locally cached models. This will break firewalled systems. I am thinking
of putting in a global check for internet connectivity at startup time
and setting the LocalOnly flag based on this. It would be good to check
updates if there is connectivity.
2. I have not gone completely through INITIAL_MODELS.yaml to check which
models are available as diffusers and which are not. So models like
PaperCut and VoxelArt may not load properly. The runway and stability
models are checked, as well as the Trinart models.
3. Add stanzas for SD 2.0 and 2.1 in INITIAL_MODELS.yaml
REMAINING PROBLEMS NOT DIRECTLY RELATED TO MODEL_CACHE:
1. When loading a .ckpt file there are lots of messages like this:
Warning! ldm.modules.attention.CrossAttention is no longer being
maintained. Please use InvokeAICrossAttention instead.
I'm not sure how to address this.
2. The ckpt models ***don't actually run*** due to the lack of special-case
support for them in the generator objects. For example, here's the hard
crash you get when you run txt2img against the legacy waifu-diffusion-1.3
model:
```
>> An error occurred:
Traceback (most recent call last):
File "/data/lstein/InvokeAI/ldm/invoke/CLI.py", line 140, in main
main_loop(gen, opt)
File "/data/lstein/InvokeAI/ldm/invoke/CLI.py", line 371, in main_loop
gen.prompt2image(
File "/data/lstein/InvokeAI/ldm/generate.py", line 496, in prompt2image
results = generator.generate(
File "/data/lstein/InvokeAI/ldm/invoke/generator/base.py", line 108, in generate
image = make_image(x_T)
File "/data/lstein/InvokeAI/ldm/invoke/generator/txt2img.py", line 33, in make_image
pipeline_output = pipeline.image_from_embeddings(
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1265, in __getattr__
raise AttributeError("'{}' object has no attribute '{}'".format(
AttributeError: 'LatentDiffusion' object has no attribute 'image_from_embeddings'
```
3. The inpainting diffusion model isn't working. Here's the output of "banana
sushi" when inpainting-1.5 is loaded:
```
Traceback (most recent call last):
File "/data/lstein/InvokeAI/ldm/generate.py", line 496, in prompt2image
results = generator.generate(
File "/data/lstein/InvokeAI/ldm/invoke/generator/base.py", line 108, in generate
image = make_image(x_T)
File "/data/lstein/InvokeAI/ldm/invoke/generator/txt2img.py", line 33, in make_image
pipeline_output = pipeline.image_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 301, in image_from_embeddings
result_latents, result_attention_map_saver = self.latents_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 330, in latents_from_embeddings
result: PipelineIntermediateState = infer_latents_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 185, in __call__
for result in self.generator_method(*args, **kwargs):
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 367, in generate_latents_from_embeddings
step_output = self.step(batched_t, latents, guidance_scale,
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context
return func(*args, **kwargs)
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 409, in step
step_output = self.scheduler.step(noise_pred, timestep, latents, **extra_step_kwargs)
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/diffusers/schedulers/scheduling_lms_discrete.py", line 223, in step
pred_original_sample = sample - sigma * model_output
RuntimeError: The size of tensor a (9) must match the size of tensor b (4) at non-singleton dimension 1
```
* proper support for float32/float16
- configure script now correctly detects user's preference for
fp16/32 and downloads the correct diffuser version. If fp16
version not available, falls back to fp32 version.
- misc code cleanup and simplification in model_cache
* add on-the-fly conversion of .ckpt to diffusers models
1. On-the-fly conversion code can be found in the file ldm/invoke/ckpt_to_diffusers.py.
2. A new !optimize command has been added to the CLI. Should be ported to Web GUI.
User experience on the CLI is this:
```
invoke> !optimize /home/lstein/invokeai/models/ldm/stable-diffusion-v1/sd-v1-4.ckpt
INFO: Converting legacy weights file /home/lstein/invokeai/models/ldm/stable-diffusion-v1/sd-v1-4.ckpt to optimized diffuser model.
This operation will take 30-60s to complete.
Success. Optimized model is now located at /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
Writing new config file entry for sd-v1-4...
>> New configuration:
sd-v1-4:
description: Optimized version of sd-v1-4
format: diffusers
path: /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
OK to import [n]? y
>> Verifying that new model loads...
>> Current VRAM usage: 2.60G
>> Offloading stable-diffusion-2.1 to CPU
>> Loading diffusers model from /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
| Using faster float16 precision
You have disabled the safety checker for <class 'ldm.invoke.generator.diffusers_pipeline.StableDiffusionGeneratorPipeline'> by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion \
license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances,\
disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .
| training width x height = (512 x 512)
>> Model loaded in 3.48s
>> Max VRAM used to load the model: 2.17G
>> Current VRAM usage:2.17G
>> Textual inversions available:
>> Setting Sampler to k_lms (LMSDiscreteScheduler)
Keep model loaded? [y]
```
* add parallel set of generator files for ckpt legacy generation
* generation using legacy ckpt models now working
* diffusers: fix missing attention_maps_callback
fix for 23eb80b40421b2bb8f4b6d3dd30490d11c447b36
* associate legacy CrossAttention with .ckpt models
* enable autoconvert
New --autoconvert CLI option will scan a designated directory for
new .ckpt files, convert them into diffuser models, and import
them into models.yaml.
Works like this:
invoke.py --autoconvert /path/to/weights/directory
In ModelCache added two new methods:
autoconvert_weights(config_path, weights_directory_path, models_directory_path)
convert_and_import(ckpt_path, diffuser_path)
* diffusers: update to diffusers 0.11 (from 0.10.2)
* fix vae loading & width/height calculation
* refactor: encapsulate these conditioning data into one container
* diffusers: fix some noise-scaling issues by pushing the noise-mixing down to the common function
* add support for safetensors and accelerate
* set local_files_only when internet unreachable
* diffusers: fix error-handling path when model repo has no fp16 branch
* fix generatorinpaint error
Fixes :
"ModuleNotFoundError: No module named 'ldm.invoke.generatorinpaint'
https://github.com/invoke-ai/InvokeAI/pull/1583#issuecomment-1363634318
* quench diffuser safety-checker warning
* diffusers: support stochastic DDIM eta parameter
* fix conda env creation on macos
* fix cross-attention with diffusers 0.11
* diffusers: the VAE needs to be tiling as well as the U-Net
* diffusers: comment on subfolders
* diffusers: embiggen!
* diffusers: make model_cache.list_models serializable
* diffusers(inpaint): restore scaling functionality
* fix requirements clash between numba and numpy 1.24
* diffusers: allow inpainting model to do non-inpainting tasks
* start expanding model_cache functionality
* add import_ckpt_model() and import_diffuser_model() methods to model_manager
- in addition, model_cache.py is now renamed to model_manager.py
* allow "recommended" flag to be optional in INITIAL_MODELS.yaml
* configure_invokeai now downloads VAE diffusers in advance
* rename ModelCache to ModelManager
* remove support for `repo_name` in models.yaml
* check for and refuse to load embeddings trained on incompatible models
* models.yaml.example: s/repo_name/repo_id
and remove extra INITIAL_MODELS now that the main one has diffusers models in it.
* add MVP textual inversion script
* refactor(InvokeAIDiffuserComponent): factor out _combine()
* InvokeAIDiffuserComponent: implement threshold
* InvokeAIDiffuserComponent: diagnostic logs for threshold
...this does not look right
* add a curses-based frontend to textual inversion
- not quite working yet
- requires npyscreen installed
- on windows will also have the windows-curses requirement, but not added
to requirements yet
* add curses-based interface for textual inversion
* fix crash in convert_and_import()
- This corrects a "local variable referenced before assignment" error
in model_manager.convert_and_import()
* potential workaround for no 'state_dict' key error
- As reported in https://github.com/huggingface/diffusers/issues/1876
* create TI output dir if needed
* Update environment-lin-cuda.yml (#2159)
Fixing line 42 to be the proper order to define the transformers requirement: ~= instead of =~
* diffusers: update sampler-to-scheduler mapping
based on https://github.com/huggingface/diffusers/issues/277#issuecomment-1371428672
* improve user exp for ckt to diffusers conversion
- !optimize_models command now operates on an existing ckpt file entry in models.yaml
- replaces existing entry, rather than adding a new one
- offers to delete the ckpt file after conversion
* web: adapt progress callback to deal with old generator or new diffusers pipeline
* clean-up model_manager code
- add_model() verified to work for .ckpt local paths,
.ckpt remote URLs, diffusers local paths, and
diffusers repo_ids
- convert_and_import() verified to work for local and
remove .ckpt files
* handle edge cases for import_model() and convert_model()
* add support for safetensor .ckpt files
* fix name error
* code cleanup with pyflake
* improve model setting behavior
- If the user enters an invalid model name at startup time, will not
try to load it, warn, and use default model
- CLI UI enhancement: include currently active model in the command
line prompt.
* update test-invoke-pip.yml
- fix model cache path to point to runwayml/stable-diffusion-v1-5
- remove `skip-sd-weights` from configure_invokeai.py args
* exclude dev/diffusers from "fail for draft PRs"
* disable "fail on PR jobs"
* re-add `--skip-sd-weights` since no space
* update workflow environments
- include `INVOKE_MODEL_RECONFIGURE: '--yes'`
* clean up model load failure handling
- Allow CLI to run even when no model is defined or loadable.
- Inhibit stack trace when model load fails - only show last error
- Give user *option* to run configure_invokeai.py when no models
successfully load.
- Restart invokeai after reconfiguration.
* further edge-case handling
1) only one model in models.yaml file, and that model is broken
2) no models in models.yaml
3) models.yaml doesn't exist at all
* fix incorrect model status listing
- "cached" was not being returned from list_models()
- normalize handling of exceptions during model loading:
- Passing an invalid model name to generate.set_model() will return
a KeyError
- All other exceptions are returned as the appropriate Exception
* CI: do download weights (if not already cached)
* diffusers: fix scheduler loading in offline mode
* CI: fix model name (no longer has `diffusers-` prefix)
* Update txt2img2img.py (#2256)
* fixes to share models with HuggingFace cache system
- If HF_HOME environment variable is defined, then all huggingface models
are stored in that directory following the standard conventions.
- For seamless interoperability, set HF_HOME to ~/.cache/huggingface
- If HF_HOME not defined, then models are stored in ~/invokeai/models.
This is equivalent to setting HF_HOME to ~/invokeai/models
A future commit will add a migration mechanism so that this change doesn't
break previous installs.
* feat - make model storage compatible with hugging face caching system
This commit alters the InvokeAI model directory to be compatible with
hugging face, making it easier to share diffusers (and other models)
across different programs.
- If the HF_HOME environment variable is not set, then models are
cached in ~/invokeai/models in a format that is identical to the
HuggingFace cache.
- If HF_HOME is set, then models are cached wherever HF_HOME points.
- To enable sharing with other HuggingFace library clients, set
HF_HOME to ~/.cache/huggingface to set the default cache location
or to ~/invokeai/models to have huggingface cache inside InvokeAI.
* fixes to share models with HuggingFace cache system
- If HF_HOME environment variable is defined, then all huggingface models
are stored in that directory following the standard conventions.
- For seamless interoperability, set HF_HOME to ~/.cache/huggingface
- If HF_HOME not defined, then models are stored in ~/invokeai/models.
This is equivalent to setting HF_HOME to ~/invokeai/models
A future commit will add a migration mechanism so that this change doesn't
break previous installs.
* fix error "no attribute CkptInpaint"
* model_manager.list_models() returns entire model config stanza+status
* Initial Draft - Model Manager Diffusers
* added hash function to diffusers
* implement sha256 hashes on diffusers models
* Add Model Manager Support for Diffusers
* fix various problems with model manager
- in cli import functions, fix not enough values to unpack from
_get_name_and_desc()
- fix crash when using old-style vae: value with new-style diffuser
* rebuild frontend
* fix dictconfig-not-serializable issue
* fix NoneType' object is not subscriptable crash in model_manager
* fix "str has no attribute get" error in model_manager list_models()
* Add path and repo_id support for Diffusers Model Manager
Also fixes bugs
* Fix tooltip IT localization not working
* Add Version Number To WebUI
* Optimize Model Search
* Fix incorrect font on the Model Manager UI
* Fix image degradation on merge fixes - [Experimental]
This change should effectively fix a couple of things.
- Fix image degradation on subsequent merges of the canvas layers.
- Fix the slight transparent border that is left behind when filling the bounding box with a color.
- Fix the left over line of color when filling a bounding box with color.
So far there are no side effects for this. If any, please report.
* Add local model filtering for Diffusers / Checkpoints
* Go to home on modal close for the Add Modal UI
* Styling Fixes
* Model Manager Diffusers Localization Update
* Add Safe Tensor scanning to Model Manager
* Fix model edit form dispatching string values instead of numbers.
* Resolve VAE handling / edge cases for supplied repos
* defer injecting tokens for textual inversions until they're used for the first time
* squash a console warning
* implement model migration check
* add_model() overwrites previous config rather than merges
* fix model config file attribute merging
* fix precision handling in textual inversion script
* allow ckpt conversion script to work with safetensors .ckpts
Applied patch here:
https://github.com/huggingface/diffusers/commit/beb932c5d111872c5e45387e7b1b2b3dd0524a47
* fix name "args" is not defined crash in textual_inversion_training
* fix a second NameError: name 'args' is not defined crash
* fix loading of the safety checker from the global cache dir
* add installation step to textual inversion frontend
- After a successful training run, the script will copy learned_embeds.bin
to a subfolder of the embeddings directory.
- User given the option to delete the logs and intermediate checkpoints
(which together use 7-8G of space)
- If textual inversion training fails, reports the error gracefully.
* don't crash out on incompatible embeddings
- put try: blocks around places where the system tries to load an embedding
which is incompatible with the currently loaded model
* add support for checkpoint resuming
* textual inversion preferences are saved and restored between sessions
- Preferences are stored in a file named text-inversion-training/preferences.conf
- Currently the resume-from-checkpoint option is not working correctly. Possible
bug in textual_inversion_training.py?
* copy learned_embeddings.bin into right location
* add front end for diffusers model merging
- Front end doesn't do anything yet!!!!
- Made change to model name parsing in CLI to support ability to have merged models
with the "+" character in their names.
* improve inpainting experience
- recommend ckpt version of inpainting-1.5 to user
- fix get_noise() bug in ckpt version of omnibus.py
* update environment*yml
* tweak instructions to install HuggingFace token
* bump version number
* enhance update scripts
- update scripts will now fetch new INITIAL_MODELS.yaml so that
configure_invokeai.py will know about the diffusers versions.
* enhance invoke.sh/invoke.bat launchers
- added configure_invokeai.py to menu
- menu defaults to browser-based invoke
* remove conda workflow (#2321)
* fix `token_ids has shape torch.Size([79]) - expected [77]`
* update CHANGELOG.md with 2.3.* info
- Add information on how formats have changed and the upgrade process.
- Add short bug list.
Co-authored-by: Damian Stewart <d@damianstewart.com>
Co-authored-by: Damian Stewart <null@damianstewart.com>
Co-authored-by: Lincoln Stein <lincoln.stein@gmail.com>
Co-authored-by: Wybartel-luxmc <37852506+Wybartel-luxmc@users.noreply.github.com>
Co-authored-by: mauwii <Mauwii@outlook.de>
Co-authored-by: mickr777 <115216705+mickr777@users.noreply.github.com>
Co-authored-by: blessedcoolant <54517381+blessedcoolant@users.noreply.github.com>
Co-authored-by: Eugene Brodsky <ebr@users.noreply.github.com>
Co-authored-by: Matthias Wild <40327258+mauwii@users.noreply.github.com>
2023-01-15 14:22:46 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
for key in keys:
|
|
|
|
if key.startswith(unet_key):
|
|
|
|
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(key)
|
|
|
|
|
|
|
|
new_checkpoint = {}
|
|
|
|
|
|
|
|
new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict["time_embed.0.weight"]
|
|
|
|
new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict["time_embed.0.bias"]
|
|
|
|
new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict["time_embed.2.weight"]
|
|
|
|
new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict["time_embed.2.bias"]
|
|
|
|
|
|
|
|
new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"]
|
|
|
|
new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"]
|
|
|
|
|
|
|
|
new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"]
|
|
|
|
new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"]
|
|
|
|
new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"]
|
|
|
|
new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"]
|
|
|
|
|
|
|
|
# Retrieves the keys for the input blocks only
|
|
|
|
num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer})
|
|
|
|
input_blocks = {
|
|
|
|
layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key]
|
|
|
|
for layer_id in range(num_input_blocks)
|
|
|
|
}
|
|
|
|
|
|
|
|
# Retrieves the keys for the middle blocks only
|
|
|
|
num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer})
|
|
|
|
middle_blocks = {
|
|
|
|
layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key]
|
|
|
|
for layer_id in range(num_middle_blocks)
|
|
|
|
}
|
|
|
|
|
|
|
|
# Retrieves the keys for the output blocks only
|
|
|
|
num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer})
|
|
|
|
output_blocks = {
|
|
|
|
layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key]
|
|
|
|
for layer_id in range(num_output_blocks)
|
|
|
|
}
|
|
|
|
|
|
|
|
for i in range(1, num_input_blocks):
|
|
|
|
block_id = (i - 1) // (config["layers_per_block"] + 1)
|
|
|
|
layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1)
|
|
|
|
|
|
|
|
resnets = [
|
|
|
|
key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key
|
|
|
|
]
|
|
|
|
attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key]
|
|
|
|
|
|
|
|
if f"input_blocks.{i}.0.op.weight" in unet_state_dict:
|
|
|
|
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop(
|
|
|
|
f"input_blocks.{i}.0.op.weight"
|
|
|
|
)
|
|
|
|
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop(
|
|
|
|
f"input_blocks.{i}.0.op.bias"
|
|
|
|
)
|
|
|
|
|
|
|
|
paths = renew_resnet_paths(resnets)
|
|
|
|
meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"}
|
|
|
|
assign_to_checkpoint(
|
|
|
|
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
|
|
|
|
)
|
|
|
|
|
|
|
|
if len(attentions):
|
|
|
|
paths = renew_attention_paths(attentions)
|
|
|
|
meta_path = {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"}
|
|
|
|
assign_to_checkpoint(
|
|
|
|
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
|
|
|
|
)
|
|
|
|
|
|
|
|
resnet_0 = middle_blocks[0]
|
|
|
|
attentions = middle_blocks[1]
|
|
|
|
resnet_1 = middle_blocks[2]
|
|
|
|
|
|
|
|
resnet_0_paths = renew_resnet_paths(resnet_0)
|
|
|
|
assign_to_checkpoint(resnet_0_paths, new_checkpoint, unet_state_dict, config=config)
|
|
|
|
|
|
|
|
resnet_1_paths = renew_resnet_paths(resnet_1)
|
|
|
|
assign_to_checkpoint(resnet_1_paths, new_checkpoint, unet_state_dict, config=config)
|
|
|
|
|
|
|
|
attentions_paths = renew_attention_paths(attentions)
|
|
|
|
meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"}
|
|
|
|
assign_to_checkpoint(
|
|
|
|
attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
|
|
|
|
)
|
|
|
|
|
|
|
|
for i in range(num_output_blocks):
|
|
|
|
block_id = i // (config["layers_per_block"] + 1)
|
|
|
|
layer_in_block_id = i % (config["layers_per_block"] + 1)
|
|
|
|
output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]]
|
|
|
|
output_block_list = {}
|
|
|
|
|
|
|
|
for layer in output_block_layers:
|
|
|
|
layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1)
|
|
|
|
if layer_id in output_block_list:
|
|
|
|
output_block_list[layer_id].append(layer_name)
|
|
|
|
else:
|
|
|
|
output_block_list[layer_id] = [layer_name]
|
|
|
|
|
|
|
|
if len(output_block_list) > 1:
|
|
|
|
resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key]
|
|
|
|
attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key]
|
|
|
|
|
|
|
|
resnet_0_paths = renew_resnet_paths(resnets)
|
|
|
|
paths = renew_resnet_paths(resnets)
|
|
|
|
|
|
|
|
meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"}
|
|
|
|
assign_to_checkpoint(
|
|
|
|
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
|
|
|
|
)
|
|
|
|
|
|
|
|
output_block_list = {k: sorted(v) for k, v in output_block_list.items()}
|
|
|
|
if ["conv.bias", "conv.weight"] in output_block_list.values():
|
|
|
|
index = list(output_block_list.values()).index(["conv.bias", "conv.weight"])
|
|
|
|
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[
|
|
|
|
f"output_blocks.{i}.{index}.conv.weight"
|
|
|
|
]
|
|
|
|
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[
|
|
|
|
f"output_blocks.{i}.{index}.conv.bias"
|
|
|
|
]
|
|
|
|
|
|
|
|
# Clear attentions as they have been attributed above.
|
|
|
|
if len(attentions) == 2:
|
|
|
|
attentions = []
|
|
|
|
|
|
|
|
if len(attentions):
|
|
|
|
paths = renew_attention_paths(attentions)
|
|
|
|
meta_path = {
|
|
|
|
"old": f"output_blocks.{i}.1",
|
|
|
|
"new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}",
|
|
|
|
}
|
|
|
|
assign_to_checkpoint(
|
|
|
|
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1)
|
|
|
|
for path in resnet_0_paths:
|
|
|
|
old_path = ".".join(["output_blocks", str(i), path["old"]])
|
|
|
|
new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]])
|
|
|
|
|
|
|
|
new_checkpoint[new_path] = unet_state_dict[old_path]
|
|
|
|
|
|
|
|
return new_checkpoint
|
|
|
|
|
|
|
|
|
|
|
|
def convert_ldm_vae_checkpoint(checkpoint, config):
|
|
|
|
# extract state dict for VAE
|
|
|
|
vae_state_dict = {}
|
|
|
|
vae_key = "first_stage_model."
|
|
|
|
keys = list(checkpoint.keys())
|
|
|
|
for key in keys:
|
|
|
|
if key.startswith(vae_key):
|
|
|
|
vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key)
|
|
|
|
|
|
|
|
new_checkpoint = {}
|
|
|
|
|
|
|
|
new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"]
|
|
|
|
new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"]
|
|
|
|
new_checkpoint["encoder.conv_out.weight"] = vae_state_dict["encoder.conv_out.weight"]
|
|
|
|
new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"]
|
|
|
|
new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict["encoder.norm_out.weight"]
|
|
|
|
new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict["encoder.norm_out.bias"]
|
|
|
|
|
|
|
|
new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"]
|
|
|
|
new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"]
|
|
|
|
new_checkpoint["decoder.conv_out.weight"] = vae_state_dict["decoder.conv_out.weight"]
|
|
|
|
new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"]
|
|
|
|
new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict["decoder.norm_out.weight"]
|
|
|
|
new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict["decoder.norm_out.bias"]
|
|
|
|
|
|
|
|
new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"]
|
|
|
|
new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"]
|
|
|
|
new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"]
|
|
|
|
new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"]
|
|
|
|
|
|
|
|
# Retrieves the keys for the encoder down blocks only
|
|
|
|
num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer})
|
|
|
|
down_blocks = {
|
|
|
|
layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks)
|
|
|
|
}
|
|
|
|
|
|
|
|
# Retrieves the keys for the decoder up blocks only
|
|
|
|
num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer})
|
|
|
|
up_blocks = {
|
|
|
|
layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks)
|
|
|
|
}
|
|
|
|
|
|
|
|
for i in range(num_down_blocks):
|
|
|
|
resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key]
|
|
|
|
|
|
|
|
if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict:
|
|
|
|
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop(
|
|
|
|
f"encoder.down.{i}.downsample.conv.weight"
|
|
|
|
)
|
|
|
|
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop(
|
|
|
|
f"encoder.down.{i}.downsample.conv.bias"
|
|
|
|
)
|
|
|
|
|
|
|
|
paths = renew_vae_resnet_paths(resnets)
|
|
|
|
meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"}
|
|
|
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
|
|
|
|
|
|
|
mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key]
|
|
|
|
num_mid_res_blocks = 2
|
|
|
|
for i in range(1, num_mid_res_blocks + 1):
|
|
|
|
resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key]
|
|
|
|
|
|
|
|
paths = renew_vae_resnet_paths(resnets)
|
|
|
|
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
|
|
|
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
|
|
|
|
|
|
|
mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key]
|
|
|
|
paths = renew_vae_attention_paths(mid_attentions)
|
|
|
|
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
|
|
|
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
|
|
|
conv_attn_to_linear(new_checkpoint)
|
|
|
|
|
|
|
|
for i in range(num_up_blocks):
|
|
|
|
block_id = num_up_blocks - 1 - i
|
|
|
|
resnets = [
|
|
|
|
key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key
|
|
|
|
]
|
|
|
|
|
|
|
|
if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict:
|
|
|
|
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[
|
|
|
|
f"decoder.up.{block_id}.upsample.conv.weight"
|
|
|
|
]
|
|
|
|
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[
|
|
|
|
f"decoder.up.{block_id}.upsample.conv.bias"
|
|
|
|
]
|
|
|
|
|
|
|
|
paths = renew_vae_resnet_paths(resnets)
|
|
|
|
meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"}
|
|
|
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
|
|
|
|
|
|
|
mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key]
|
|
|
|
num_mid_res_blocks = 2
|
|
|
|
for i in range(1, num_mid_res_blocks + 1):
|
|
|
|
resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key]
|
|
|
|
|
|
|
|
paths = renew_vae_resnet_paths(resnets)
|
|
|
|
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
|
|
|
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
|
|
|
|
|
|
|
mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key]
|
|
|
|
paths = renew_vae_attention_paths(mid_attentions)
|
|
|
|
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
|
|
|
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
|
|
|
conv_attn_to_linear(new_checkpoint)
|
|
|
|
return new_checkpoint
|
|
|
|
|
|
|
|
|
|
|
|
def convert_ldm_bert_checkpoint(checkpoint, config):
|
|
|
|
def _copy_attn_layer(hf_attn_layer, pt_attn_layer):
|
|
|
|
hf_attn_layer.q_proj.weight.data = pt_attn_layer.to_q.weight
|
|
|
|
hf_attn_layer.k_proj.weight.data = pt_attn_layer.to_k.weight
|
|
|
|
hf_attn_layer.v_proj.weight.data = pt_attn_layer.to_v.weight
|
|
|
|
|
|
|
|
hf_attn_layer.out_proj.weight = pt_attn_layer.to_out.weight
|
|
|
|
hf_attn_layer.out_proj.bias = pt_attn_layer.to_out.bias
|
|
|
|
|
|
|
|
def _copy_linear(hf_linear, pt_linear):
|
|
|
|
hf_linear.weight = pt_linear.weight
|
|
|
|
hf_linear.bias = pt_linear.bias
|
|
|
|
|
|
|
|
def _copy_layer(hf_layer, pt_layer):
|
|
|
|
# copy layer norms
|
|
|
|
_copy_linear(hf_layer.self_attn_layer_norm, pt_layer[0][0])
|
|
|
|
_copy_linear(hf_layer.final_layer_norm, pt_layer[1][0])
|
|
|
|
|
|
|
|
# copy attn
|
|
|
|
_copy_attn_layer(hf_layer.self_attn, pt_layer[0][1])
|
|
|
|
|
|
|
|
# copy MLP
|
|
|
|
pt_mlp = pt_layer[1][1]
|
|
|
|
_copy_linear(hf_layer.fc1, pt_mlp.net[0][0])
|
|
|
|
_copy_linear(hf_layer.fc2, pt_mlp.net[2])
|
|
|
|
|
|
|
|
def _copy_layers(hf_layers, pt_layers):
|
|
|
|
for i, hf_layer in enumerate(hf_layers):
|
|
|
|
if i != 0:
|
|
|
|
i += i
|
|
|
|
pt_layer = pt_layers[i : i + 2]
|
|
|
|
_copy_layer(hf_layer, pt_layer)
|
|
|
|
|
|
|
|
hf_model = LDMBertModel(config).eval()
|
|
|
|
|
|
|
|
# copy embeds
|
|
|
|
hf_model.model.embed_tokens.weight = checkpoint.transformer.token_emb.weight
|
|
|
|
hf_model.model.embed_positions.weight.data = checkpoint.transformer.pos_emb.emb.weight
|
|
|
|
|
|
|
|
# copy layer norm
|
|
|
|
_copy_linear(hf_model.model.layer_norm, checkpoint.transformer.norm)
|
|
|
|
|
|
|
|
# copy hidden layers
|
|
|
|
_copy_layers(hf_model.model.layers, checkpoint.transformer.attn_layers.layers)
|
|
|
|
|
|
|
|
_copy_linear(hf_model.to_logits, checkpoint.transformer.to_logits)
|
|
|
|
|
|
|
|
return hf_model
|
|
|
|
|
|
|
|
|
|
|
|
def convert_ldm_clip_checkpoint(checkpoint):
|
2023-01-23 05:35:16 +00:00
|
|
|
text_model = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14",cache_dir=global_cache_dir('hub'))
|
use 🧨diffusers model (#1583)
* initial commit of DiffusionPipeline class
* spike: proof of concept using diffusers for txt2img
* doc: type hints for Generator
* refactor(model_cache): factor out load_ckpt
* model_cache: add ability to load a diffusers model pipeline
and update associated things in Generate & Generator to not instantly fail when that happens
* model_cache: fix model default image dimensions
* txt2img: support switching diffusers schedulers
* diffusers: let the scheduler do its scaling of the initial latents
Remove IPNDM scheduler; it is not behaving.
* web server: update image_progress callback for diffusers data
* diffusers: restore prompt weighting feature
* diffusers: fix set-sampler error following model switch
* diffusers: use InvokeAIDiffuserComponent for conditioning
* cross_attention_control: stub (no-op) implementations for diffusers
* model_cache: let offload_model work with DiffusionPipeline, sorta.
* models.yaml.example: add diffusers-format model, set as default
* test-invoke-conda: use diffusers-format model
test-invoke-conda: put huggingface-token where the library can use it
* environment-mac: upgrade to diffusers 0.7 (from 0.6)
this was already done for linux; mac must have been lost in the merge.
* preload_models: explicitly load diffusers models
In non-interactive mode too, as long as you're logged in.
* fix(model_cache): don't check `model.config` in diffusers format
clean-up from recent merge.
* diffusers integration: support img2img
* dev: upgrade to diffusers 0.8 (from 0.7.1)
We get to remove some code by using methods that were factored out in the base class.
* refactor: remove backported img2img.get_timesteps
now that we can use it directly from diffusers 0.8.1
* ci: use diffusers model
* dev: upgrade to diffusers 0.9 (from 0.8.1)
* lint: correct annotations for Python 3.9.
* lint: correct AttributeError.name reference for Python 3.9.
* CI: prefer diffusers-1.4 because it no longer requires a token
The RunwayML models still do.
* build: there's yet another place to update requirements?
* configure: try to download models even without token
Models in the CompVis and stabilityai repos no longer require them. (But runwayml still does.)
* configure: add troubleshooting info for config-not-found
* fix(configure): prepend root to config path
* fix(configure): remove second `default: true` from models example
* CI: simplify test-on-push logic now that we don't need secrets
The "test on push but only in forks" logic was only necessary when tests didn't work for PRs-from-forks.
* create an embedding_manager for diffusers
* internal: avoid importing diffusers DummyObject
see https://github.com/huggingface/diffusers/issues/1479
* fix "config attributes…not expected" diffusers warnings.
* fix deprecated scheduler construction
* work around an apparent MPS torch bug that causes conditioning to have no effect
* 🚧 post-rebase repair
* preliminary support for outpainting (no masking yet)
* monkey-patch diffusers.attention and use Invoke lowvram code
* add always_use_cpu arg to bypass MPS
* add cross-attention control support to diffusers (fails on MPS)
For unknown reasons MPS produces garbage output with .swap(). Use
--always_use_cpu arg to invoke.py for now to test this code on MPS.
* diffusers support for the inpainting model
* fix debug_image to not crash with non-RGB images.
* inpainting for the normal model [WIP]
This seems to be performing well until the LAST STEP, at which point it dissolves to confetti.
* fix off-by-one bug in cross-attention-control (#1774)
prompt token sequences begin with a "beginning-of-sequence" marker <bos> and end with a repeated "end-of-sequence" marker <eos> - to make a default prompt length of <bos> + 75 prompt tokens + <eos>. the .swap() code was failing to take the column for <bos> at index 0 into account. the changes here do that, and also add extra handling for a single <eos> (which may be redundant but which is included for completeness).
based on my understanding and some assumptions about how this all works, the reason .swap() nevertheless seemed to do the right thing, to some extent, is because over multiple steps the conditioning process in Stable Diffusion operates as a feedback loop. a change to token n-1 has flow-on effects to how the [1x4x64x64] latent tensor is modified by all the tokens after it, - and as the next step is processed, all the tokens before it as well. intuitively, a token's conditioning effects "echo" throughout the whole length of the prompt. so even though the token at n-1 was being edited when what the user actually wanted was to edit the token at n, it nevertheless still had some non-negligible effect, in roughly the right direction, often enough that it seemed like it was working properly.
* refactor common CrossAttention stuff into a mixin so that the old ldm code can still work if necessary
* inpainting for the normal model. I think it works this time.
* diffusers: reset num_vectors_per_token
sync with 44a00555718f1df173c60da0ed646cf700e29537
* diffusers: txt2img2img (hires_fix)
with so much slicing and dicing of pipeline methods to stitch them together
* refactor(diffusers): reduce some code duplication amongst the different tasks
* fixup! refactor(diffusers): reduce some code duplication amongst the different tasks
* diffusers: enable DPMSolver++ scheduler
* diffusers: upgrade to diffusers 0.10, add Heun scheduler
* diffusers(ModelCache): stopgap to make from_cpu compatible with diffusers
* CI: default to diffusers-1.5 now that runwayml token requirement is gone
* diffusers: update to 0.10 (and transformers to 4.25)
* diffusers: use xformers when available
diffusers no longer auto-enables this as of 0.10.2.
* diffusers: make masked img2img behave better with multi-step schedulers
re-randomizing the noise each step was confusing them.
* diffusers: work more better with more models.
fixed relative path problem with local models.
fixed models on hub not always having a `fp16` branch.
* diffusers: stopgap fix for attention_maps_callback crash after recent merge
* fixup import merge conflicts
correction for 061c5369a2247c6c92cd69606bcf54c4f1962a0b
* test: add tests/inpainting inputs for masked img2img
* diffusers(AddsMaskedGuidance): partial fix for k-schedulers
Prevents them from crashing, but results are still hot garbage.
* fix --safety_checker arg parsing
and add note to diffusers loader about where safety checker gets called
* generate: fix import error
* CI: don't try to read the old init location
* diffusers: support loading an alternate VAE
* CI: remove sh-syntax if-statement so it doesn't crash powershell
* CI: fold strings in yaml because backslash is not line-continuation in powershell
* attention maps callback stuff for diffusers
* build: fix syntax error in environment-mac
* diffusers: add INITIAL_MODELS with diffusers-compatible repos
* re-enable the embedding manager; closes #1778
* Squashed commit of the following:
commit e4a956abc37fcb5cf188388b76b617bc5c8fda7d
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:43:07 2022 +0100
import new load handling from EmbeddingManager and cleanup
commit c4abe91a5ba0d415b45bf734068385668b7a66e6
Merge: 032e856e 1efc6397
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:09:53 2022 +0100
Merge branch 'feature_textual_inversion_mgr' into dev/diffusers_with_textual_inversion_manager
commit 032e856eefb3bbc39534f5daafd25764bcfcef8b
Merge: 8b4f0fe9 bc515e24
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:08:01 2022 +0100
Merge remote-tracking branch 'upstream/dev/diffusers' into dev/diffusers_with_textual_inversion_manager
commit 1efc6397fc6e61c1aff4b0258b93089d61de5955
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:04:28 2022 +0100
cleanup and add performance notes
commit e400f804ac471a0ca2ba432fd658778b20c7bdab
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 14:45:07 2022 +0100
fix bug and update unit tests
commit deb9ae0ae1016750e93ce8275734061f7285a231
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 14:28:29 2022 +0100
textual inversion manager seems to work
commit 162e02505dec777e91a983c4d0fb52e950d25ff0
Merge: cbad4583 12769b3d
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:58:03 2022 +0100
Merge branch 'main' into feature_textual_inversion_mgr
commit cbad45836c6aace6871a90f2621a953f49433131
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:54:10 2022 +0100
use position embeddings
commit 070344c69b0e0db340a183857d0a787b348681d3
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:53:47 2022 +0100
Don't crash CLI on exceptions
commit b035ac8c6772dfd9ba41b8eeb9103181cda028f8
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:11:55 2022 +0100
add missing position_embeddings
commit 12769b3d3562ef71e0f54946b532ad077e10043c
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 13:33:25 2022 +0100
debugging why it don't work
commit bafb7215eabe1515ca5e8388fd3bb2f3ac5362cf
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 13:21:33 2022 +0100
debugging why it don't work
commit 664a6e9e146b42d96703f0cc8baf8f5efec04ee1
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 12:48:38 2022 +0100
use TextualInversionManager in place of embeddings (wip, doesn't work)
commit 8b4f0fe9d6e4e2643b36dfa27864294785d7ba4e
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 12:48:38 2022 +0100
use TextualInversionManager in place of embeddings (wip, doesn't work)
commit ffbe1ab11163ba712e353d89404e301d0e0c6cdf
Merge: 6e4dad60 023df37e
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:37:31 2022 +0100
Merge branch 'feature_textual_inversion_mgr' into dev/diffusers
commit 023df37efffa67434f77def7fc3c9dfb29f699fd
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:36:54 2022 +0100
cleanup
commit 05fac594eaf79d0058e3c48deee93df603f136c2
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:07:49 2022 +0100
tweak error checking
commit 009f32ed39a7280997c3ffab112adadee0b44279
Author: damian <null@damianstewart.com>
Date: Thu Dec 15 21:29:47 2022 +0100
unit tests passing for embeddings with vector length >1
commit beb1b08d9a98112ed2fe073580568e1a18698da3
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 13:39:09 2022 +0100
more explicit equality tests when overwriting
commit 44d8a5a7c85cdabc9ce3a54fd0769a10597b3ca9
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 13:30:13 2022 +0100
wip textual inversion manager (unit tests passing for 1v embedding overwriting)
commit 417c2b57d90924a839616bfb66804faab8039e4c
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 12:30:55 2022 +0100
wip textual inversion manager (unit tests passing for base stuff + padding)
commit 2e80872e3b6f7fd7d8eb8928822bd824b63cb2ff
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 10:57:57 2022 +0100
wip new TextualInversionManager
* stop using WeightedFrozenCLIPEmbedder
* store diffusion models locally
- configure_invokeai.py reconfigured to store diffusion models rather than
CompVis models
- hugging face caching model is used, but cache is set to ~/invokeai/models/repo_id
- models.yaml does **NOT** use path, just repo_id
- "repo_name" changed to "repo_id" to following hugging face conventions
- Models are loaded with full precision pending further work.
* allow non-local files during development
* path takes priority over repo_id
* MVP for model_cache and configure_invokeai
- Feature complete (almost)
- configure_invokeai.py downloads both .ckpt and diffuser models,
along with their VAEs. Both types of download are controlled by
a unified INITIAL_MODELS.yaml file.
- model_cache can load both type of model and switches back and forth
in CPU. No memory leaks detected
TO DO:
1. I have not yet turned on the LocalOnly flag for diffuser models, so
the code will check the Hugging Face repo for updates before using the
locally cached models. This will break firewalled systems. I am thinking
of putting in a global check for internet connectivity at startup time
and setting the LocalOnly flag based on this. It would be good to check
updates if there is connectivity.
2. I have not gone completely through INITIAL_MODELS.yaml to check which
models are available as diffusers and which are not. So models like
PaperCut and VoxelArt may not load properly. The runway and stability
models are checked, as well as the Trinart models.
3. Add stanzas for SD 2.0 and 2.1 in INITIAL_MODELS.yaml
REMAINING PROBLEMS NOT DIRECTLY RELATED TO MODEL_CACHE:
1. When loading a .ckpt file there are lots of messages like this:
Warning! ldm.modules.attention.CrossAttention is no longer being
maintained. Please use InvokeAICrossAttention instead.
I'm not sure how to address this.
2. The ckpt models ***don't actually run*** due to the lack of special-case
support for them in the generator objects. For example, here's the hard
crash you get when you run txt2img against the legacy waifu-diffusion-1.3
model:
```
>> An error occurred:
Traceback (most recent call last):
File "/data/lstein/InvokeAI/ldm/invoke/CLI.py", line 140, in main
main_loop(gen, opt)
File "/data/lstein/InvokeAI/ldm/invoke/CLI.py", line 371, in main_loop
gen.prompt2image(
File "/data/lstein/InvokeAI/ldm/generate.py", line 496, in prompt2image
results = generator.generate(
File "/data/lstein/InvokeAI/ldm/invoke/generator/base.py", line 108, in generate
image = make_image(x_T)
File "/data/lstein/InvokeAI/ldm/invoke/generator/txt2img.py", line 33, in make_image
pipeline_output = pipeline.image_from_embeddings(
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1265, in __getattr__
raise AttributeError("'{}' object has no attribute '{}'".format(
AttributeError: 'LatentDiffusion' object has no attribute 'image_from_embeddings'
```
3. The inpainting diffusion model isn't working. Here's the output of "banana
sushi" when inpainting-1.5 is loaded:
```
Traceback (most recent call last):
File "/data/lstein/InvokeAI/ldm/generate.py", line 496, in prompt2image
results = generator.generate(
File "/data/lstein/InvokeAI/ldm/invoke/generator/base.py", line 108, in generate
image = make_image(x_T)
File "/data/lstein/InvokeAI/ldm/invoke/generator/txt2img.py", line 33, in make_image
pipeline_output = pipeline.image_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 301, in image_from_embeddings
result_latents, result_attention_map_saver = self.latents_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 330, in latents_from_embeddings
result: PipelineIntermediateState = infer_latents_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 185, in __call__
for result in self.generator_method(*args, **kwargs):
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 367, in generate_latents_from_embeddings
step_output = self.step(batched_t, latents, guidance_scale,
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context
return func(*args, **kwargs)
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 409, in step
step_output = self.scheduler.step(noise_pred, timestep, latents, **extra_step_kwargs)
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/diffusers/schedulers/scheduling_lms_discrete.py", line 223, in step
pred_original_sample = sample - sigma * model_output
RuntimeError: The size of tensor a (9) must match the size of tensor b (4) at non-singleton dimension 1
```
* proper support for float32/float16
- configure script now correctly detects user's preference for
fp16/32 and downloads the correct diffuser version. If fp16
version not available, falls back to fp32 version.
- misc code cleanup and simplification in model_cache
* add on-the-fly conversion of .ckpt to diffusers models
1. On-the-fly conversion code can be found in the file ldm/invoke/ckpt_to_diffusers.py.
2. A new !optimize command has been added to the CLI. Should be ported to Web GUI.
User experience on the CLI is this:
```
invoke> !optimize /home/lstein/invokeai/models/ldm/stable-diffusion-v1/sd-v1-4.ckpt
INFO: Converting legacy weights file /home/lstein/invokeai/models/ldm/stable-diffusion-v1/sd-v1-4.ckpt to optimized diffuser model.
This operation will take 30-60s to complete.
Success. Optimized model is now located at /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
Writing new config file entry for sd-v1-4...
>> New configuration:
sd-v1-4:
description: Optimized version of sd-v1-4
format: diffusers
path: /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
OK to import [n]? y
>> Verifying that new model loads...
>> Current VRAM usage: 2.60G
>> Offloading stable-diffusion-2.1 to CPU
>> Loading diffusers model from /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
| Using faster float16 precision
You have disabled the safety checker for <class 'ldm.invoke.generator.diffusers_pipeline.StableDiffusionGeneratorPipeline'> by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion \
license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances,\
disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .
| training width x height = (512 x 512)
>> Model loaded in 3.48s
>> Max VRAM used to load the model: 2.17G
>> Current VRAM usage:2.17G
>> Textual inversions available:
>> Setting Sampler to k_lms (LMSDiscreteScheduler)
Keep model loaded? [y]
```
* add parallel set of generator files for ckpt legacy generation
* generation using legacy ckpt models now working
* diffusers: fix missing attention_maps_callback
fix for 23eb80b40421b2bb8f4b6d3dd30490d11c447b36
* associate legacy CrossAttention with .ckpt models
* enable autoconvert
New --autoconvert CLI option will scan a designated directory for
new .ckpt files, convert them into diffuser models, and import
them into models.yaml.
Works like this:
invoke.py --autoconvert /path/to/weights/directory
In ModelCache added two new methods:
autoconvert_weights(config_path, weights_directory_path, models_directory_path)
convert_and_import(ckpt_path, diffuser_path)
* diffusers: update to diffusers 0.11 (from 0.10.2)
* fix vae loading & width/height calculation
* refactor: encapsulate these conditioning data into one container
* diffusers: fix some noise-scaling issues by pushing the noise-mixing down to the common function
* add support for safetensors and accelerate
* set local_files_only when internet unreachable
* diffusers: fix error-handling path when model repo has no fp16 branch
* fix generatorinpaint error
Fixes :
"ModuleNotFoundError: No module named 'ldm.invoke.generatorinpaint'
https://github.com/invoke-ai/InvokeAI/pull/1583#issuecomment-1363634318
* quench diffuser safety-checker warning
* diffusers: support stochastic DDIM eta parameter
* fix conda env creation on macos
* fix cross-attention with diffusers 0.11
* diffusers: the VAE needs to be tiling as well as the U-Net
* diffusers: comment on subfolders
* diffusers: embiggen!
* diffusers: make model_cache.list_models serializable
* diffusers(inpaint): restore scaling functionality
* fix requirements clash between numba and numpy 1.24
* diffusers: allow inpainting model to do non-inpainting tasks
* start expanding model_cache functionality
* add import_ckpt_model() and import_diffuser_model() methods to model_manager
- in addition, model_cache.py is now renamed to model_manager.py
* allow "recommended" flag to be optional in INITIAL_MODELS.yaml
* configure_invokeai now downloads VAE diffusers in advance
* rename ModelCache to ModelManager
* remove support for `repo_name` in models.yaml
* check for and refuse to load embeddings trained on incompatible models
* models.yaml.example: s/repo_name/repo_id
and remove extra INITIAL_MODELS now that the main one has diffusers models in it.
* add MVP textual inversion script
* refactor(InvokeAIDiffuserComponent): factor out _combine()
* InvokeAIDiffuserComponent: implement threshold
* InvokeAIDiffuserComponent: diagnostic logs for threshold
...this does not look right
* add a curses-based frontend to textual inversion
- not quite working yet
- requires npyscreen installed
- on windows will also have the windows-curses requirement, but not added
to requirements yet
* add curses-based interface for textual inversion
* fix crash in convert_and_import()
- This corrects a "local variable referenced before assignment" error
in model_manager.convert_and_import()
* potential workaround for no 'state_dict' key error
- As reported in https://github.com/huggingface/diffusers/issues/1876
* create TI output dir if needed
* Update environment-lin-cuda.yml (#2159)
Fixing line 42 to be the proper order to define the transformers requirement: ~= instead of =~
* diffusers: update sampler-to-scheduler mapping
based on https://github.com/huggingface/diffusers/issues/277#issuecomment-1371428672
* improve user exp for ckt to diffusers conversion
- !optimize_models command now operates on an existing ckpt file entry in models.yaml
- replaces existing entry, rather than adding a new one
- offers to delete the ckpt file after conversion
* web: adapt progress callback to deal with old generator or new diffusers pipeline
* clean-up model_manager code
- add_model() verified to work for .ckpt local paths,
.ckpt remote URLs, diffusers local paths, and
diffusers repo_ids
- convert_and_import() verified to work for local and
remove .ckpt files
* handle edge cases for import_model() and convert_model()
* add support for safetensor .ckpt files
* fix name error
* code cleanup with pyflake
* improve model setting behavior
- If the user enters an invalid model name at startup time, will not
try to load it, warn, and use default model
- CLI UI enhancement: include currently active model in the command
line prompt.
* update test-invoke-pip.yml
- fix model cache path to point to runwayml/stable-diffusion-v1-5
- remove `skip-sd-weights` from configure_invokeai.py args
* exclude dev/diffusers from "fail for draft PRs"
* disable "fail on PR jobs"
* re-add `--skip-sd-weights` since no space
* update workflow environments
- include `INVOKE_MODEL_RECONFIGURE: '--yes'`
* clean up model load failure handling
- Allow CLI to run even when no model is defined or loadable.
- Inhibit stack trace when model load fails - only show last error
- Give user *option* to run configure_invokeai.py when no models
successfully load.
- Restart invokeai after reconfiguration.
* further edge-case handling
1) only one model in models.yaml file, and that model is broken
2) no models in models.yaml
3) models.yaml doesn't exist at all
* fix incorrect model status listing
- "cached" was not being returned from list_models()
- normalize handling of exceptions during model loading:
- Passing an invalid model name to generate.set_model() will return
a KeyError
- All other exceptions are returned as the appropriate Exception
* CI: do download weights (if not already cached)
* diffusers: fix scheduler loading in offline mode
* CI: fix model name (no longer has `diffusers-` prefix)
* Update txt2img2img.py (#2256)
* fixes to share models with HuggingFace cache system
- If HF_HOME environment variable is defined, then all huggingface models
are stored in that directory following the standard conventions.
- For seamless interoperability, set HF_HOME to ~/.cache/huggingface
- If HF_HOME not defined, then models are stored in ~/invokeai/models.
This is equivalent to setting HF_HOME to ~/invokeai/models
A future commit will add a migration mechanism so that this change doesn't
break previous installs.
* feat - make model storage compatible with hugging face caching system
This commit alters the InvokeAI model directory to be compatible with
hugging face, making it easier to share diffusers (and other models)
across different programs.
- If the HF_HOME environment variable is not set, then models are
cached in ~/invokeai/models in a format that is identical to the
HuggingFace cache.
- If HF_HOME is set, then models are cached wherever HF_HOME points.
- To enable sharing with other HuggingFace library clients, set
HF_HOME to ~/.cache/huggingface to set the default cache location
or to ~/invokeai/models to have huggingface cache inside InvokeAI.
* fixes to share models with HuggingFace cache system
- If HF_HOME environment variable is defined, then all huggingface models
are stored in that directory following the standard conventions.
- For seamless interoperability, set HF_HOME to ~/.cache/huggingface
- If HF_HOME not defined, then models are stored in ~/invokeai/models.
This is equivalent to setting HF_HOME to ~/invokeai/models
A future commit will add a migration mechanism so that this change doesn't
break previous installs.
* fix error "no attribute CkptInpaint"
* model_manager.list_models() returns entire model config stanza+status
* Initial Draft - Model Manager Diffusers
* added hash function to diffusers
* implement sha256 hashes on diffusers models
* Add Model Manager Support for Diffusers
* fix various problems with model manager
- in cli import functions, fix not enough values to unpack from
_get_name_and_desc()
- fix crash when using old-style vae: value with new-style diffuser
* rebuild frontend
* fix dictconfig-not-serializable issue
* fix NoneType' object is not subscriptable crash in model_manager
* fix "str has no attribute get" error in model_manager list_models()
* Add path and repo_id support for Diffusers Model Manager
Also fixes bugs
* Fix tooltip IT localization not working
* Add Version Number To WebUI
* Optimize Model Search
* Fix incorrect font on the Model Manager UI
* Fix image degradation on merge fixes - [Experimental]
This change should effectively fix a couple of things.
- Fix image degradation on subsequent merges of the canvas layers.
- Fix the slight transparent border that is left behind when filling the bounding box with a color.
- Fix the left over line of color when filling a bounding box with color.
So far there are no side effects for this. If any, please report.
* Add local model filtering for Diffusers / Checkpoints
* Go to home on modal close for the Add Modal UI
* Styling Fixes
* Model Manager Diffusers Localization Update
* Add Safe Tensor scanning to Model Manager
* Fix model edit form dispatching string values instead of numbers.
* Resolve VAE handling / edge cases for supplied repos
* defer injecting tokens for textual inversions until they're used for the first time
* squash a console warning
* implement model migration check
* add_model() overwrites previous config rather than merges
* fix model config file attribute merging
* fix precision handling in textual inversion script
* allow ckpt conversion script to work with safetensors .ckpts
Applied patch here:
https://github.com/huggingface/diffusers/commit/beb932c5d111872c5e45387e7b1b2b3dd0524a47
* fix name "args" is not defined crash in textual_inversion_training
* fix a second NameError: name 'args' is not defined crash
* fix loading of the safety checker from the global cache dir
* add installation step to textual inversion frontend
- After a successful training run, the script will copy learned_embeds.bin
to a subfolder of the embeddings directory.
- User given the option to delete the logs and intermediate checkpoints
(which together use 7-8G of space)
- If textual inversion training fails, reports the error gracefully.
* don't crash out on incompatible embeddings
- put try: blocks around places where the system tries to load an embedding
which is incompatible with the currently loaded model
* add support for checkpoint resuming
* textual inversion preferences are saved and restored between sessions
- Preferences are stored in a file named text-inversion-training/preferences.conf
- Currently the resume-from-checkpoint option is not working correctly. Possible
bug in textual_inversion_training.py?
* copy learned_embeddings.bin into right location
* add front end for diffusers model merging
- Front end doesn't do anything yet!!!!
- Made change to model name parsing in CLI to support ability to have merged models
with the "+" character in their names.
* improve inpainting experience
- recommend ckpt version of inpainting-1.5 to user
- fix get_noise() bug in ckpt version of omnibus.py
* update environment*yml
* tweak instructions to install HuggingFace token
* bump version number
* enhance update scripts
- update scripts will now fetch new INITIAL_MODELS.yaml so that
configure_invokeai.py will know about the diffusers versions.
* enhance invoke.sh/invoke.bat launchers
- added configure_invokeai.py to menu
- menu defaults to browser-based invoke
* remove conda workflow (#2321)
* fix `token_ids has shape torch.Size([79]) - expected [77]`
* update CHANGELOG.md with 2.3.* info
- Add information on how formats have changed and the upgrade process.
- Add short bug list.
Co-authored-by: Damian Stewart <d@damianstewart.com>
Co-authored-by: Damian Stewart <null@damianstewart.com>
Co-authored-by: Lincoln Stein <lincoln.stein@gmail.com>
Co-authored-by: Wybartel-luxmc <37852506+Wybartel-luxmc@users.noreply.github.com>
Co-authored-by: mauwii <Mauwii@outlook.de>
Co-authored-by: mickr777 <115216705+mickr777@users.noreply.github.com>
Co-authored-by: blessedcoolant <54517381+blessedcoolant@users.noreply.github.com>
Co-authored-by: Eugene Brodsky <ebr@users.noreply.github.com>
Co-authored-by: Matthias Wild <40327258+mauwii@users.noreply.github.com>
2023-01-15 14:22:46 +00:00
|
|
|
|
|
|
|
keys = list(checkpoint.keys())
|
|
|
|
|
|
|
|
text_model_dict = {}
|
|
|
|
|
|
|
|
for key in keys:
|
|
|
|
if key.startswith("cond_stage_model.transformer"):
|
|
|
|
text_model_dict[key[len("cond_stage_model.transformer.") :]] = checkpoint[key]
|
|
|
|
|
|
|
|
text_model.load_state_dict(text_model_dict)
|
|
|
|
|
|
|
|
return text_model
|
|
|
|
|
|
|
|
|
|
|
|
textenc_conversion_lst = [
|
|
|
|
("cond_stage_model.model.positional_embedding", "text_model.embeddings.position_embedding.weight"),
|
|
|
|
("cond_stage_model.model.token_embedding.weight", "text_model.embeddings.token_embedding.weight"),
|
|
|
|
("cond_stage_model.model.ln_final.weight", "text_model.final_layer_norm.weight"),
|
|
|
|
("cond_stage_model.model.ln_final.bias", "text_model.final_layer_norm.bias"),
|
|
|
|
]
|
|
|
|
textenc_conversion_map = {x[0]: x[1] for x in textenc_conversion_lst}
|
|
|
|
|
|
|
|
textenc_transformer_conversion_lst = [
|
|
|
|
# (stable-diffusion, HF Diffusers)
|
|
|
|
("resblocks.", "text_model.encoder.layers."),
|
|
|
|
("ln_1", "layer_norm1"),
|
|
|
|
("ln_2", "layer_norm2"),
|
|
|
|
(".c_fc.", ".fc1."),
|
|
|
|
(".c_proj.", ".fc2."),
|
|
|
|
(".attn", ".self_attn"),
|
|
|
|
("ln_final.", "transformer.text_model.final_layer_norm."),
|
|
|
|
("token_embedding.weight", "transformer.text_model.embeddings.token_embedding.weight"),
|
|
|
|
("positional_embedding", "transformer.text_model.embeddings.position_embedding.weight"),
|
|
|
|
]
|
|
|
|
protected = {re.escape(x[0]): x[1] for x in textenc_transformer_conversion_lst}
|
|
|
|
textenc_pattern = re.compile("|".join(protected.keys()))
|
|
|
|
|
|
|
|
|
|
|
|
def convert_paint_by_example_checkpoint(checkpoint):
|
2023-01-23 05:35:16 +00:00
|
|
|
cache_dir = global_cache_dir('hub')
|
|
|
|
config = CLIPVisionConfig.from_pretrained("openai/clip-vit-large-patch14",cache_dir=cache_dir)
|
use 🧨diffusers model (#1583)
* initial commit of DiffusionPipeline class
* spike: proof of concept using diffusers for txt2img
* doc: type hints for Generator
* refactor(model_cache): factor out load_ckpt
* model_cache: add ability to load a diffusers model pipeline
and update associated things in Generate & Generator to not instantly fail when that happens
* model_cache: fix model default image dimensions
* txt2img: support switching diffusers schedulers
* diffusers: let the scheduler do its scaling of the initial latents
Remove IPNDM scheduler; it is not behaving.
* web server: update image_progress callback for diffusers data
* diffusers: restore prompt weighting feature
* diffusers: fix set-sampler error following model switch
* diffusers: use InvokeAIDiffuserComponent for conditioning
* cross_attention_control: stub (no-op) implementations for diffusers
* model_cache: let offload_model work with DiffusionPipeline, sorta.
* models.yaml.example: add diffusers-format model, set as default
* test-invoke-conda: use diffusers-format model
test-invoke-conda: put huggingface-token where the library can use it
* environment-mac: upgrade to diffusers 0.7 (from 0.6)
this was already done for linux; mac must have been lost in the merge.
* preload_models: explicitly load diffusers models
In non-interactive mode too, as long as you're logged in.
* fix(model_cache): don't check `model.config` in diffusers format
clean-up from recent merge.
* diffusers integration: support img2img
* dev: upgrade to diffusers 0.8 (from 0.7.1)
We get to remove some code by using methods that were factored out in the base class.
* refactor: remove backported img2img.get_timesteps
now that we can use it directly from diffusers 0.8.1
* ci: use diffusers model
* dev: upgrade to diffusers 0.9 (from 0.8.1)
* lint: correct annotations for Python 3.9.
* lint: correct AttributeError.name reference for Python 3.9.
* CI: prefer diffusers-1.4 because it no longer requires a token
The RunwayML models still do.
* build: there's yet another place to update requirements?
* configure: try to download models even without token
Models in the CompVis and stabilityai repos no longer require them. (But runwayml still does.)
* configure: add troubleshooting info for config-not-found
* fix(configure): prepend root to config path
* fix(configure): remove second `default: true` from models example
* CI: simplify test-on-push logic now that we don't need secrets
The "test on push but only in forks" logic was only necessary when tests didn't work for PRs-from-forks.
* create an embedding_manager for diffusers
* internal: avoid importing diffusers DummyObject
see https://github.com/huggingface/diffusers/issues/1479
* fix "config attributes…not expected" diffusers warnings.
* fix deprecated scheduler construction
* work around an apparent MPS torch bug that causes conditioning to have no effect
* 🚧 post-rebase repair
* preliminary support for outpainting (no masking yet)
* monkey-patch diffusers.attention and use Invoke lowvram code
* add always_use_cpu arg to bypass MPS
* add cross-attention control support to diffusers (fails on MPS)
For unknown reasons MPS produces garbage output with .swap(). Use
--always_use_cpu arg to invoke.py for now to test this code on MPS.
* diffusers support for the inpainting model
* fix debug_image to not crash with non-RGB images.
* inpainting for the normal model [WIP]
This seems to be performing well until the LAST STEP, at which point it dissolves to confetti.
* fix off-by-one bug in cross-attention-control (#1774)
prompt token sequences begin with a "beginning-of-sequence" marker <bos> and end with a repeated "end-of-sequence" marker <eos> - to make a default prompt length of <bos> + 75 prompt tokens + <eos>. the .swap() code was failing to take the column for <bos> at index 0 into account. the changes here do that, and also add extra handling for a single <eos> (which may be redundant but which is included for completeness).
based on my understanding and some assumptions about how this all works, the reason .swap() nevertheless seemed to do the right thing, to some extent, is because over multiple steps the conditioning process in Stable Diffusion operates as a feedback loop. a change to token n-1 has flow-on effects to how the [1x4x64x64] latent tensor is modified by all the tokens after it, - and as the next step is processed, all the tokens before it as well. intuitively, a token's conditioning effects "echo" throughout the whole length of the prompt. so even though the token at n-1 was being edited when what the user actually wanted was to edit the token at n, it nevertheless still had some non-negligible effect, in roughly the right direction, often enough that it seemed like it was working properly.
* refactor common CrossAttention stuff into a mixin so that the old ldm code can still work if necessary
* inpainting for the normal model. I think it works this time.
* diffusers: reset num_vectors_per_token
sync with 44a00555718f1df173c60da0ed646cf700e29537
* diffusers: txt2img2img (hires_fix)
with so much slicing and dicing of pipeline methods to stitch them together
* refactor(diffusers): reduce some code duplication amongst the different tasks
* fixup! refactor(diffusers): reduce some code duplication amongst the different tasks
* diffusers: enable DPMSolver++ scheduler
* diffusers: upgrade to diffusers 0.10, add Heun scheduler
* diffusers(ModelCache): stopgap to make from_cpu compatible with diffusers
* CI: default to diffusers-1.5 now that runwayml token requirement is gone
* diffusers: update to 0.10 (and transformers to 4.25)
* diffusers: use xformers when available
diffusers no longer auto-enables this as of 0.10.2.
* diffusers: make masked img2img behave better with multi-step schedulers
re-randomizing the noise each step was confusing them.
* diffusers: work more better with more models.
fixed relative path problem with local models.
fixed models on hub not always having a `fp16` branch.
* diffusers: stopgap fix for attention_maps_callback crash after recent merge
* fixup import merge conflicts
correction for 061c5369a2247c6c92cd69606bcf54c4f1962a0b
* test: add tests/inpainting inputs for masked img2img
* diffusers(AddsMaskedGuidance): partial fix for k-schedulers
Prevents them from crashing, but results are still hot garbage.
* fix --safety_checker arg parsing
and add note to diffusers loader about where safety checker gets called
* generate: fix import error
* CI: don't try to read the old init location
* diffusers: support loading an alternate VAE
* CI: remove sh-syntax if-statement so it doesn't crash powershell
* CI: fold strings in yaml because backslash is not line-continuation in powershell
* attention maps callback stuff for diffusers
* build: fix syntax error in environment-mac
* diffusers: add INITIAL_MODELS with diffusers-compatible repos
* re-enable the embedding manager; closes #1778
* Squashed commit of the following:
commit e4a956abc37fcb5cf188388b76b617bc5c8fda7d
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:43:07 2022 +0100
import new load handling from EmbeddingManager and cleanup
commit c4abe91a5ba0d415b45bf734068385668b7a66e6
Merge: 032e856e 1efc6397
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:09:53 2022 +0100
Merge branch 'feature_textual_inversion_mgr' into dev/diffusers_with_textual_inversion_manager
commit 032e856eefb3bbc39534f5daafd25764bcfcef8b
Merge: 8b4f0fe9 bc515e24
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:08:01 2022 +0100
Merge remote-tracking branch 'upstream/dev/diffusers' into dev/diffusers_with_textual_inversion_manager
commit 1efc6397fc6e61c1aff4b0258b93089d61de5955
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:04:28 2022 +0100
cleanup and add performance notes
commit e400f804ac471a0ca2ba432fd658778b20c7bdab
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 14:45:07 2022 +0100
fix bug and update unit tests
commit deb9ae0ae1016750e93ce8275734061f7285a231
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 14:28:29 2022 +0100
textual inversion manager seems to work
commit 162e02505dec777e91a983c4d0fb52e950d25ff0
Merge: cbad4583 12769b3d
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:58:03 2022 +0100
Merge branch 'main' into feature_textual_inversion_mgr
commit cbad45836c6aace6871a90f2621a953f49433131
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:54:10 2022 +0100
use position embeddings
commit 070344c69b0e0db340a183857d0a787b348681d3
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:53:47 2022 +0100
Don't crash CLI on exceptions
commit b035ac8c6772dfd9ba41b8eeb9103181cda028f8
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:11:55 2022 +0100
add missing position_embeddings
commit 12769b3d3562ef71e0f54946b532ad077e10043c
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 13:33:25 2022 +0100
debugging why it don't work
commit bafb7215eabe1515ca5e8388fd3bb2f3ac5362cf
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 13:21:33 2022 +0100
debugging why it don't work
commit 664a6e9e146b42d96703f0cc8baf8f5efec04ee1
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 12:48:38 2022 +0100
use TextualInversionManager in place of embeddings (wip, doesn't work)
commit 8b4f0fe9d6e4e2643b36dfa27864294785d7ba4e
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 12:48:38 2022 +0100
use TextualInversionManager in place of embeddings (wip, doesn't work)
commit ffbe1ab11163ba712e353d89404e301d0e0c6cdf
Merge: 6e4dad60 023df37e
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:37:31 2022 +0100
Merge branch 'feature_textual_inversion_mgr' into dev/diffusers
commit 023df37efffa67434f77def7fc3c9dfb29f699fd
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:36:54 2022 +0100
cleanup
commit 05fac594eaf79d0058e3c48deee93df603f136c2
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:07:49 2022 +0100
tweak error checking
commit 009f32ed39a7280997c3ffab112adadee0b44279
Author: damian <null@damianstewart.com>
Date: Thu Dec 15 21:29:47 2022 +0100
unit tests passing for embeddings with vector length >1
commit beb1b08d9a98112ed2fe073580568e1a18698da3
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 13:39:09 2022 +0100
more explicit equality tests when overwriting
commit 44d8a5a7c85cdabc9ce3a54fd0769a10597b3ca9
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 13:30:13 2022 +0100
wip textual inversion manager (unit tests passing for 1v embedding overwriting)
commit 417c2b57d90924a839616bfb66804faab8039e4c
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 12:30:55 2022 +0100
wip textual inversion manager (unit tests passing for base stuff + padding)
commit 2e80872e3b6f7fd7d8eb8928822bd824b63cb2ff
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 10:57:57 2022 +0100
wip new TextualInversionManager
* stop using WeightedFrozenCLIPEmbedder
* store diffusion models locally
- configure_invokeai.py reconfigured to store diffusion models rather than
CompVis models
- hugging face caching model is used, but cache is set to ~/invokeai/models/repo_id
- models.yaml does **NOT** use path, just repo_id
- "repo_name" changed to "repo_id" to following hugging face conventions
- Models are loaded with full precision pending further work.
* allow non-local files during development
* path takes priority over repo_id
* MVP for model_cache and configure_invokeai
- Feature complete (almost)
- configure_invokeai.py downloads both .ckpt and diffuser models,
along with their VAEs. Both types of download are controlled by
a unified INITIAL_MODELS.yaml file.
- model_cache can load both type of model and switches back and forth
in CPU. No memory leaks detected
TO DO:
1. I have not yet turned on the LocalOnly flag for diffuser models, so
the code will check the Hugging Face repo for updates before using the
locally cached models. This will break firewalled systems. I am thinking
of putting in a global check for internet connectivity at startup time
and setting the LocalOnly flag based on this. It would be good to check
updates if there is connectivity.
2. I have not gone completely through INITIAL_MODELS.yaml to check which
models are available as diffusers and which are not. So models like
PaperCut and VoxelArt may not load properly. The runway and stability
models are checked, as well as the Trinart models.
3. Add stanzas for SD 2.0 and 2.1 in INITIAL_MODELS.yaml
REMAINING PROBLEMS NOT DIRECTLY RELATED TO MODEL_CACHE:
1. When loading a .ckpt file there are lots of messages like this:
Warning! ldm.modules.attention.CrossAttention is no longer being
maintained. Please use InvokeAICrossAttention instead.
I'm not sure how to address this.
2. The ckpt models ***don't actually run*** due to the lack of special-case
support for them in the generator objects. For example, here's the hard
crash you get when you run txt2img against the legacy waifu-diffusion-1.3
model:
```
>> An error occurred:
Traceback (most recent call last):
File "/data/lstein/InvokeAI/ldm/invoke/CLI.py", line 140, in main
main_loop(gen, opt)
File "/data/lstein/InvokeAI/ldm/invoke/CLI.py", line 371, in main_loop
gen.prompt2image(
File "/data/lstein/InvokeAI/ldm/generate.py", line 496, in prompt2image
results = generator.generate(
File "/data/lstein/InvokeAI/ldm/invoke/generator/base.py", line 108, in generate
image = make_image(x_T)
File "/data/lstein/InvokeAI/ldm/invoke/generator/txt2img.py", line 33, in make_image
pipeline_output = pipeline.image_from_embeddings(
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1265, in __getattr__
raise AttributeError("'{}' object has no attribute '{}'".format(
AttributeError: 'LatentDiffusion' object has no attribute 'image_from_embeddings'
```
3. The inpainting diffusion model isn't working. Here's the output of "banana
sushi" when inpainting-1.5 is loaded:
```
Traceback (most recent call last):
File "/data/lstein/InvokeAI/ldm/generate.py", line 496, in prompt2image
results = generator.generate(
File "/data/lstein/InvokeAI/ldm/invoke/generator/base.py", line 108, in generate
image = make_image(x_T)
File "/data/lstein/InvokeAI/ldm/invoke/generator/txt2img.py", line 33, in make_image
pipeline_output = pipeline.image_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 301, in image_from_embeddings
result_latents, result_attention_map_saver = self.latents_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 330, in latents_from_embeddings
result: PipelineIntermediateState = infer_latents_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 185, in __call__
for result in self.generator_method(*args, **kwargs):
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 367, in generate_latents_from_embeddings
step_output = self.step(batched_t, latents, guidance_scale,
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context
return func(*args, **kwargs)
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 409, in step
step_output = self.scheduler.step(noise_pred, timestep, latents, **extra_step_kwargs)
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/diffusers/schedulers/scheduling_lms_discrete.py", line 223, in step
pred_original_sample = sample - sigma * model_output
RuntimeError: The size of tensor a (9) must match the size of tensor b (4) at non-singleton dimension 1
```
* proper support for float32/float16
- configure script now correctly detects user's preference for
fp16/32 and downloads the correct diffuser version. If fp16
version not available, falls back to fp32 version.
- misc code cleanup and simplification in model_cache
* add on-the-fly conversion of .ckpt to diffusers models
1. On-the-fly conversion code can be found in the file ldm/invoke/ckpt_to_diffusers.py.
2. A new !optimize command has been added to the CLI. Should be ported to Web GUI.
User experience on the CLI is this:
```
invoke> !optimize /home/lstein/invokeai/models/ldm/stable-diffusion-v1/sd-v1-4.ckpt
INFO: Converting legacy weights file /home/lstein/invokeai/models/ldm/stable-diffusion-v1/sd-v1-4.ckpt to optimized diffuser model.
This operation will take 30-60s to complete.
Success. Optimized model is now located at /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
Writing new config file entry for sd-v1-4...
>> New configuration:
sd-v1-4:
description: Optimized version of sd-v1-4
format: diffusers
path: /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
OK to import [n]? y
>> Verifying that new model loads...
>> Current VRAM usage: 2.60G
>> Offloading stable-diffusion-2.1 to CPU
>> Loading diffusers model from /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
| Using faster float16 precision
You have disabled the safety checker for <class 'ldm.invoke.generator.diffusers_pipeline.StableDiffusionGeneratorPipeline'> by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion \
license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances,\
disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .
| training width x height = (512 x 512)
>> Model loaded in 3.48s
>> Max VRAM used to load the model: 2.17G
>> Current VRAM usage:2.17G
>> Textual inversions available:
>> Setting Sampler to k_lms (LMSDiscreteScheduler)
Keep model loaded? [y]
```
* add parallel set of generator files for ckpt legacy generation
* generation using legacy ckpt models now working
* diffusers: fix missing attention_maps_callback
fix for 23eb80b40421b2bb8f4b6d3dd30490d11c447b36
* associate legacy CrossAttention with .ckpt models
* enable autoconvert
New --autoconvert CLI option will scan a designated directory for
new .ckpt files, convert them into diffuser models, and import
them into models.yaml.
Works like this:
invoke.py --autoconvert /path/to/weights/directory
In ModelCache added two new methods:
autoconvert_weights(config_path, weights_directory_path, models_directory_path)
convert_and_import(ckpt_path, diffuser_path)
* diffusers: update to diffusers 0.11 (from 0.10.2)
* fix vae loading & width/height calculation
* refactor: encapsulate these conditioning data into one container
* diffusers: fix some noise-scaling issues by pushing the noise-mixing down to the common function
* add support for safetensors and accelerate
* set local_files_only when internet unreachable
* diffusers: fix error-handling path when model repo has no fp16 branch
* fix generatorinpaint error
Fixes :
"ModuleNotFoundError: No module named 'ldm.invoke.generatorinpaint'
https://github.com/invoke-ai/InvokeAI/pull/1583#issuecomment-1363634318
* quench diffuser safety-checker warning
* diffusers: support stochastic DDIM eta parameter
* fix conda env creation on macos
* fix cross-attention with diffusers 0.11
* diffusers: the VAE needs to be tiling as well as the U-Net
* diffusers: comment on subfolders
* diffusers: embiggen!
* diffusers: make model_cache.list_models serializable
* diffusers(inpaint): restore scaling functionality
* fix requirements clash between numba and numpy 1.24
* diffusers: allow inpainting model to do non-inpainting tasks
* start expanding model_cache functionality
* add import_ckpt_model() and import_diffuser_model() methods to model_manager
- in addition, model_cache.py is now renamed to model_manager.py
* allow "recommended" flag to be optional in INITIAL_MODELS.yaml
* configure_invokeai now downloads VAE diffusers in advance
* rename ModelCache to ModelManager
* remove support for `repo_name` in models.yaml
* check for and refuse to load embeddings trained on incompatible models
* models.yaml.example: s/repo_name/repo_id
and remove extra INITIAL_MODELS now that the main one has diffusers models in it.
* add MVP textual inversion script
* refactor(InvokeAIDiffuserComponent): factor out _combine()
* InvokeAIDiffuserComponent: implement threshold
* InvokeAIDiffuserComponent: diagnostic logs for threshold
...this does not look right
* add a curses-based frontend to textual inversion
- not quite working yet
- requires npyscreen installed
- on windows will also have the windows-curses requirement, but not added
to requirements yet
* add curses-based interface for textual inversion
* fix crash in convert_and_import()
- This corrects a "local variable referenced before assignment" error
in model_manager.convert_and_import()
* potential workaround for no 'state_dict' key error
- As reported in https://github.com/huggingface/diffusers/issues/1876
* create TI output dir if needed
* Update environment-lin-cuda.yml (#2159)
Fixing line 42 to be the proper order to define the transformers requirement: ~= instead of =~
* diffusers: update sampler-to-scheduler mapping
based on https://github.com/huggingface/diffusers/issues/277#issuecomment-1371428672
* improve user exp for ckt to diffusers conversion
- !optimize_models command now operates on an existing ckpt file entry in models.yaml
- replaces existing entry, rather than adding a new one
- offers to delete the ckpt file after conversion
* web: adapt progress callback to deal with old generator or new diffusers pipeline
* clean-up model_manager code
- add_model() verified to work for .ckpt local paths,
.ckpt remote URLs, diffusers local paths, and
diffusers repo_ids
- convert_and_import() verified to work for local and
remove .ckpt files
* handle edge cases for import_model() and convert_model()
* add support for safetensor .ckpt files
* fix name error
* code cleanup with pyflake
* improve model setting behavior
- If the user enters an invalid model name at startup time, will not
try to load it, warn, and use default model
- CLI UI enhancement: include currently active model in the command
line prompt.
* update test-invoke-pip.yml
- fix model cache path to point to runwayml/stable-diffusion-v1-5
- remove `skip-sd-weights` from configure_invokeai.py args
* exclude dev/diffusers from "fail for draft PRs"
* disable "fail on PR jobs"
* re-add `--skip-sd-weights` since no space
* update workflow environments
- include `INVOKE_MODEL_RECONFIGURE: '--yes'`
* clean up model load failure handling
- Allow CLI to run even when no model is defined or loadable.
- Inhibit stack trace when model load fails - only show last error
- Give user *option* to run configure_invokeai.py when no models
successfully load.
- Restart invokeai after reconfiguration.
* further edge-case handling
1) only one model in models.yaml file, and that model is broken
2) no models in models.yaml
3) models.yaml doesn't exist at all
* fix incorrect model status listing
- "cached" was not being returned from list_models()
- normalize handling of exceptions during model loading:
- Passing an invalid model name to generate.set_model() will return
a KeyError
- All other exceptions are returned as the appropriate Exception
* CI: do download weights (if not already cached)
* diffusers: fix scheduler loading in offline mode
* CI: fix model name (no longer has `diffusers-` prefix)
* Update txt2img2img.py (#2256)
* fixes to share models with HuggingFace cache system
- If HF_HOME environment variable is defined, then all huggingface models
are stored in that directory following the standard conventions.
- For seamless interoperability, set HF_HOME to ~/.cache/huggingface
- If HF_HOME not defined, then models are stored in ~/invokeai/models.
This is equivalent to setting HF_HOME to ~/invokeai/models
A future commit will add a migration mechanism so that this change doesn't
break previous installs.
* feat - make model storage compatible with hugging face caching system
This commit alters the InvokeAI model directory to be compatible with
hugging face, making it easier to share diffusers (and other models)
across different programs.
- If the HF_HOME environment variable is not set, then models are
cached in ~/invokeai/models in a format that is identical to the
HuggingFace cache.
- If HF_HOME is set, then models are cached wherever HF_HOME points.
- To enable sharing with other HuggingFace library clients, set
HF_HOME to ~/.cache/huggingface to set the default cache location
or to ~/invokeai/models to have huggingface cache inside InvokeAI.
* fixes to share models with HuggingFace cache system
- If HF_HOME environment variable is defined, then all huggingface models
are stored in that directory following the standard conventions.
- For seamless interoperability, set HF_HOME to ~/.cache/huggingface
- If HF_HOME not defined, then models are stored in ~/invokeai/models.
This is equivalent to setting HF_HOME to ~/invokeai/models
A future commit will add a migration mechanism so that this change doesn't
break previous installs.
* fix error "no attribute CkptInpaint"
* model_manager.list_models() returns entire model config stanza+status
* Initial Draft - Model Manager Diffusers
* added hash function to diffusers
* implement sha256 hashes on diffusers models
* Add Model Manager Support for Diffusers
* fix various problems with model manager
- in cli import functions, fix not enough values to unpack from
_get_name_and_desc()
- fix crash when using old-style vae: value with new-style diffuser
* rebuild frontend
* fix dictconfig-not-serializable issue
* fix NoneType' object is not subscriptable crash in model_manager
* fix "str has no attribute get" error in model_manager list_models()
* Add path and repo_id support for Diffusers Model Manager
Also fixes bugs
* Fix tooltip IT localization not working
* Add Version Number To WebUI
* Optimize Model Search
* Fix incorrect font on the Model Manager UI
* Fix image degradation on merge fixes - [Experimental]
This change should effectively fix a couple of things.
- Fix image degradation on subsequent merges of the canvas layers.
- Fix the slight transparent border that is left behind when filling the bounding box with a color.
- Fix the left over line of color when filling a bounding box with color.
So far there are no side effects for this. If any, please report.
* Add local model filtering for Diffusers / Checkpoints
* Go to home on modal close for the Add Modal UI
* Styling Fixes
* Model Manager Diffusers Localization Update
* Add Safe Tensor scanning to Model Manager
* Fix model edit form dispatching string values instead of numbers.
* Resolve VAE handling / edge cases for supplied repos
* defer injecting tokens for textual inversions until they're used for the first time
* squash a console warning
* implement model migration check
* add_model() overwrites previous config rather than merges
* fix model config file attribute merging
* fix precision handling in textual inversion script
* allow ckpt conversion script to work with safetensors .ckpts
Applied patch here:
https://github.com/huggingface/diffusers/commit/beb932c5d111872c5e45387e7b1b2b3dd0524a47
* fix name "args" is not defined crash in textual_inversion_training
* fix a second NameError: name 'args' is not defined crash
* fix loading of the safety checker from the global cache dir
* add installation step to textual inversion frontend
- After a successful training run, the script will copy learned_embeds.bin
to a subfolder of the embeddings directory.
- User given the option to delete the logs and intermediate checkpoints
(which together use 7-8G of space)
- If textual inversion training fails, reports the error gracefully.
* don't crash out on incompatible embeddings
- put try: blocks around places where the system tries to load an embedding
which is incompatible with the currently loaded model
* add support for checkpoint resuming
* textual inversion preferences are saved and restored between sessions
- Preferences are stored in a file named text-inversion-training/preferences.conf
- Currently the resume-from-checkpoint option is not working correctly. Possible
bug in textual_inversion_training.py?
* copy learned_embeddings.bin into right location
* add front end for diffusers model merging
- Front end doesn't do anything yet!!!!
- Made change to model name parsing in CLI to support ability to have merged models
with the "+" character in their names.
* improve inpainting experience
- recommend ckpt version of inpainting-1.5 to user
- fix get_noise() bug in ckpt version of omnibus.py
* update environment*yml
* tweak instructions to install HuggingFace token
* bump version number
* enhance update scripts
- update scripts will now fetch new INITIAL_MODELS.yaml so that
configure_invokeai.py will know about the diffusers versions.
* enhance invoke.sh/invoke.bat launchers
- added configure_invokeai.py to menu
- menu defaults to browser-based invoke
* remove conda workflow (#2321)
* fix `token_ids has shape torch.Size([79]) - expected [77]`
* update CHANGELOG.md with 2.3.* info
- Add information on how formats have changed and the upgrade process.
- Add short bug list.
Co-authored-by: Damian Stewart <d@damianstewart.com>
Co-authored-by: Damian Stewart <null@damianstewart.com>
Co-authored-by: Lincoln Stein <lincoln.stein@gmail.com>
Co-authored-by: Wybartel-luxmc <37852506+Wybartel-luxmc@users.noreply.github.com>
Co-authored-by: mauwii <Mauwii@outlook.de>
Co-authored-by: mickr777 <115216705+mickr777@users.noreply.github.com>
Co-authored-by: blessedcoolant <54517381+blessedcoolant@users.noreply.github.com>
Co-authored-by: Eugene Brodsky <ebr@users.noreply.github.com>
Co-authored-by: Matthias Wild <40327258+mauwii@users.noreply.github.com>
2023-01-15 14:22:46 +00:00
|
|
|
model = PaintByExampleImageEncoder(config)
|
|
|
|
|
|
|
|
keys = list(checkpoint.keys())
|
|
|
|
|
|
|
|
text_model_dict = {}
|
|
|
|
|
|
|
|
for key in keys:
|
|
|
|
if key.startswith("cond_stage_model.transformer"):
|
|
|
|
text_model_dict[key[len("cond_stage_model.transformer.") :]] = checkpoint[key]
|
|
|
|
|
|
|
|
# load clip vision
|
|
|
|
model.model.load_state_dict(text_model_dict)
|
|
|
|
|
|
|
|
# load mapper
|
|
|
|
keys_mapper = {
|
|
|
|
k[len("cond_stage_model.mapper.res") :]: v
|
|
|
|
for k, v in checkpoint.items()
|
|
|
|
if k.startswith("cond_stage_model.mapper")
|
|
|
|
}
|
|
|
|
|
|
|
|
MAPPING = {
|
|
|
|
"attn.c_qkv": ["attn1.to_q", "attn1.to_k", "attn1.to_v"],
|
|
|
|
"attn.c_proj": ["attn1.to_out.0"],
|
|
|
|
"ln_1": ["norm1"],
|
|
|
|
"ln_2": ["norm3"],
|
|
|
|
"mlp.c_fc": ["ff.net.0.proj"],
|
|
|
|
"mlp.c_proj": ["ff.net.2"],
|
|
|
|
}
|
|
|
|
|
|
|
|
mapped_weights = {}
|
|
|
|
for key, value in keys_mapper.items():
|
|
|
|
prefix = key[: len("blocks.i")]
|
|
|
|
suffix = key.split(prefix)[-1].split(".")[-1]
|
|
|
|
name = key.split(prefix)[-1].split(suffix)[0][1:-1]
|
|
|
|
mapped_names = MAPPING[name]
|
|
|
|
|
|
|
|
num_splits = len(mapped_names)
|
|
|
|
for i, mapped_name in enumerate(mapped_names):
|
|
|
|
new_name = ".".join([prefix, mapped_name, suffix])
|
|
|
|
shape = value.shape[0] // num_splits
|
|
|
|
mapped_weights[new_name] = value[i * shape : (i + 1) * shape]
|
|
|
|
|
|
|
|
model.mapper.load_state_dict(mapped_weights)
|
|
|
|
|
|
|
|
# load final layer norm
|
|
|
|
model.final_layer_norm.load_state_dict(
|
|
|
|
{
|
|
|
|
"bias": checkpoint["cond_stage_model.final_ln.bias"],
|
|
|
|
"weight": checkpoint["cond_stage_model.final_ln.weight"],
|
|
|
|
}
|
|
|
|
)
|
|
|
|
|
|
|
|
# load final proj
|
|
|
|
model.proj_out.load_state_dict(
|
|
|
|
{
|
|
|
|
"bias": checkpoint["proj_out.bias"],
|
|
|
|
"weight": checkpoint["proj_out.weight"],
|
|
|
|
}
|
|
|
|
)
|
|
|
|
|
|
|
|
# load uncond vector
|
|
|
|
model.uncond_vector.data = torch.nn.Parameter(checkpoint["learnable_vector"])
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
def convert_open_clip_checkpoint(checkpoint):
|
2023-01-23 05:35:16 +00:00
|
|
|
cache_dir=global_cache_dir('hub')
|
|
|
|
text_model = CLIPTextModel.from_pretrained("stabilityai/stable-diffusion-2", subfolder="text_encoder", cache_dir=cache_dir)
|
use 🧨diffusers model (#1583)
* initial commit of DiffusionPipeline class
* spike: proof of concept using diffusers for txt2img
* doc: type hints for Generator
* refactor(model_cache): factor out load_ckpt
* model_cache: add ability to load a diffusers model pipeline
and update associated things in Generate & Generator to not instantly fail when that happens
* model_cache: fix model default image dimensions
* txt2img: support switching diffusers schedulers
* diffusers: let the scheduler do its scaling of the initial latents
Remove IPNDM scheduler; it is not behaving.
* web server: update image_progress callback for diffusers data
* diffusers: restore prompt weighting feature
* diffusers: fix set-sampler error following model switch
* diffusers: use InvokeAIDiffuserComponent for conditioning
* cross_attention_control: stub (no-op) implementations for diffusers
* model_cache: let offload_model work with DiffusionPipeline, sorta.
* models.yaml.example: add diffusers-format model, set as default
* test-invoke-conda: use diffusers-format model
test-invoke-conda: put huggingface-token where the library can use it
* environment-mac: upgrade to diffusers 0.7 (from 0.6)
this was already done for linux; mac must have been lost in the merge.
* preload_models: explicitly load diffusers models
In non-interactive mode too, as long as you're logged in.
* fix(model_cache): don't check `model.config` in diffusers format
clean-up from recent merge.
* diffusers integration: support img2img
* dev: upgrade to diffusers 0.8 (from 0.7.1)
We get to remove some code by using methods that were factored out in the base class.
* refactor: remove backported img2img.get_timesteps
now that we can use it directly from diffusers 0.8.1
* ci: use diffusers model
* dev: upgrade to diffusers 0.9 (from 0.8.1)
* lint: correct annotations for Python 3.9.
* lint: correct AttributeError.name reference for Python 3.9.
* CI: prefer diffusers-1.4 because it no longer requires a token
The RunwayML models still do.
* build: there's yet another place to update requirements?
* configure: try to download models even without token
Models in the CompVis and stabilityai repos no longer require them. (But runwayml still does.)
* configure: add troubleshooting info for config-not-found
* fix(configure): prepend root to config path
* fix(configure): remove second `default: true` from models example
* CI: simplify test-on-push logic now that we don't need secrets
The "test on push but only in forks" logic was only necessary when tests didn't work for PRs-from-forks.
* create an embedding_manager for diffusers
* internal: avoid importing diffusers DummyObject
see https://github.com/huggingface/diffusers/issues/1479
* fix "config attributes…not expected" diffusers warnings.
* fix deprecated scheduler construction
* work around an apparent MPS torch bug that causes conditioning to have no effect
* 🚧 post-rebase repair
* preliminary support for outpainting (no masking yet)
* monkey-patch diffusers.attention and use Invoke lowvram code
* add always_use_cpu arg to bypass MPS
* add cross-attention control support to diffusers (fails on MPS)
For unknown reasons MPS produces garbage output with .swap(). Use
--always_use_cpu arg to invoke.py for now to test this code on MPS.
* diffusers support for the inpainting model
* fix debug_image to not crash with non-RGB images.
* inpainting for the normal model [WIP]
This seems to be performing well until the LAST STEP, at which point it dissolves to confetti.
* fix off-by-one bug in cross-attention-control (#1774)
prompt token sequences begin with a "beginning-of-sequence" marker <bos> and end with a repeated "end-of-sequence" marker <eos> - to make a default prompt length of <bos> + 75 prompt tokens + <eos>. the .swap() code was failing to take the column for <bos> at index 0 into account. the changes here do that, and also add extra handling for a single <eos> (which may be redundant but which is included for completeness).
based on my understanding and some assumptions about how this all works, the reason .swap() nevertheless seemed to do the right thing, to some extent, is because over multiple steps the conditioning process in Stable Diffusion operates as a feedback loop. a change to token n-1 has flow-on effects to how the [1x4x64x64] latent tensor is modified by all the tokens after it, - and as the next step is processed, all the tokens before it as well. intuitively, a token's conditioning effects "echo" throughout the whole length of the prompt. so even though the token at n-1 was being edited when what the user actually wanted was to edit the token at n, it nevertheless still had some non-negligible effect, in roughly the right direction, often enough that it seemed like it was working properly.
* refactor common CrossAttention stuff into a mixin so that the old ldm code can still work if necessary
* inpainting for the normal model. I think it works this time.
* diffusers: reset num_vectors_per_token
sync with 44a00555718f1df173c60da0ed646cf700e29537
* diffusers: txt2img2img (hires_fix)
with so much slicing and dicing of pipeline methods to stitch them together
* refactor(diffusers): reduce some code duplication amongst the different tasks
* fixup! refactor(diffusers): reduce some code duplication amongst the different tasks
* diffusers: enable DPMSolver++ scheduler
* diffusers: upgrade to diffusers 0.10, add Heun scheduler
* diffusers(ModelCache): stopgap to make from_cpu compatible with diffusers
* CI: default to diffusers-1.5 now that runwayml token requirement is gone
* diffusers: update to 0.10 (and transformers to 4.25)
* diffusers: use xformers when available
diffusers no longer auto-enables this as of 0.10.2.
* diffusers: make masked img2img behave better with multi-step schedulers
re-randomizing the noise each step was confusing them.
* diffusers: work more better with more models.
fixed relative path problem with local models.
fixed models on hub not always having a `fp16` branch.
* diffusers: stopgap fix for attention_maps_callback crash after recent merge
* fixup import merge conflicts
correction for 061c5369a2247c6c92cd69606bcf54c4f1962a0b
* test: add tests/inpainting inputs for masked img2img
* diffusers(AddsMaskedGuidance): partial fix for k-schedulers
Prevents them from crashing, but results are still hot garbage.
* fix --safety_checker arg parsing
and add note to diffusers loader about where safety checker gets called
* generate: fix import error
* CI: don't try to read the old init location
* diffusers: support loading an alternate VAE
* CI: remove sh-syntax if-statement so it doesn't crash powershell
* CI: fold strings in yaml because backslash is not line-continuation in powershell
* attention maps callback stuff for diffusers
* build: fix syntax error in environment-mac
* diffusers: add INITIAL_MODELS with diffusers-compatible repos
* re-enable the embedding manager; closes #1778
* Squashed commit of the following:
commit e4a956abc37fcb5cf188388b76b617bc5c8fda7d
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:43:07 2022 +0100
import new load handling from EmbeddingManager and cleanup
commit c4abe91a5ba0d415b45bf734068385668b7a66e6
Merge: 032e856e 1efc6397
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:09:53 2022 +0100
Merge branch 'feature_textual_inversion_mgr' into dev/diffusers_with_textual_inversion_manager
commit 032e856eefb3bbc39534f5daafd25764bcfcef8b
Merge: 8b4f0fe9 bc515e24
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:08:01 2022 +0100
Merge remote-tracking branch 'upstream/dev/diffusers' into dev/diffusers_with_textual_inversion_manager
commit 1efc6397fc6e61c1aff4b0258b93089d61de5955
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:04:28 2022 +0100
cleanup and add performance notes
commit e400f804ac471a0ca2ba432fd658778b20c7bdab
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 14:45:07 2022 +0100
fix bug and update unit tests
commit deb9ae0ae1016750e93ce8275734061f7285a231
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 14:28:29 2022 +0100
textual inversion manager seems to work
commit 162e02505dec777e91a983c4d0fb52e950d25ff0
Merge: cbad4583 12769b3d
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:58:03 2022 +0100
Merge branch 'main' into feature_textual_inversion_mgr
commit cbad45836c6aace6871a90f2621a953f49433131
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:54:10 2022 +0100
use position embeddings
commit 070344c69b0e0db340a183857d0a787b348681d3
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:53:47 2022 +0100
Don't crash CLI on exceptions
commit b035ac8c6772dfd9ba41b8eeb9103181cda028f8
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:11:55 2022 +0100
add missing position_embeddings
commit 12769b3d3562ef71e0f54946b532ad077e10043c
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 13:33:25 2022 +0100
debugging why it don't work
commit bafb7215eabe1515ca5e8388fd3bb2f3ac5362cf
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 13:21:33 2022 +0100
debugging why it don't work
commit 664a6e9e146b42d96703f0cc8baf8f5efec04ee1
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 12:48:38 2022 +0100
use TextualInversionManager in place of embeddings (wip, doesn't work)
commit 8b4f0fe9d6e4e2643b36dfa27864294785d7ba4e
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 12:48:38 2022 +0100
use TextualInversionManager in place of embeddings (wip, doesn't work)
commit ffbe1ab11163ba712e353d89404e301d0e0c6cdf
Merge: 6e4dad60 023df37e
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:37:31 2022 +0100
Merge branch 'feature_textual_inversion_mgr' into dev/diffusers
commit 023df37efffa67434f77def7fc3c9dfb29f699fd
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:36:54 2022 +0100
cleanup
commit 05fac594eaf79d0058e3c48deee93df603f136c2
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:07:49 2022 +0100
tweak error checking
commit 009f32ed39a7280997c3ffab112adadee0b44279
Author: damian <null@damianstewart.com>
Date: Thu Dec 15 21:29:47 2022 +0100
unit tests passing for embeddings with vector length >1
commit beb1b08d9a98112ed2fe073580568e1a18698da3
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 13:39:09 2022 +0100
more explicit equality tests when overwriting
commit 44d8a5a7c85cdabc9ce3a54fd0769a10597b3ca9
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 13:30:13 2022 +0100
wip textual inversion manager (unit tests passing for 1v embedding overwriting)
commit 417c2b57d90924a839616bfb66804faab8039e4c
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 12:30:55 2022 +0100
wip textual inversion manager (unit tests passing for base stuff + padding)
commit 2e80872e3b6f7fd7d8eb8928822bd824b63cb2ff
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 10:57:57 2022 +0100
wip new TextualInversionManager
* stop using WeightedFrozenCLIPEmbedder
* store diffusion models locally
- configure_invokeai.py reconfigured to store diffusion models rather than
CompVis models
- hugging face caching model is used, but cache is set to ~/invokeai/models/repo_id
- models.yaml does **NOT** use path, just repo_id
- "repo_name" changed to "repo_id" to following hugging face conventions
- Models are loaded with full precision pending further work.
* allow non-local files during development
* path takes priority over repo_id
* MVP for model_cache and configure_invokeai
- Feature complete (almost)
- configure_invokeai.py downloads both .ckpt and diffuser models,
along with their VAEs. Both types of download are controlled by
a unified INITIAL_MODELS.yaml file.
- model_cache can load both type of model and switches back and forth
in CPU. No memory leaks detected
TO DO:
1. I have not yet turned on the LocalOnly flag for diffuser models, so
the code will check the Hugging Face repo for updates before using the
locally cached models. This will break firewalled systems. I am thinking
of putting in a global check for internet connectivity at startup time
and setting the LocalOnly flag based on this. It would be good to check
updates if there is connectivity.
2. I have not gone completely through INITIAL_MODELS.yaml to check which
models are available as diffusers and which are not. So models like
PaperCut and VoxelArt may not load properly. The runway and stability
models are checked, as well as the Trinart models.
3. Add stanzas for SD 2.0 and 2.1 in INITIAL_MODELS.yaml
REMAINING PROBLEMS NOT DIRECTLY RELATED TO MODEL_CACHE:
1. When loading a .ckpt file there are lots of messages like this:
Warning! ldm.modules.attention.CrossAttention is no longer being
maintained. Please use InvokeAICrossAttention instead.
I'm not sure how to address this.
2. The ckpt models ***don't actually run*** due to the lack of special-case
support for them in the generator objects. For example, here's the hard
crash you get when you run txt2img against the legacy waifu-diffusion-1.3
model:
```
>> An error occurred:
Traceback (most recent call last):
File "/data/lstein/InvokeAI/ldm/invoke/CLI.py", line 140, in main
main_loop(gen, opt)
File "/data/lstein/InvokeAI/ldm/invoke/CLI.py", line 371, in main_loop
gen.prompt2image(
File "/data/lstein/InvokeAI/ldm/generate.py", line 496, in prompt2image
results = generator.generate(
File "/data/lstein/InvokeAI/ldm/invoke/generator/base.py", line 108, in generate
image = make_image(x_T)
File "/data/lstein/InvokeAI/ldm/invoke/generator/txt2img.py", line 33, in make_image
pipeline_output = pipeline.image_from_embeddings(
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1265, in __getattr__
raise AttributeError("'{}' object has no attribute '{}'".format(
AttributeError: 'LatentDiffusion' object has no attribute 'image_from_embeddings'
```
3. The inpainting diffusion model isn't working. Here's the output of "banana
sushi" when inpainting-1.5 is loaded:
```
Traceback (most recent call last):
File "/data/lstein/InvokeAI/ldm/generate.py", line 496, in prompt2image
results = generator.generate(
File "/data/lstein/InvokeAI/ldm/invoke/generator/base.py", line 108, in generate
image = make_image(x_T)
File "/data/lstein/InvokeAI/ldm/invoke/generator/txt2img.py", line 33, in make_image
pipeline_output = pipeline.image_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 301, in image_from_embeddings
result_latents, result_attention_map_saver = self.latents_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 330, in latents_from_embeddings
result: PipelineIntermediateState = infer_latents_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 185, in __call__
for result in self.generator_method(*args, **kwargs):
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 367, in generate_latents_from_embeddings
step_output = self.step(batched_t, latents, guidance_scale,
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context
return func(*args, **kwargs)
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 409, in step
step_output = self.scheduler.step(noise_pred, timestep, latents, **extra_step_kwargs)
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/diffusers/schedulers/scheduling_lms_discrete.py", line 223, in step
pred_original_sample = sample - sigma * model_output
RuntimeError: The size of tensor a (9) must match the size of tensor b (4) at non-singleton dimension 1
```
* proper support for float32/float16
- configure script now correctly detects user's preference for
fp16/32 and downloads the correct diffuser version. If fp16
version not available, falls back to fp32 version.
- misc code cleanup and simplification in model_cache
* add on-the-fly conversion of .ckpt to diffusers models
1. On-the-fly conversion code can be found in the file ldm/invoke/ckpt_to_diffusers.py.
2. A new !optimize command has been added to the CLI. Should be ported to Web GUI.
User experience on the CLI is this:
```
invoke> !optimize /home/lstein/invokeai/models/ldm/stable-diffusion-v1/sd-v1-4.ckpt
INFO: Converting legacy weights file /home/lstein/invokeai/models/ldm/stable-diffusion-v1/sd-v1-4.ckpt to optimized diffuser model.
This operation will take 30-60s to complete.
Success. Optimized model is now located at /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
Writing new config file entry for sd-v1-4...
>> New configuration:
sd-v1-4:
description: Optimized version of sd-v1-4
format: diffusers
path: /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
OK to import [n]? y
>> Verifying that new model loads...
>> Current VRAM usage: 2.60G
>> Offloading stable-diffusion-2.1 to CPU
>> Loading diffusers model from /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
| Using faster float16 precision
You have disabled the safety checker for <class 'ldm.invoke.generator.diffusers_pipeline.StableDiffusionGeneratorPipeline'> by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion \
license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances,\
disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .
| training width x height = (512 x 512)
>> Model loaded in 3.48s
>> Max VRAM used to load the model: 2.17G
>> Current VRAM usage:2.17G
>> Textual inversions available:
>> Setting Sampler to k_lms (LMSDiscreteScheduler)
Keep model loaded? [y]
```
* add parallel set of generator files for ckpt legacy generation
* generation using legacy ckpt models now working
* diffusers: fix missing attention_maps_callback
fix for 23eb80b40421b2bb8f4b6d3dd30490d11c447b36
* associate legacy CrossAttention with .ckpt models
* enable autoconvert
New --autoconvert CLI option will scan a designated directory for
new .ckpt files, convert them into diffuser models, and import
them into models.yaml.
Works like this:
invoke.py --autoconvert /path/to/weights/directory
In ModelCache added two new methods:
autoconvert_weights(config_path, weights_directory_path, models_directory_path)
convert_and_import(ckpt_path, diffuser_path)
* diffusers: update to diffusers 0.11 (from 0.10.2)
* fix vae loading & width/height calculation
* refactor: encapsulate these conditioning data into one container
* diffusers: fix some noise-scaling issues by pushing the noise-mixing down to the common function
* add support for safetensors and accelerate
* set local_files_only when internet unreachable
* diffusers: fix error-handling path when model repo has no fp16 branch
* fix generatorinpaint error
Fixes :
"ModuleNotFoundError: No module named 'ldm.invoke.generatorinpaint'
https://github.com/invoke-ai/InvokeAI/pull/1583#issuecomment-1363634318
* quench diffuser safety-checker warning
* diffusers: support stochastic DDIM eta parameter
* fix conda env creation on macos
* fix cross-attention with diffusers 0.11
* diffusers: the VAE needs to be tiling as well as the U-Net
* diffusers: comment on subfolders
* diffusers: embiggen!
* diffusers: make model_cache.list_models serializable
* diffusers(inpaint): restore scaling functionality
* fix requirements clash between numba and numpy 1.24
* diffusers: allow inpainting model to do non-inpainting tasks
* start expanding model_cache functionality
* add import_ckpt_model() and import_diffuser_model() methods to model_manager
- in addition, model_cache.py is now renamed to model_manager.py
* allow "recommended" flag to be optional in INITIAL_MODELS.yaml
* configure_invokeai now downloads VAE diffusers in advance
* rename ModelCache to ModelManager
* remove support for `repo_name` in models.yaml
* check for and refuse to load embeddings trained on incompatible models
* models.yaml.example: s/repo_name/repo_id
and remove extra INITIAL_MODELS now that the main one has diffusers models in it.
* add MVP textual inversion script
* refactor(InvokeAIDiffuserComponent): factor out _combine()
* InvokeAIDiffuserComponent: implement threshold
* InvokeAIDiffuserComponent: diagnostic logs for threshold
...this does not look right
* add a curses-based frontend to textual inversion
- not quite working yet
- requires npyscreen installed
- on windows will also have the windows-curses requirement, but not added
to requirements yet
* add curses-based interface for textual inversion
* fix crash in convert_and_import()
- This corrects a "local variable referenced before assignment" error
in model_manager.convert_and_import()
* potential workaround for no 'state_dict' key error
- As reported in https://github.com/huggingface/diffusers/issues/1876
* create TI output dir if needed
* Update environment-lin-cuda.yml (#2159)
Fixing line 42 to be the proper order to define the transformers requirement: ~= instead of =~
* diffusers: update sampler-to-scheduler mapping
based on https://github.com/huggingface/diffusers/issues/277#issuecomment-1371428672
* improve user exp for ckt to diffusers conversion
- !optimize_models command now operates on an existing ckpt file entry in models.yaml
- replaces existing entry, rather than adding a new one
- offers to delete the ckpt file after conversion
* web: adapt progress callback to deal with old generator or new diffusers pipeline
* clean-up model_manager code
- add_model() verified to work for .ckpt local paths,
.ckpt remote URLs, diffusers local paths, and
diffusers repo_ids
- convert_and_import() verified to work for local and
remove .ckpt files
* handle edge cases for import_model() and convert_model()
* add support for safetensor .ckpt files
* fix name error
* code cleanup with pyflake
* improve model setting behavior
- If the user enters an invalid model name at startup time, will not
try to load it, warn, and use default model
- CLI UI enhancement: include currently active model in the command
line prompt.
* update test-invoke-pip.yml
- fix model cache path to point to runwayml/stable-diffusion-v1-5
- remove `skip-sd-weights` from configure_invokeai.py args
* exclude dev/diffusers from "fail for draft PRs"
* disable "fail on PR jobs"
* re-add `--skip-sd-weights` since no space
* update workflow environments
- include `INVOKE_MODEL_RECONFIGURE: '--yes'`
* clean up model load failure handling
- Allow CLI to run even when no model is defined or loadable.
- Inhibit stack trace when model load fails - only show last error
- Give user *option* to run configure_invokeai.py when no models
successfully load.
- Restart invokeai after reconfiguration.
* further edge-case handling
1) only one model in models.yaml file, and that model is broken
2) no models in models.yaml
3) models.yaml doesn't exist at all
* fix incorrect model status listing
- "cached" was not being returned from list_models()
- normalize handling of exceptions during model loading:
- Passing an invalid model name to generate.set_model() will return
a KeyError
- All other exceptions are returned as the appropriate Exception
* CI: do download weights (if not already cached)
* diffusers: fix scheduler loading in offline mode
* CI: fix model name (no longer has `diffusers-` prefix)
* Update txt2img2img.py (#2256)
* fixes to share models with HuggingFace cache system
- If HF_HOME environment variable is defined, then all huggingface models
are stored in that directory following the standard conventions.
- For seamless interoperability, set HF_HOME to ~/.cache/huggingface
- If HF_HOME not defined, then models are stored in ~/invokeai/models.
This is equivalent to setting HF_HOME to ~/invokeai/models
A future commit will add a migration mechanism so that this change doesn't
break previous installs.
* feat - make model storage compatible with hugging face caching system
This commit alters the InvokeAI model directory to be compatible with
hugging face, making it easier to share diffusers (and other models)
across different programs.
- If the HF_HOME environment variable is not set, then models are
cached in ~/invokeai/models in a format that is identical to the
HuggingFace cache.
- If HF_HOME is set, then models are cached wherever HF_HOME points.
- To enable sharing with other HuggingFace library clients, set
HF_HOME to ~/.cache/huggingface to set the default cache location
or to ~/invokeai/models to have huggingface cache inside InvokeAI.
* fixes to share models with HuggingFace cache system
- If HF_HOME environment variable is defined, then all huggingface models
are stored in that directory following the standard conventions.
- For seamless interoperability, set HF_HOME to ~/.cache/huggingface
- If HF_HOME not defined, then models are stored in ~/invokeai/models.
This is equivalent to setting HF_HOME to ~/invokeai/models
A future commit will add a migration mechanism so that this change doesn't
break previous installs.
* fix error "no attribute CkptInpaint"
* model_manager.list_models() returns entire model config stanza+status
* Initial Draft - Model Manager Diffusers
* added hash function to diffusers
* implement sha256 hashes on diffusers models
* Add Model Manager Support for Diffusers
* fix various problems with model manager
- in cli import functions, fix not enough values to unpack from
_get_name_and_desc()
- fix crash when using old-style vae: value with new-style diffuser
* rebuild frontend
* fix dictconfig-not-serializable issue
* fix NoneType' object is not subscriptable crash in model_manager
* fix "str has no attribute get" error in model_manager list_models()
* Add path and repo_id support for Diffusers Model Manager
Also fixes bugs
* Fix tooltip IT localization not working
* Add Version Number To WebUI
* Optimize Model Search
* Fix incorrect font on the Model Manager UI
* Fix image degradation on merge fixes - [Experimental]
This change should effectively fix a couple of things.
- Fix image degradation on subsequent merges of the canvas layers.
- Fix the slight transparent border that is left behind when filling the bounding box with a color.
- Fix the left over line of color when filling a bounding box with color.
So far there are no side effects for this. If any, please report.
* Add local model filtering for Diffusers / Checkpoints
* Go to home on modal close for the Add Modal UI
* Styling Fixes
* Model Manager Diffusers Localization Update
* Add Safe Tensor scanning to Model Manager
* Fix model edit form dispatching string values instead of numbers.
* Resolve VAE handling / edge cases for supplied repos
* defer injecting tokens for textual inversions until they're used for the first time
* squash a console warning
* implement model migration check
* add_model() overwrites previous config rather than merges
* fix model config file attribute merging
* fix precision handling in textual inversion script
* allow ckpt conversion script to work with safetensors .ckpts
Applied patch here:
https://github.com/huggingface/diffusers/commit/beb932c5d111872c5e45387e7b1b2b3dd0524a47
* fix name "args" is not defined crash in textual_inversion_training
* fix a second NameError: name 'args' is not defined crash
* fix loading of the safety checker from the global cache dir
* add installation step to textual inversion frontend
- After a successful training run, the script will copy learned_embeds.bin
to a subfolder of the embeddings directory.
- User given the option to delete the logs and intermediate checkpoints
(which together use 7-8G of space)
- If textual inversion training fails, reports the error gracefully.
* don't crash out on incompatible embeddings
- put try: blocks around places where the system tries to load an embedding
which is incompatible with the currently loaded model
* add support for checkpoint resuming
* textual inversion preferences are saved and restored between sessions
- Preferences are stored in a file named text-inversion-training/preferences.conf
- Currently the resume-from-checkpoint option is not working correctly. Possible
bug in textual_inversion_training.py?
* copy learned_embeddings.bin into right location
* add front end for diffusers model merging
- Front end doesn't do anything yet!!!!
- Made change to model name parsing in CLI to support ability to have merged models
with the "+" character in their names.
* improve inpainting experience
- recommend ckpt version of inpainting-1.5 to user
- fix get_noise() bug in ckpt version of omnibus.py
* update environment*yml
* tweak instructions to install HuggingFace token
* bump version number
* enhance update scripts
- update scripts will now fetch new INITIAL_MODELS.yaml so that
configure_invokeai.py will know about the diffusers versions.
* enhance invoke.sh/invoke.bat launchers
- added configure_invokeai.py to menu
- menu defaults to browser-based invoke
* remove conda workflow (#2321)
* fix `token_ids has shape torch.Size([79]) - expected [77]`
* update CHANGELOG.md with 2.3.* info
- Add information on how formats have changed and the upgrade process.
- Add short bug list.
Co-authored-by: Damian Stewart <d@damianstewart.com>
Co-authored-by: Damian Stewart <null@damianstewart.com>
Co-authored-by: Lincoln Stein <lincoln.stein@gmail.com>
Co-authored-by: Wybartel-luxmc <37852506+Wybartel-luxmc@users.noreply.github.com>
Co-authored-by: mauwii <Mauwii@outlook.de>
Co-authored-by: mickr777 <115216705+mickr777@users.noreply.github.com>
Co-authored-by: blessedcoolant <54517381+blessedcoolant@users.noreply.github.com>
Co-authored-by: Eugene Brodsky <ebr@users.noreply.github.com>
Co-authored-by: Matthias Wild <40327258+mauwii@users.noreply.github.com>
2023-01-15 14:22:46 +00:00
|
|
|
|
|
|
|
keys = list(checkpoint.keys())
|
|
|
|
|
|
|
|
text_model_dict = {}
|
|
|
|
|
2023-02-23 20:43:58 +00:00
|
|
|
if 'cond_stage_model.model.text_projection' in keys:
|
|
|
|
d_model = int(checkpoint["cond_stage_model.model.text_projection"].shape[0])
|
|
|
|
elif 'cond_stage_model.model.ln_final.bias' in keys:
|
|
|
|
d_model = int(checkpoint['cond_stage_model.model.ln_final.bias'].shape[0])
|
|
|
|
else:
|
|
|
|
raise KeyError('Expected key "cond_stage_model.model.text_projection" not found in model')
|
use 🧨diffusers model (#1583)
* initial commit of DiffusionPipeline class
* spike: proof of concept using diffusers for txt2img
* doc: type hints for Generator
* refactor(model_cache): factor out load_ckpt
* model_cache: add ability to load a diffusers model pipeline
and update associated things in Generate & Generator to not instantly fail when that happens
* model_cache: fix model default image dimensions
* txt2img: support switching diffusers schedulers
* diffusers: let the scheduler do its scaling of the initial latents
Remove IPNDM scheduler; it is not behaving.
* web server: update image_progress callback for diffusers data
* diffusers: restore prompt weighting feature
* diffusers: fix set-sampler error following model switch
* diffusers: use InvokeAIDiffuserComponent for conditioning
* cross_attention_control: stub (no-op) implementations for diffusers
* model_cache: let offload_model work with DiffusionPipeline, sorta.
* models.yaml.example: add diffusers-format model, set as default
* test-invoke-conda: use diffusers-format model
test-invoke-conda: put huggingface-token where the library can use it
* environment-mac: upgrade to diffusers 0.7 (from 0.6)
this was already done for linux; mac must have been lost in the merge.
* preload_models: explicitly load diffusers models
In non-interactive mode too, as long as you're logged in.
* fix(model_cache): don't check `model.config` in diffusers format
clean-up from recent merge.
* diffusers integration: support img2img
* dev: upgrade to diffusers 0.8 (from 0.7.1)
We get to remove some code by using methods that were factored out in the base class.
* refactor: remove backported img2img.get_timesteps
now that we can use it directly from diffusers 0.8.1
* ci: use diffusers model
* dev: upgrade to diffusers 0.9 (from 0.8.1)
* lint: correct annotations for Python 3.9.
* lint: correct AttributeError.name reference for Python 3.9.
* CI: prefer diffusers-1.4 because it no longer requires a token
The RunwayML models still do.
* build: there's yet another place to update requirements?
* configure: try to download models even without token
Models in the CompVis and stabilityai repos no longer require them. (But runwayml still does.)
* configure: add troubleshooting info for config-not-found
* fix(configure): prepend root to config path
* fix(configure): remove second `default: true` from models example
* CI: simplify test-on-push logic now that we don't need secrets
The "test on push but only in forks" logic was only necessary when tests didn't work for PRs-from-forks.
* create an embedding_manager for diffusers
* internal: avoid importing diffusers DummyObject
see https://github.com/huggingface/diffusers/issues/1479
* fix "config attributes…not expected" diffusers warnings.
* fix deprecated scheduler construction
* work around an apparent MPS torch bug that causes conditioning to have no effect
* 🚧 post-rebase repair
* preliminary support for outpainting (no masking yet)
* monkey-patch diffusers.attention and use Invoke lowvram code
* add always_use_cpu arg to bypass MPS
* add cross-attention control support to diffusers (fails on MPS)
For unknown reasons MPS produces garbage output with .swap(). Use
--always_use_cpu arg to invoke.py for now to test this code on MPS.
* diffusers support for the inpainting model
* fix debug_image to not crash with non-RGB images.
* inpainting for the normal model [WIP]
This seems to be performing well until the LAST STEP, at which point it dissolves to confetti.
* fix off-by-one bug in cross-attention-control (#1774)
prompt token sequences begin with a "beginning-of-sequence" marker <bos> and end with a repeated "end-of-sequence" marker <eos> - to make a default prompt length of <bos> + 75 prompt tokens + <eos>. the .swap() code was failing to take the column for <bos> at index 0 into account. the changes here do that, and also add extra handling for a single <eos> (which may be redundant but which is included for completeness).
based on my understanding and some assumptions about how this all works, the reason .swap() nevertheless seemed to do the right thing, to some extent, is because over multiple steps the conditioning process in Stable Diffusion operates as a feedback loop. a change to token n-1 has flow-on effects to how the [1x4x64x64] latent tensor is modified by all the tokens after it, - and as the next step is processed, all the tokens before it as well. intuitively, a token's conditioning effects "echo" throughout the whole length of the prompt. so even though the token at n-1 was being edited when what the user actually wanted was to edit the token at n, it nevertheless still had some non-negligible effect, in roughly the right direction, often enough that it seemed like it was working properly.
* refactor common CrossAttention stuff into a mixin so that the old ldm code can still work if necessary
* inpainting for the normal model. I think it works this time.
* diffusers: reset num_vectors_per_token
sync with 44a00555718f1df173c60da0ed646cf700e29537
* diffusers: txt2img2img (hires_fix)
with so much slicing and dicing of pipeline methods to stitch them together
* refactor(diffusers): reduce some code duplication amongst the different tasks
* fixup! refactor(diffusers): reduce some code duplication amongst the different tasks
* diffusers: enable DPMSolver++ scheduler
* diffusers: upgrade to diffusers 0.10, add Heun scheduler
* diffusers(ModelCache): stopgap to make from_cpu compatible with diffusers
* CI: default to diffusers-1.5 now that runwayml token requirement is gone
* diffusers: update to 0.10 (and transformers to 4.25)
* diffusers: use xformers when available
diffusers no longer auto-enables this as of 0.10.2.
* diffusers: make masked img2img behave better with multi-step schedulers
re-randomizing the noise each step was confusing them.
* diffusers: work more better with more models.
fixed relative path problem with local models.
fixed models on hub not always having a `fp16` branch.
* diffusers: stopgap fix for attention_maps_callback crash after recent merge
* fixup import merge conflicts
correction for 061c5369a2247c6c92cd69606bcf54c4f1962a0b
* test: add tests/inpainting inputs for masked img2img
* diffusers(AddsMaskedGuidance): partial fix for k-schedulers
Prevents them from crashing, but results are still hot garbage.
* fix --safety_checker arg parsing
and add note to diffusers loader about where safety checker gets called
* generate: fix import error
* CI: don't try to read the old init location
* diffusers: support loading an alternate VAE
* CI: remove sh-syntax if-statement so it doesn't crash powershell
* CI: fold strings in yaml because backslash is not line-continuation in powershell
* attention maps callback stuff for diffusers
* build: fix syntax error in environment-mac
* diffusers: add INITIAL_MODELS with diffusers-compatible repos
* re-enable the embedding manager; closes #1778
* Squashed commit of the following:
commit e4a956abc37fcb5cf188388b76b617bc5c8fda7d
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:43:07 2022 +0100
import new load handling from EmbeddingManager and cleanup
commit c4abe91a5ba0d415b45bf734068385668b7a66e6
Merge: 032e856e 1efc6397
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:09:53 2022 +0100
Merge branch 'feature_textual_inversion_mgr' into dev/diffusers_with_textual_inversion_manager
commit 032e856eefb3bbc39534f5daafd25764bcfcef8b
Merge: 8b4f0fe9 bc515e24
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:08:01 2022 +0100
Merge remote-tracking branch 'upstream/dev/diffusers' into dev/diffusers_with_textual_inversion_manager
commit 1efc6397fc6e61c1aff4b0258b93089d61de5955
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:04:28 2022 +0100
cleanup and add performance notes
commit e400f804ac471a0ca2ba432fd658778b20c7bdab
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 14:45:07 2022 +0100
fix bug and update unit tests
commit deb9ae0ae1016750e93ce8275734061f7285a231
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 14:28:29 2022 +0100
textual inversion manager seems to work
commit 162e02505dec777e91a983c4d0fb52e950d25ff0
Merge: cbad4583 12769b3d
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:58:03 2022 +0100
Merge branch 'main' into feature_textual_inversion_mgr
commit cbad45836c6aace6871a90f2621a953f49433131
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:54:10 2022 +0100
use position embeddings
commit 070344c69b0e0db340a183857d0a787b348681d3
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:53:47 2022 +0100
Don't crash CLI on exceptions
commit b035ac8c6772dfd9ba41b8eeb9103181cda028f8
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:11:55 2022 +0100
add missing position_embeddings
commit 12769b3d3562ef71e0f54946b532ad077e10043c
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 13:33:25 2022 +0100
debugging why it don't work
commit bafb7215eabe1515ca5e8388fd3bb2f3ac5362cf
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 13:21:33 2022 +0100
debugging why it don't work
commit 664a6e9e146b42d96703f0cc8baf8f5efec04ee1
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 12:48:38 2022 +0100
use TextualInversionManager in place of embeddings (wip, doesn't work)
commit 8b4f0fe9d6e4e2643b36dfa27864294785d7ba4e
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 12:48:38 2022 +0100
use TextualInversionManager in place of embeddings (wip, doesn't work)
commit ffbe1ab11163ba712e353d89404e301d0e0c6cdf
Merge: 6e4dad60 023df37e
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:37:31 2022 +0100
Merge branch 'feature_textual_inversion_mgr' into dev/diffusers
commit 023df37efffa67434f77def7fc3c9dfb29f699fd
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:36:54 2022 +0100
cleanup
commit 05fac594eaf79d0058e3c48deee93df603f136c2
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:07:49 2022 +0100
tweak error checking
commit 009f32ed39a7280997c3ffab112adadee0b44279
Author: damian <null@damianstewart.com>
Date: Thu Dec 15 21:29:47 2022 +0100
unit tests passing for embeddings with vector length >1
commit beb1b08d9a98112ed2fe073580568e1a18698da3
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 13:39:09 2022 +0100
more explicit equality tests when overwriting
commit 44d8a5a7c85cdabc9ce3a54fd0769a10597b3ca9
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 13:30:13 2022 +0100
wip textual inversion manager (unit tests passing for 1v embedding overwriting)
commit 417c2b57d90924a839616bfb66804faab8039e4c
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 12:30:55 2022 +0100
wip textual inversion manager (unit tests passing for base stuff + padding)
commit 2e80872e3b6f7fd7d8eb8928822bd824b63cb2ff
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 10:57:57 2022 +0100
wip new TextualInversionManager
* stop using WeightedFrozenCLIPEmbedder
* store diffusion models locally
- configure_invokeai.py reconfigured to store diffusion models rather than
CompVis models
- hugging face caching model is used, but cache is set to ~/invokeai/models/repo_id
- models.yaml does **NOT** use path, just repo_id
- "repo_name" changed to "repo_id" to following hugging face conventions
- Models are loaded with full precision pending further work.
* allow non-local files during development
* path takes priority over repo_id
* MVP for model_cache and configure_invokeai
- Feature complete (almost)
- configure_invokeai.py downloads both .ckpt and diffuser models,
along with their VAEs. Both types of download are controlled by
a unified INITIAL_MODELS.yaml file.
- model_cache can load both type of model and switches back and forth
in CPU. No memory leaks detected
TO DO:
1. I have not yet turned on the LocalOnly flag for diffuser models, so
the code will check the Hugging Face repo for updates before using the
locally cached models. This will break firewalled systems. I am thinking
of putting in a global check for internet connectivity at startup time
and setting the LocalOnly flag based on this. It would be good to check
updates if there is connectivity.
2. I have not gone completely through INITIAL_MODELS.yaml to check which
models are available as diffusers and which are not. So models like
PaperCut and VoxelArt may not load properly. The runway and stability
models are checked, as well as the Trinart models.
3. Add stanzas for SD 2.0 and 2.1 in INITIAL_MODELS.yaml
REMAINING PROBLEMS NOT DIRECTLY RELATED TO MODEL_CACHE:
1. When loading a .ckpt file there are lots of messages like this:
Warning! ldm.modules.attention.CrossAttention is no longer being
maintained. Please use InvokeAICrossAttention instead.
I'm not sure how to address this.
2. The ckpt models ***don't actually run*** due to the lack of special-case
support for them in the generator objects. For example, here's the hard
crash you get when you run txt2img against the legacy waifu-diffusion-1.3
model:
```
>> An error occurred:
Traceback (most recent call last):
File "/data/lstein/InvokeAI/ldm/invoke/CLI.py", line 140, in main
main_loop(gen, opt)
File "/data/lstein/InvokeAI/ldm/invoke/CLI.py", line 371, in main_loop
gen.prompt2image(
File "/data/lstein/InvokeAI/ldm/generate.py", line 496, in prompt2image
results = generator.generate(
File "/data/lstein/InvokeAI/ldm/invoke/generator/base.py", line 108, in generate
image = make_image(x_T)
File "/data/lstein/InvokeAI/ldm/invoke/generator/txt2img.py", line 33, in make_image
pipeline_output = pipeline.image_from_embeddings(
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1265, in __getattr__
raise AttributeError("'{}' object has no attribute '{}'".format(
AttributeError: 'LatentDiffusion' object has no attribute 'image_from_embeddings'
```
3. The inpainting diffusion model isn't working. Here's the output of "banana
sushi" when inpainting-1.5 is loaded:
```
Traceback (most recent call last):
File "/data/lstein/InvokeAI/ldm/generate.py", line 496, in prompt2image
results = generator.generate(
File "/data/lstein/InvokeAI/ldm/invoke/generator/base.py", line 108, in generate
image = make_image(x_T)
File "/data/lstein/InvokeAI/ldm/invoke/generator/txt2img.py", line 33, in make_image
pipeline_output = pipeline.image_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 301, in image_from_embeddings
result_latents, result_attention_map_saver = self.latents_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 330, in latents_from_embeddings
result: PipelineIntermediateState = infer_latents_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 185, in __call__
for result in self.generator_method(*args, **kwargs):
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 367, in generate_latents_from_embeddings
step_output = self.step(batched_t, latents, guidance_scale,
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context
return func(*args, **kwargs)
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 409, in step
step_output = self.scheduler.step(noise_pred, timestep, latents, **extra_step_kwargs)
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/diffusers/schedulers/scheduling_lms_discrete.py", line 223, in step
pred_original_sample = sample - sigma * model_output
RuntimeError: The size of tensor a (9) must match the size of tensor b (4) at non-singleton dimension 1
```
* proper support for float32/float16
- configure script now correctly detects user's preference for
fp16/32 and downloads the correct diffuser version. If fp16
version not available, falls back to fp32 version.
- misc code cleanup and simplification in model_cache
* add on-the-fly conversion of .ckpt to diffusers models
1. On-the-fly conversion code can be found in the file ldm/invoke/ckpt_to_diffusers.py.
2. A new !optimize command has been added to the CLI. Should be ported to Web GUI.
User experience on the CLI is this:
```
invoke> !optimize /home/lstein/invokeai/models/ldm/stable-diffusion-v1/sd-v1-4.ckpt
INFO: Converting legacy weights file /home/lstein/invokeai/models/ldm/stable-diffusion-v1/sd-v1-4.ckpt to optimized diffuser model.
This operation will take 30-60s to complete.
Success. Optimized model is now located at /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
Writing new config file entry for sd-v1-4...
>> New configuration:
sd-v1-4:
description: Optimized version of sd-v1-4
format: diffusers
path: /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
OK to import [n]? y
>> Verifying that new model loads...
>> Current VRAM usage: 2.60G
>> Offloading stable-diffusion-2.1 to CPU
>> Loading diffusers model from /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
| Using faster float16 precision
You have disabled the safety checker for <class 'ldm.invoke.generator.diffusers_pipeline.StableDiffusionGeneratorPipeline'> by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion \
license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances,\
disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .
| training width x height = (512 x 512)
>> Model loaded in 3.48s
>> Max VRAM used to load the model: 2.17G
>> Current VRAM usage:2.17G
>> Textual inversions available:
>> Setting Sampler to k_lms (LMSDiscreteScheduler)
Keep model loaded? [y]
```
* add parallel set of generator files for ckpt legacy generation
* generation using legacy ckpt models now working
* diffusers: fix missing attention_maps_callback
fix for 23eb80b40421b2bb8f4b6d3dd30490d11c447b36
* associate legacy CrossAttention with .ckpt models
* enable autoconvert
New --autoconvert CLI option will scan a designated directory for
new .ckpt files, convert them into diffuser models, and import
them into models.yaml.
Works like this:
invoke.py --autoconvert /path/to/weights/directory
In ModelCache added two new methods:
autoconvert_weights(config_path, weights_directory_path, models_directory_path)
convert_and_import(ckpt_path, diffuser_path)
* diffusers: update to diffusers 0.11 (from 0.10.2)
* fix vae loading & width/height calculation
* refactor: encapsulate these conditioning data into one container
* diffusers: fix some noise-scaling issues by pushing the noise-mixing down to the common function
* add support for safetensors and accelerate
* set local_files_only when internet unreachable
* diffusers: fix error-handling path when model repo has no fp16 branch
* fix generatorinpaint error
Fixes :
"ModuleNotFoundError: No module named 'ldm.invoke.generatorinpaint'
https://github.com/invoke-ai/InvokeAI/pull/1583#issuecomment-1363634318
* quench diffuser safety-checker warning
* diffusers: support stochastic DDIM eta parameter
* fix conda env creation on macos
* fix cross-attention with diffusers 0.11
* diffusers: the VAE needs to be tiling as well as the U-Net
* diffusers: comment on subfolders
* diffusers: embiggen!
* diffusers: make model_cache.list_models serializable
* diffusers(inpaint): restore scaling functionality
* fix requirements clash between numba and numpy 1.24
* diffusers: allow inpainting model to do non-inpainting tasks
* start expanding model_cache functionality
* add import_ckpt_model() and import_diffuser_model() methods to model_manager
- in addition, model_cache.py is now renamed to model_manager.py
* allow "recommended" flag to be optional in INITIAL_MODELS.yaml
* configure_invokeai now downloads VAE diffusers in advance
* rename ModelCache to ModelManager
* remove support for `repo_name` in models.yaml
* check for and refuse to load embeddings trained on incompatible models
* models.yaml.example: s/repo_name/repo_id
and remove extra INITIAL_MODELS now that the main one has diffusers models in it.
* add MVP textual inversion script
* refactor(InvokeAIDiffuserComponent): factor out _combine()
* InvokeAIDiffuserComponent: implement threshold
* InvokeAIDiffuserComponent: diagnostic logs for threshold
...this does not look right
* add a curses-based frontend to textual inversion
- not quite working yet
- requires npyscreen installed
- on windows will also have the windows-curses requirement, but not added
to requirements yet
* add curses-based interface for textual inversion
* fix crash in convert_and_import()
- This corrects a "local variable referenced before assignment" error
in model_manager.convert_and_import()
* potential workaround for no 'state_dict' key error
- As reported in https://github.com/huggingface/diffusers/issues/1876
* create TI output dir if needed
* Update environment-lin-cuda.yml (#2159)
Fixing line 42 to be the proper order to define the transformers requirement: ~= instead of =~
* diffusers: update sampler-to-scheduler mapping
based on https://github.com/huggingface/diffusers/issues/277#issuecomment-1371428672
* improve user exp for ckt to diffusers conversion
- !optimize_models command now operates on an existing ckpt file entry in models.yaml
- replaces existing entry, rather than adding a new one
- offers to delete the ckpt file after conversion
* web: adapt progress callback to deal with old generator or new diffusers pipeline
* clean-up model_manager code
- add_model() verified to work for .ckpt local paths,
.ckpt remote URLs, diffusers local paths, and
diffusers repo_ids
- convert_and_import() verified to work for local and
remove .ckpt files
* handle edge cases for import_model() and convert_model()
* add support for safetensor .ckpt files
* fix name error
* code cleanup with pyflake
* improve model setting behavior
- If the user enters an invalid model name at startup time, will not
try to load it, warn, and use default model
- CLI UI enhancement: include currently active model in the command
line prompt.
* update test-invoke-pip.yml
- fix model cache path to point to runwayml/stable-diffusion-v1-5
- remove `skip-sd-weights` from configure_invokeai.py args
* exclude dev/diffusers from "fail for draft PRs"
* disable "fail on PR jobs"
* re-add `--skip-sd-weights` since no space
* update workflow environments
- include `INVOKE_MODEL_RECONFIGURE: '--yes'`
* clean up model load failure handling
- Allow CLI to run even when no model is defined or loadable.
- Inhibit stack trace when model load fails - only show last error
- Give user *option* to run configure_invokeai.py when no models
successfully load.
- Restart invokeai after reconfiguration.
* further edge-case handling
1) only one model in models.yaml file, and that model is broken
2) no models in models.yaml
3) models.yaml doesn't exist at all
* fix incorrect model status listing
- "cached" was not being returned from list_models()
- normalize handling of exceptions during model loading:
- Passing an invalid model name to generate.set_model() will return
a KeyError
- All other exceptions are returned as the appropriate Exception
* CI: do download weights (if not already cached)
* diffusers: fix scheduler loading in offline mode
* CI: fix model name (no longer has `diffusers-` prefix)
* Update txt2img2img.py (#2256)
* fixes to share models with HuggingFace cache system
- If HF_HOME environment variable is defined, then all huggingface models
are stored in that directory following the standard conventions.
- For seamless interoperability, set HF_HOME to ~/.cache/huggingface
- If HF_HOME not defined, then models are stored in ~/invokeai/models.
This is equivalent to setting HF_HOME to ~/invokeai/models
A future commit will add a migration mechanism so that this change doesn't
break previous installs.
* feat - make model storage compatible with hugging face caching system
This commit alters the InvokeAI model directory to be compatible with
hugging face, making it easier to share diffusers (and other models)
across different programs.
- If the HF_HOME environment variable is not set, then models are
cached in ~/invokeai/models in a format that is identical to the
HuggingFace cache.
- If HF_HOME is set, then models are cached wherever HF_HOME points.
- To enable sharing with other HuggingFace library clients, set
HF_HOME to ~/.cache/huggingface to set the default cache location
or to ~/invokeai/models to have huggingface cache inside InvokeAI.
* fixes to share models with HuggingFace cache system
- If HF_HOME environment variable is defined, then all huggingface models
are stored in that directory following the standard conventions.
- For seamless interoperability, set HF_HOME to ~/.cache/huggingface
- If HF_HOME not defined, then models are stored in ~/invokeai/models.
This is equivalent to setting HF_HOME to ~/invokeai/models
A future commit will add a migration mechanism so that this change doesn't
break previous installs.
* fix error "no attribute CkptInpaint"
* model_manager.list_models() returns entire model config stanza+status
* Initial Draft - Model Manager Diffusers
* added hash function to diffusers
* implement sha256 hashes on diffusers models
* Add Model Manager Support for Diffusers
* fix various problems with model manager
- in cli import functions, fix not enough values to unpack from
_get_name_and_desc()
- fix crash when using old-style vae: value with new-style diffuser
* rebuild frontend
* fix dictconfig-not-serializable issue
* fix NoneType' object is not subscriptable crash in model_manager
* fix "str has no attribute get" error in model_manager list_models()
* Add path and repo_id support for Diffusers Model Manager
Also fixes bugs
* Fix tooltip IT localization not working
* Add Version Number To WebUI
* Optimize Model Search
* Fix incorrect font on the Model Manager UI
* Fix image degradation on merge fixes - [Experimental]
This change should effectively fix a couple of things.
- Fix image degradation on subsequent merges of the canvas layers.
- Fix the slight transparent border that is left behind when filling the bounding box with a color.
- Fix the left over line of color when filling a bounding box with color.
So far there are no side effects for this. If any, please report.
* Add local model filtering for Diffusers / Checkpoints
* Go to home on modal close for the Add Modal UI
* Styling Fixes
* Model Manager Diffusers Localization Update
* Add Safe Tensor scanning to Model Manager
* Fix model edit form dispatching string values instead of numbers.
* Resolve VAE handling / edge cases for supplied repos
* defer injecting tokens for textual inversions until they're used for the first time
* squash a console warning
* implement model migration check
* add_model() overwrites previous config rather than merges
* fix model config file attribute merging
* fix precision handling in textual inversion script
* allow ckpt conversion script to work with safetensors .ckpts
Applied patch here:
https://github.com/huggingface/diffusers/commit/beb932c5d111872c5e45387e7b1b2b3dd0524a47
* fix name "args" is not defined crash in textual_inversion_training
* fix a second NameError: name 'args' is not defined crash
* fix loading of the safety checker from the global cache dir
* add installation step to textual inversion frontend
- After a successful training run, the script will copy learned_embeds.bin
to a subfolder of the embeddings directory.
- User given the option to delete the logs and intermediate checkpoints
(which together use 7-8G of space)
- If textual inversion training fails, reports the error gracefully.
* don't crash out on incompatible embeddings
- put try: blocks around places where the system tries to load an embedding
which is incompatible with the currently loaded model
* add support for checkpoint resuming
* textual inversion preferences are saved and restored between sessions
- Preferences are stored in a file named text-inversion-training/preferences.conf
- Currently the resume-from-checkpoint option is not working correctly. Possible
bug in textual_inversion_training.py?
* copy learned_embeddings.bin into right location
* add front end for diffusers model merging
- Front end doesn't do anything yet!!!!
- Made change to model name parsing in CLI to support ability to have merged models
with the "+" character in their names.
* improve inpainting experience
- recommend ckpt version of inpainting-1.5 to user
- fix get_noise() bug in ckpt version of omnibus.py
* update environment*yml
* tweak instructions to install HuggingFace token
* bump version number
* enhance update scripts
- update scripts will now fetch new INITIAL_MODELS.yaml so that
configure_invokeai.py will know about the diffusers versions.
* enhance invoke.sh/invoke.bat launchers
- added configure_invokeai.py to menu
- menu defaults to browser-based invoke
* remove conda workflow (#2321)
* fix `token_ids has shape torch.Size([79]) - expected [77]`
* update CHANGELOG.md with 2.3.* info
- Add information on how formats have changed and the upgrade process.
- Add short bug list.
Co-authored-by: Damian Stewart <d@damianstewart.com>
Co-authored-by: Damian Stewart <null@damianstewart.com>
Co-authored-by: Lincoln Stein <lincoln.stein@gmail.com>
Co-authored-by: Wybartel-luxmc <37852506+Wybartel-luxmc@users.noreply.github.com>
Co-authored-by: mauwii <Mauwii@outlook.de>
Co-authored-by: mickr777 <115216705+mickr777@users.noreply.github.com>
Co-authored-by: blessedcoolant <54517381+blessedcoolant@users.noreply.github.com>
Co-authored-by: Eugene Brodsky <ebr@users.noreply.github.com>
Co-authored-by: Matthias Wild <40327258+mauwii@users.noreply.github.com>
2023-01-15 14:22:46 +00:00
|
|
|
|
|
|
|
text_model_dict["text_model.embeddings.position_ids"] = text_model.text_model.embeddings.get_buffer("position_ids")
|
|
|
|
|
|
|
|
for key in keys:
|
|
|
|
if "resblocks.23" in key: # Diffusers drops the final layer and only uses the penultimate layer
|
|
|
|
continue
|
|
|
|
if key in textenc_conversion_map:
|
|
|
|
text_model_dict[textenc_conversion_map[key]] = checkpoint[key]
|
|
|
|
if key.startswith("cond_stage_model.model.transformer."):
|
|
|
|
new_key = key[len("cond_stage_model.model.transformer.") :]
|
|
|
|
if new_key.endswith(".in_proj_weight"):
|
|
|
|
new_key = new_key[: -len(".in_proj_weight")]
|
|
|
|
new_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], new_key)
|
|
|
|
text_model_dict[new_key + ".q_proj.weight"] = checkpoint[key][:d_model, :]
|
|
|
|
text_model_dict[new_key + ".k_proj.weight"] = checkpoint[key][d_model : d_model * 2, :]
|
|
|
|
text_model_dict[new_key + ".v_proj.weight"] = checkpoint[key][d_model * 2 :, :]
|
|
|
|
elif new_key.endswith(".in_proj_bias"):
|
|
|
|
new_key = new_key[: -len(".in_proj_bias")]
|
|
|
|
new_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], new_key)
|
|
|
|
text_model_dict[new_key + ".q_proj.bias"] = checkpoint[key][:d_model]
|
|
|
|
text_model_dict[new_key + ".k_proj.bias"] = checkpoint[key][d_model : d_model * 2]
|
|
|
|
text_model_dict[new_key + ".v_proj.bias"] = checkpoint[key][d_model * 2 :]
|
|
|
|
else:
|
|
|
|
new_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], new_key)
|
|
|
|
|
|
|
|
text_model_dict[new_key] = checkpoint[key]
|
|
|
|
|
|
|
|
text_model.load_state_dict(text_model_dict)
|
|
|
|
|
|
|
|
return text_model
|
|
|
|
|
2023-02-02 20:15:44 +00:00
|
|
|
def load_pipeline_from_original_stable_diffusion_ckpt(
|
|
|
|
checkpoint_path:str,
|
|
|
|
original_config_file:str=None,
|
|
|
|
num_in_channels:int=None,
|
|
|
|
scheduler_type:str='pndm',
|
|
|
|
pipeline_type:str=None,
|
|
|
|
image_size:int=None,
|
|
|
|
prediction_type:str=None,
|
|
|
|
extract_ema:bool=True,
|
|
|
|
upcast_attn:bool=False,
|
2023-02-03 15:04:32 +00:00
|
|
|
vae:AutoencoderKL=None,
|
2023-02-20 06:12:02 +00:00
|
|
|
precision:torch.dtype=torch.float32,
|
2023-02-03 15:04:32 +00:00
|
|
|
return_generator_pipeline:bool=False,
|
|
|
|
)->Union[StableDiffusionPipeline,StableDiffusionGeneratorPipeline]:
|
2023-02-02 20:15:44 +00:00
|
|
|
'''
|
|
|
|
Load a Stable Diffusion pipeline object from a CompVis-style `.ckpt`/`.safetensors` file and (ideally) a `.yaml`
|
|
|
|
config file.
|
|
|
|
|
|
|
|
Although many of the arguments can be automatically inferred, some of these rely on brittle checks against the
|
|
|
|
global step count, which will likely fail for models that have undergone further fine-tuning. Therefore, it is
|
|
|
|
recommended that you override the default values and/or supply an `original_config_file` wherever possible.
|
|
|
|
|
|
|
|
:param checkpoint_path: Path to `.ckpt` file.
|
|
|
|
:param original_config_file: Path to `.yaml` config file corresponding to the original architecture.
|
|
|
|
If `None`, will be automatically inferred by looking for a key that only exists in SD2.0 models.
|
|
|
|
:param image_size: The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Diffusion v2
|
|
|
|
Base. Use 768 for Stable Diffusion v2.
|
|
|
|
:param prediction_type: The prediction type that the model was trained on. Use `'epsilon'` for Stable Diffusion
|
|
|
|
v1.X and Stable Diffusion v2 Base. Use `'v-prediction'` for Stable Diffusion v2.
|
|
|
|
:param num_in_channels: The number of input channels. If `None` number of input channels will be automatically
|
|
|
|
inferred.
|
|
|
|
:param scheduler_type: Type of scheduler to use. Should be one of `["pndm", "lms", "heun", "euler",
|
|
|
|
"euler-ancestral", "dpm", "ddim"]`. :param model_type: The pipeline type. `None` to automatically infer, or one of
|
|
|
|
`["FrozenOpenCLIPEmbedder", "FrozenCLIPEmbedder", "PaintByExample"]`. :param extract_ema: Only relevant for
|
|
|
|
checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights
|
|
|
|
or not. Defaults to `False`. Pass `True` to extract the EMA weights. EMA weights usually yield higher
|
|
|
|
quality images for inference. Non-EMA weights are usually better to continue fine-tuning.
|
2023-02-20 06:12:02 +00:00
|
|
|
:param precision: precision to use - torch.float16, torch.float32 or torch.autocast
|
2023-02-02 20:15:44 +00:00
|
|
|
:param upcast_attention: Whether the attention computation should always be upcasted. This is necessary when
|
|
|
|
running stable diffusion 2.1.
|
|
|
|
'''
|
2023-02-06 14:35:23 +00:00
|
|
|
|
2023-02-03 15:04:32 +00:00
|
|
|
with warnings.catch_warnings():
|
|
|
|
warnings.simplefilter('ignore')
|
|
|
|
verbosity = dlogging.get_verbosity()
|
|
|
|
dlogging.set_verbosity_error()
|
|
|
|
|
2023-02-21 16:47:41 +00:00
|
|
|
checkpoint = load_file(checkpoint_path) if Path(checkpoint_path).suffix == '.safetensors' else torch.load(checkpoint_path)
|
2023-02-03 15:04:32 +00:00
|
|
|
cache_dir = global_cache_dir('hub')
|
|
|
|
pipeline_class = StableDiffusionGeneratorPipeline if return_generator_pipeline else StableDiffusionPipeline
|
|
|
|
|
|
|
|
# Sometimes models don't have the global_step item
|
|
|
|
if "global_step" in checkpoint:
|
|
|
|
global_step = checkpoint["global_step"]
|
|
|
|
else:
|
|
|
|
print(" | global_step key not found in model")
|
|
|
|
global_step = None
|
use 🧨diffusers model (#1583)
* initial commit of DiffusionPipeline class
* spike: proof of concept using diffusers for txt2img
* doc: type hints for Generator
* refactor(model_cache): factor out load_ckpt
* model_cache: add ability to load a diffusers model pipeline
and update associated things in Generate & Generator to not instantly fail when that happens
* model_cache: fix model default image dimensions
* txt2img: support switching diffusers schedulers
* diffusers: let the scheduler do its scaling of the initial latents
Remove IPNDM scheduler; it is not behaving.
* web server: update image_progress callback for diffusers data
* diffusers: restore prompt weighting feature
* diffusers: fix set-sampler error following model switch
* diffusers: use InvokeAIDiffuserComponent for conditioning
* cross_attention_control: stub (no-op) implementations for diffusers
* model_cache: let offload_model work with DiffusionPipeline, sorta.
* models.yaml.example: add diffusers-format model, set as default
* test-invoke-conda: use diffusers-format model
test-invoke-conda: put huggingface-token where the library can use it
* environment-mac: upgrade to diffusers 0.7 (from 0.6)
this was already done for linux; mac must have been lost in the merge.
* preload_models: explicitly load diffusers models
In non-interactive mode too, as long as you're logged in.
* fix(model_cache): don't check `model.config` in diffusers format
clean-up from recent merge.
* diffusers integration: support img2img
* dev: upgrade to diffusers 0.8 (from 0.7.1)
We get to remove some code by using methods that were factored out in the base class.
* refactor: remove backported img2img.get_timesteps
now that we can use it directly from diffusers 0.8.1
* ci: use diffusers model
* dev: upgrade to diffusers 0.9 (from 0.8.1)
* lint: correct annotations for Python 3.9.
* lint: correct AttributeError.name reference for Python 3.9.
* CI: prefer diffusers-1.4 because it no longer requires a token
The RunwayML models still do.
* build: there's yet another place to update requirements?
* configure: try to download models even without token
Models in the CompVis and stabilityai repos no longer require them. (But runwayml still does.)
* configure: add troubleshooting info for config-not-found
* fix(configure): prepend root to config path
* fix(configure): remove second `default: true` from models example
* CI: simplify test-on-push logic now that we don't need secrets
The "test on push but only in forks" logic was only necessary when tests didn't work for PRs-from-forks.
* create an embedding_manager for diffusers
* internal: avoid importing diffusers DummyObject
see https://github.com/huggingface/diffusers/issues/1479
* fix "config attributes…not expected" diffusers warnings.
* fix deprecated scheduler construction
* work around an apparent MPS torch bug that causes conditioning to have no effect
* 🚧 post-rebase repair
* preliminary support for outpainting (no masking yet)
* monkey-patch diffusers.attention and use Invoke lowvram code
* add always_use_cpu arg to bypass MPS
* add cross-attention control support to diffusers (fails on MPS)
For unknown reasons MPS produces garbage output with .swap(). Use
--always_use_cpu arg to invoke.py for now to test this code on MPS.
* diffusers support for the inpainting model
* fix debug_image to not crash with non-RGB images.
* inpainting for the normal model [WIP]
This seems to be performing well until the LAST STEP, at which point it dissolves to confetti.
* fix off-by-one bug in cross-attention-control (#1774)
prompt token sequences begin with a "beginning-of-sequence" marker <bos> and end with a repeated "end-of-sequence" marker <eos> - to make a default prompt length of <bos> + 75 prompt tokens + <eos>. the .swap() code was failing to take the column for <bos> at index 0 into account. the changes here do that, and also add extra handling for a single <eos> (which may be redundant but which is included for completeness).
based on my understanding and some assumptions about how this all works, the reason .swap() nevertheless seemed to do the right thing, to some extent, is because over multiple steps the conditioning process in Stable Diffusion operates as a feedback loop. a change to token n-1 has flow-on effects to how the [1x4x64x64] latent tensor is modified by all the tokens after it, - and as the next step is processed, all the tokens before it as well. intuitively, a token's conditioning effects "echo" throughout the whole length of the prompt. so even though the token at n-1 was being edited when what the user actually wanted was to edit the token at n, it nevertheless still had some non-negligible effect, in roughly the right direction, often enough that it seemed like it was working properly.
* refactor common CrossAttention stuff into a mixin so that the old ldm code can still work if necessary
* inpainting for the normal model. I think it works this time.
* diffusers: reset num_vectors_per_token
sync with 44a00555718f1df173c60da0ed646cf700e29537
* diffusers: txt2img2img (hires_fix)
with so much slicing and dicing of pipeline methods to stitch them together
* refactor(diffusers): reduce some code duplication amongst the different tasks
* fixup! refactor(diffusers): reduce some code duplication amongst the different tasks
* diffusers: enable DPMSolver++ scheduler
* diffusers: upgrade to diffusers 0.10, add Heun scheduler
* diffusers(ModelCache): stopgap to make from_cpu compatible with diffusers
* CI: default to diffusers-1.5 now that runwayml token requirement is gone
* diffusers: update to 0.10 (and transformers to 4.25)
* diffusers: use xformers when available
diffusers no longer auto-enables this as of 0.10.2.
* diffusers: make masked img2img behave better with multi-step schedulers
re-randomizing the noise each step was confusing them.
* diffusers: work more better with more models.
fixed relative path problem with local models.
fixed models on hub not always having a `fp16` branch.
* diffusers: stopgap fix for attention_maps_callback crash after recent merge
* fixup import merge conflicts
correction for 061c5369a2247c6c92cd69606bcf54c4f1962a0b
* test: add tests/inpainting inputs for masked img2img
* diffusers(AddsMaskedGuidance): partial fix for k-schedulers
Prevents them from crashing, but results are still hot garbage.
* fix --safety_checker arg parsing
and add note to diffusers loader about where safety checker gets called
* generate: fix import error
* CI: don't try to read the old init location
* diffusers: support loading an alternate VAE
* CI: remove sh-syntax if-statement so it doesn't crash powershell
* CI: fold strings in yaml because backslash is not line-continuation in powershell
* attention maps callback stuff for diffusers
* build: fix syntax error in environment-mac
* diffusers: add INITIAL_MODELS with diffusers-compatible repos
* re-enable the embedding manager; closes #1778
* Squashed commit of the following:
commit e4a956abc37fcb5cf188388b76b617bc5c8fda7d
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:43:07 2022 +0100
import new load handling from EmbeddingManager and cleanup
commit c4abe91a5ba0d415b45bf734068385668b7a66e6
Merge: 032e856e 1efc6397
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:09:53 2022 +0100
Merge branch 'feature_textual_inversion_mgr' into dev/diffusers_with_textual_inversion_manager
commit 032e856eefb3bbc39534f5daafd25764bcfcef8b
Merge: 8b4f0fe9 bc515e24
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:08:01 2022 +0100
Merge remote-tracking branch 'upstream/dev/diffusers' into dev/diffusers_with_textual_inversion_manager
commit 1efc6397fc6e61c1aff4b0258b93089d61de5955
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:04:28 2022 +0100
cleanup and add performance notes
commit e400f804ac471a0ca2ba432fd658778b20c7bdab
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 14:45:07 2022 +0100
fix bug and update unit tests
commit deb9ae0ae1016750e93ce8275734061f7285a231
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 14:28:29 2022 +0100
textual inversion manager seems to work
commit 162e02505dec777e91a983c4d0fb52e950d25ff0
Merge: cbad4583 12769b3d
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:58:03 2022 +0100
Merge branch 'main' into feature_textual_inversion_mgr
commit cbad45836c6aace6871a90f2621a953f49433131
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:54:10 2022 +0100
use position embeddings
commit 070344c69b0e0db340a183857d0a787b348681d3
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:53:47 2022 +0100
Don't crash CLI on exceptions
commit b035ac8c6772dfd9ba41b8eeb9103181cda028f8
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:11:55 2022 +0100
add missing position_embeddings
commit 12769b3d3562ef71e0f54946b532ad077e10043c
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 13:33:25 2022 +0100
debugging why it don't work
commit bafb7215eabe1515ca5e8388fd3bb2f3ac5362cf
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 13:21:33 2022 +0100
debugging why it don't work
commit 664a6e9e146b42d96703f0cc8baf8f5efec04ee1
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 12:48:38 2022 +0100
use TextualInversionManager in place of embeddings (wip, doesn't work)
commit 8b4f0fe9d6e4e2643b36dfa27864294785d7ba4e
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 12:48:38 2022 +0100
use TextualInversionManager in place of embeddings (wip, doesn't work)
commit ffbe1ab11163ba712e353d89404e301d0e0c6cdf
Merge: 6e4dad60 023df37e
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:37:31 2022 +0100
Merge branch 'feature_textual_inversion_mgr' into dev/diffusers
commit 023df37efffa67434f77def7fc3c9dfb29f699fd
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:36:54 2022 +0100
cleanup
commit 05fac594eaf79d0058e3c48deee93df603f136c2
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:07:49 2022 +0100
tweak error checking
commit 009f32ed39a7280997c3ffab112adadee0b44279
Author: damian <null@damianstewart.com>
Date: Thu Dec 15 21:29:47 2022 +0100
unit tests passing for embeddings with vector length >1
commit beb1b08d9a98112ed2fe073580568e1a18698da3
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 13:39:09 2022 +0100
more explicit equality tests when overwriting
commit 44d8a5a7c85cdabc9ce3a54fd0769a10597b3ca9
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 13:30:13 2022 +0100
wip textual inversion manager (unit tests passing for 1v embedding overwriting)
commit 417c2b57d90924a839616bfb66804faab8039e4c
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 12:30:55 2022 +0100
wip textual inversion manager (unit tests passing for base stuff + padding)
commit 2e80872e3b6f7fd7d8eb8928822bd824b63cb2ff
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 10:57:57 2022 +0100
wip new TextualInversionManager
* stop using WeightedFrozenCLIPEmbedder
* store diffusion models locally
- configure_invokeai.py reconfigured to store diffusion models rather than
CompVis models
- hugging face caching model is used, but cache is set to ~/invokeai/models/repo_id
- models.yaml does **NOT** use path, just repo_id
- "repo_name" changed to "repo_id" to following hugging face conventions
- Models are loaded with full precision pending further work.
* allow non-local files during development
* path takes priority over repo_id
* MVP for model_cache and configure_invokeai
- Feature complete (almost)
- configure_invokeai.py downloads both .ckpt and diffuser models,
along with their VAEs. Both types of download are controlled by
a unified INITIAL_MODELS.yaml file.
- model_cache can load both type of model and switches back and forth
in CPU. No memory leaks detected
TO DO:
1. I have not yet turned on the LocalOnly flag for diffuser models, so
the code will check the Hugging Face repo for updates before using the
locally cached models. This will break firewalled systems. I am thinking
of putting in a global check for internet connectivity at startup time
and setting the LocalOnly flag based on this. It would be good to check
updates if there is connectivity.
2. I have not gone completely through INITIAL_MODELS.yaml to check which
models are available as diffusers and which are not. So models like
PaperCut and VoxelArt may not load properly. The runway and stability
models are checked, as well as the Trinart models.
3. Add stanzas for SD 2.0 and 2.1 in INITIAL_MODELS.yaml
REMAINING PROBLEMS NOT DIRECTLY RELATED TO MODEL_CACHE:
1. When loading a .ckpt file there are lots of messages like this:
Warning! ldm.modules.attention.CrossAttention is no longer being
maintained. Please use InvokeAICrossAttention instead.
I'm not sure how to address this.
2. The ckpt models ***don't actually run*** due to the lack of special-case
support for them in the generator objects. For example, here's the hard
crash you get when you run txt2img against the legacy waifu-diffusion-1.3
model:
```
>> An error occurred:
Traceback (most recent call last):
File "/data/lstein/InvokeAI/ldm/invoke/CLI.py", line 140, in main
main_loop(gen, opt)
File "/data/lstein/InvokeAI/ldm/invoke/CLI.py", line 371, in main_loop
gen.prompt2image(
File "/data/lstein/InvokeAI/ldm/generate.py", line 496, in prompt2image
results = generator.generate(
File "/data/lstein/InvokeAI/ldm/invoke/generator/base.py", line 108, in generate
image = make_image(x_T)
File "/data/lstein/InvokeAI/ldm/invoke/generator/txt2img.py", line 33, in make_image
pipeline_output = pipeline.image_from_embeddings(
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1265, in __getattr__
raise AttributeError("'{}' object has no attribute '{}'".format(
AttributeError: 'LatentDiffusion' object has no attribute 'image_from_embeddings'
```
3. The inpainting diffusion model isn't working. Here's the output of "banana
sushi" when inpainting-1.5 is loaded:
```
Traceback (most recent call last):
File "/data/lstein/InvokeAI/ldm/generate.py", line 496, in prompt2image
results = generator.generate(
File "/data/lstein/InvokeAI/ldm/invoke/generator/base.py", line 108, in generate
image = make_image(x_T)
File "/data/lstein/InvokeAI/ldm/invoke/generator/txt2img.py", line 33, in make_image
pipeline_output = pipeline.image_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 301, in image_from_embeddings
result_latents, result_attention_map_saver = self.latents_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 330, in latents_from_embeddings
result: PipelineIntermediateState = infer_latents_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 185, in __call__
for result in self.generator_method(*args, **kwargs):
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 367, in generate_latents_from_embeddings
step_output = self.step(batched_t, latents, guidance_scale,
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context
return func(*args, **kwargs)
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 409, in step
step_output = self.scheduler.step(noise_pred, timestep, latents, **extra_step_kwargs)
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/diffusers/schedulers/scheduling_lms_discrete.py", line 223, in step
pred_original_sample = sample - sigma * model_output
RuntimeError: The size of tensor a (9) must match the size of tensor b (4) at non-singleton dimension 1
```
* proper support for float32/float16
- configure script now correctly detects user's preference for
fp16/32 and downloads the correct diffuser version. If fp16
version not available, falls back to fp32 version.
- misc code cleanup and simplification in model_cache
* add on-the-fly conversion of .ckpt to diffusers models
1. On-the-fly conversion code can be found in the file ldm/invoke/ckpt_to_diffusers.py.
2. A new !optimize command has been added to the CLI. Should be ported to Web GUI.
User experience on the CLI is this:
```
invoke> !optimize /home/lstein/invokeai/models/ldm/stable-diffusion-v1/sd-v1-4.ckpt
INFO: Converting legacy weights file /home/lstein/invokeai/models/ldm/stable-diffusion-v1/sd-v1-4.ckpt to optimized diffuser model.
This operation will take 30-60s to complete.
Success. Optimized model is now located at /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
Writing new config file entry for sd-v1-4...
>> New configuration:
sd-v1-4:
description: Optimized version of sd-v1-4
format: diffusers
path: /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
OK to import [n]? y
>> Verifying that new model loads...
>> Current VRAM usage: 2.60G
>> Offloading stable-diffusion-2.1 to CPU
>> Loading diffusers model from /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
| Using faster float16 precision
You have disabled the safety checker for <class 'ldm.invoke.generator.diffusers_pipeline.StableDiffusionGeneratorPipeline'> by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion \
license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances,\
disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .
| training width x height = (512 x 512)
>> Model loaded in 3.48s
>> Max VRAM used to load the model: 2.17G
>> Current VRAM usage:2.17G
>> Textual inversions available:
>> Setting Sampler to k_lms (LMSDiscreteScheduler)
Keep model loaded? [y]
```
* add parallel set of generator files for ckpt legacy generation
* generation using legacy ckpt models now working
* diffusers: fix missing attention_maps_callback
fix for 23eb80b40421b2bb8f4b6d3dd30490d11c447b36
* associate legacy CrossAttention with .ckpt models
* enable autoconvert
New --autoconvert CLI option will scan a designated directory for
new .ckpt files, convert them into diffuser models, and import
them into models.yaml.
Works like this:
invoke.py --autoconvert /path/to/weights/directory
In ModelCache added two new methods:
autoconvert_weights(config_path, weights_directory_path, models_directory_path)
convert_and_import(ckpt_path, diffuser_path)
* diffusers: update to diffusers 0.11 (from 0.10.2)
* fix vae loading & width/height calculation
* refactor: encapsulate these conditioning data into one container
* diffusers: fix some noise-scaling issues by pushing the noise-mixing down to the common function
* add support for safetensors and accelerate
* set local_files_only when internet unreachable
* diffusers: fix error-handling path when model repo has no fp16 branch
* fix generatorinpaint error
Fixes :
"ModuleNotFoundError: No module named 'ldm.invoke.generatorinpaint'
https://github.com/invoke-ai/InvokeAI/pull/1583#issuecomment-1363634318
* quench diffuser safety-checker warning
* diffusers: support stochastic DDIM eta parameter
* fix conda env creation on macos
* fix cross-attention with diffusers 0.11
* diffusers: the VAE needs to be tiling as well as the U-Net
* diffusers: comment on subfolders
* diffusers: embiggen!
* diffusers: make model_cache.list_models serializable
* diffusers(inpaint): restore scaling functionality
* fix requirements clash between numba and numpy 1.24
* diffusers: allow inpainting model to do non-inpainting tasks
* start expanding model_cache functionality
* add import_ckpt_model() and import_diffuser_model() methods to model_manager
- in addition, model_cache.py is now renamed to model_manager.py
* allow "recommended" flag to be optional in INITIAL_MODELS.yaml
* configure_invokeai now downloads VAE diffusers in advance
* rename ModelCache to ModelManager
* remove support for `repo_name` in models.yaml
* check for and refuse to load embeddings trained on incompatible models
* models.yaml.example: s/repo_name/repo_id
and remove extra INITIAL_MODELS now that the main one has diffusers models in it.
* add MVP textual inversion script
* refactor(InvokeAIDiffuserComponent): factor out _combine()
* InvokeAIDiffuserComponent: implement threshold
* InvokeAIDiffuserComponent: diagnostic logs for threshold
...this does not look right
* add a curses-based frontend to textual inversion
- not quite working yet
- requires npyscreen installed
- on windows will also have the windows-curses requirement, but not added
to requirements yet
* add curses-based interface for textual inversion
* fix crash in convert_and_import()
- This corrects a "local variable referenced before assignment" error
in model_manager.convert_and_import()
* potential workaround for no 'state_dict' key error
- As reported in https://github.com/huggingface/diffusers/issues/1876
* create TI output dir if needed
* Update environment-lin-cuda.yml (#2159)
Fixing line 42 to be the proper order to define the transformers requirement: ~= instead of =~
* diffusers: update sampler-to-scheduler mapping
based on https://github.com/huggingface/diffusers/issues/277#issuecomment-1371428672
* improve user exp for ckt to diffusers conversion
- !optimize_models command now operates on an existing ckpt file entry in models.yaml
- replaces existing entry, rather than adding a new one
- offers to delete the ckpt file after conversion
* web: adapt progress callback to deal with old generator or new diffusers pipeline
* clean-up model_manager code
- add_model() verified to work for .ckpt local paths,
.ckpt remote URLs, diffusers local paths, and
diffusers repo_ids
- convert_and_import() verified to work for local and
remove .ckpt files
* handle edge cases for import_model() and convert_model()
* add support for safetensor .ckpt files
* fix name error
* code cleanup with pyflake
* improve model setting behavior
- If the user enters an invalid model name at startup time, will not
try to load it, warn, and use default model
- CLI UI enhancement: include currently active model in the command
line prompt.
* update test-invoke-pip.yml
- fix model cache path to point to runwayml/stable-diffusion-v1-5
- remove `skip-sd-weights` from configure_invokeai.py args
* exclude dev/diffusers from "fail for draft PRs"
* disable "fail on PR jobs"
* re-add `--skip-sd-weights` since no space
* update workflow environments
- include `INVOKE_MODEL_RECONFIGURE: '--yes'`
* clean up model load failure handling
- Allow CLI to run even when no model is defined or loadable.
- Inhibit stack trace when model load fails - only show last error
- Give user *option* to run configure_invokeai.py when no models
successfully load.
- Restart invokeai after reconfiguration.
* further edge-case handling
1) only one model in models.yaml file, and that model is broken
2) no models in models.yaml
3) models.yaml doesn't exist at all
* fix incorrect model status listing
- "cached" was not being returned from list_models()
- normalize handling of exceptions during model loading:
- Passing an invalid model name to generate.set_model() will return
a KeyError
- All other exceptions are returned as the appropriate Exception
* CI: do download weights (if not already cached)
* diffusers: fix scheduler loading in offline mode
* CI: fix model name (no longer has `diffusers-` prefix)
* Update txt2img2img.py (#2256)
* fixes to share models with HuggingFace cache system
- If HF_HOME environment variable is defined, then all huggingface models
are stored in that directory following the standard conventions.
- For seamless interoperability, set HF_HOME to ~/.cache/huggingface
- If HF_HOME not defined, then models are stored in ~/invokeai/models.
This is equivalent to setting HF_HOME to ~/invokeai/models
A future commit will add a migration mechanism so that this change doesn't
break previous installs.
* feat - make model storage compatible with hugging face caching system
This commit alters the InvokeAI model directory to be compatible with
hugging face, making it easier to share diffusers (and other models)
across different programs.
- If the HF_HOME environment variable is not set, then models are
cached in ~/invokeai/models in a format that is identical to the
HuggingFace cache.
- If HF_HOME is set, then models are cached wherever HF_HOME points.
- To enable sharing with other HuggingFace library clients, set
HF_HOME to ~/.cache/huggingface to set the default cache location
or to ~/invokeai/models to have huggingface cache inside InvokeAI.
* fixes to share models with HuggingFace cache system
- If HF_HOME environment variable is defined, then all huggingface models
are stored in that directory following the standard conventions.
- For seamless interoperability, set HF_HOME to ~/.cache/huggingface
- If HF_HOME not defined, then models are stored in ~/invokeai/models.
This is equivalent to setting HF_HOME to ~/invokeai/models
A future commit will add a migration mechanism so that this change doesn't
break previous installs.
* fix error "no attribute CkptInpaint"
* model_manager.list_models() returns entire model config stanza+status
* Initial Draft - Model Manager Diffusers
* added hash function to diffusers
* implement sha256 hashes on diffusers models
* Add Model Manager Support for Diffusers
* fix various problems with model manager
- in cli import functions, fix not enough values to unpack from
_get_name_and_desc()
- fix crash when using old-style vae: value with new-style diffuser
* rebuild frontend
* fix dictconfig-not-serializable issue
* fix NoneType' object is not subscriptable crash in model_manager
* fix "str has no attribute get" error in model_manager list_models()
* Add path and repo_id support for Diffusers Model Manager
Also fixes bugs
* Fix tooltip IT localization not working
* Add Version Number To WebUI
* Optimize Model Search
* Fix incorrect font on the Model Manager UI
* Fix image degradation on merge fixes - [Experimental]
This change should effectively fix a couple of things.
- Fix image degradation on subsequent merges of the canvas layers.
- Fix the slight transparent border that is left behind when filling the bounding box with a color.
- Fix the left over line of color when filling a bounding box with color.
So far there are no side effects for this. If any, please report.
* Add local model filtering for Diffusers / Checkpoints
* Go to home on modal close for the Add Modal UI
* Styling Fixes
* Model Manager Diffusers Localization Update
* Add Safe Tensor scanning to Model Manager
* Fix model edit form dispatching string values instead of numbers.
* Resolve VAE handling / edge cases for supplied repos
* defer injecting tokens for textual inversions until they're used for the first time
* squash a console warning
* implement model migration check
* add_model() overwrites previous config rather than merges
* fix model config file attribute merging
* fix precision handling in textual inversion script
* allow ckpt conversion script to work with safetensors .ckpts
Applied patch here:
https://github.com/huggingface/diffusers/commit/beb932c5d111872c5e45387e7b1b2b3dd0524a47
* fix name "args" is not defined crash in textual_inversion_training
* fix a second NameError: name 'args' is not defined crash
* fix loading of the safety checker from the global cache dir
* add installation step to textual inversion frontend
- After a successful training run, the script will copy learned_embeds.bin
to a subfolder of the embeddings directory.
- User given the option to delete the logs and intermediate checkpoints
(which together use 7-8G of space)
- If textual inversion training fails, reports the error gracefully.
* don't crash out on incompatible embeddings
- put try: blocks around places where the system tries to load an embedding
which is incompatible with the currently loaded model
* add support for checkpoint resuming
* textual inversion preferences are saved and restored between sessions
- Preferences are stored in a file named text-inversion-training/preferences.conf
- Currently the resume-from-checkpoint option is not working correctly. Possible
bug in textual_inversion_training.py?
* copy learned_embeddings.bin into right location
* add front end for diffusers model merging
- Front end doesn't do anything yet!!!!
- Made change to model name parsing in CLI to support ability to have merged models
with the "+" character in their names.
* improve inpainting experience
- recommend ckpt version of inpainting-1.5 to user
- fix get_noise() bug in ckpt version of omnibus.py
* update environment*yml
* tweak instructions to install HuggingFace token
* bump version number
* enhance update scripts
- update scripts will now fetch new INITIAL_MODELS.yaml so that
configure_invokeai.py will know about the diffusers versions.
* enhance invoke.sh/invoke.bat launchers
- added configure_invokeai.py to menu
- menu defaults to browser-based invoke
* remove conda workflow (#2321)
* fix `token_ids has shape torch.Size([79]) - expected [77]`
* update CHANGELOG.md with 2.3.* info
- Add information on how formats have changed and the upgrade process.
- Add short bug list.
Co-authored-by: Damian Stewart <d@damianstewart.com>
Co-authored-by: Damian Stewart <null@damianstewart.com>
Co-authored-by: Lincoln Stein <lincoln.stein@gmail.com>
Co-authored-by: Wybartel-luxmc <37852506+Wybartel-luxmc@users.noreply.github.com>
Co-authored-by: mauwii <Mauwii@outlook.de>
Co-authored-by: mickr777 <115216705+mickr777@users.noreply.github.com>
Co-authored-by: blessedcoolant <54517381+blessedcoolant@users.noreply.github.com>
Co-authored-by: Eugene Brodsky <ebr@users.noreply.github.com>
Co-authored-by: Matthias Wild <40327258+mauwii@users.noreply.github.com>
2023-01-15 14:22:46 +00:00
|
|
|
|
2023-02-03 15:04:32 +00:00
|
|
|
# sometimes there is a state_dict key and sometimes not
|
|
|
|
if 'state_dict' in checkpoint:
|
|
|
|
checkpoint = checkpoint["state_dict"]
|
use 🧨diffusers model (#1583)
* initial commit of DiffusionPipeline class
* spike: proof of concept using diffusers for txt2img
* doc: type hints for Generator
* refactor(model_cache): factor out load_ckpt
* model_cache: add ability to load a diffusers model pipeline
and update associated things in Generate & Generator to not instantly fail when that happens
* model_cache: fix model default image dimensions
* txt2img: support switching diffusers schedulers
* diffusers: let the scheduler do its scaling of the initial latents
Remove IPNDM scheduler; it is not behaving.
* web server: update image_progress callback for diffusers data
* diffusers: restore prompt weighting feature
* diffusers: fix set-sampler error following model switch
* diffusers: use InvokeAIDiffuserComponent for conditioning
* cross_attention_control: stub (no-op) implementations for diffusers
* model_cache: let offload_model work with DiffusionPipeline, sorta.
* models.yaml.example: add diffusers-format model, set as default
* test-invoke-conda: use diffusers-format model
test-invoke-conda: put huggingface-token where the library can use it
* environment-mac: upgrade to diffusers 0.7 (from 0.6)
this was already done for linux; mac must have been lost in the merge.
* preload_models: explicitly load diffusers models
In non-interactive mode too, as long as you're logged in.
* fix(model_cache): don't check `model.config` in diffusers format
clean-up from recent merge.
* diffusers integration: support img2img
* dev: upgrade to diffusers 0.8 (from 0.7.1)
We get to remove some code by using methods that were factored out in the base class.
* refactor: remove backported img2img.get_timesteps
now that we can use it directly from diffusers 0.8.1
* ci: use diffusers model
* dev: upgrade to diffusers 0.9 (from 0.8.1)
* lint: correct annotations for Python 3.9.
* lint: correct AttributeError.name reference for Python 3.9.
* CI: prefer diffusers-1.4 because it no longer requires a token
The RunwayML models still do.
* build: there's yet another place to update requirements?
* configure: try to download models even without token
Models in the CompVis and stabilityai repos no longer require them. (But runwayml still does.)
* configure: add troubleshooting info for config-not-found
* fix(configure): prepend root to config path
* fix(configure): remove second `default: true` from models example
* CI: simplify test-on-push logic now that we don't need secrets
The "test on push but only in forks" logic was only necessary when tests didn't work for PRs-from-forks.
* create an embedding_manager for diffusers
* internal: avoid importing diffusers DummyObject
see https://github.com/huggingface/diffusers/issues/1479
* fix "config attributes…not expected" diffusers warnings.
* fix deprecated scheduler construction
* work around an apparent MPS torch bug that causes conditioning to have no effect
* 🚧 post-rebase repair
* preliminary support for outpainting (no masking yet)
* monkey-patch diffusers.attention and use Invoke lowvram code
* add always_use_cpu arg to bypass MPS
* add cross-attention control support to diffusers (fails on MPS)
For unknown reasons MPS produces garbage output with .swap(). Use
--always_use_cpu arg to invoke.py for now to test this code on MPS.
* diffusers support for the inpainting model
* fix debug_image to not crash with non-RGB images.
* inpainting for the normal model [WIP]
This seems to be performing well until the LAST STEP, at which point it dissolves to confetti.
* fix off-by-one bug in cross-attention-control (#1774)
prompt token sequences begin with a "beginning-of-sequence" marker <bos> and end with a repeated "end-of-sequence" marker <eos> - to make a default prompt length of <bos> + 75 prompt tokens + <eos>. the .swap() code was failing to take the column for <bos> at index 0 into account. the changes here do that, and also add extra handling for a single <eos> (which may be redundant but which is included for completeness).
based on my understanding and some assumptions about how this all works, the reason .swap() nevertheless seemed to do the right thing, to some extent, is because over multiple steps the conditioning process in Stable Diffusion operates as a feedback loop. a change to token n-1 has flow-on effects to how the [1x4x64x64] latent tensor is modified by all the tokens after it, - and as the next step is processed, all the tokens before it as well. intuitively, a token's conditioning effects "echo" throughout the whole length of the prompt. so even though the token at n-1 was being edited when what the user actually wanted was to edit the token at n, it nevertheless still had some non-negligible effect, in roughly the right direction, often enough that it seemed like it was working properly.
* refactor common CrossAttention stuff into a mixin so that the old ldm code can still work if necessary
* inpainting for the normal model. I think it works this time.
* diffusers: reset num_vectors_per_token
sync with 44a00555718f1df173c60da0ed646cf700e29537
* diffusers: txt2img2img (hires_fix)
with so much slicing and dicing of pipeline methods to stitch them together
* refactor(diffusers): reduce some code duplication amongst the different tasks
* fixup! refactor(diffusers): reduce some code duplication amongst the different tasks
* diffusers: enable DPMSolver++ scheduler
* diffusers: upgrade to diffusers 0.10, add Heun scheduler
* diffusers(ModelCache): stopgap to make from_cpu compatible with diffusers
* CI: default to diffusers-1.5 now that runwayml token requirement is gone
* diffusers: update to 0.10 (and transformers to 4.25)
* diffusers: use xformers when available
diffusers no longer auto-enables this as of 0.10.2.
* diffusers: make masked img2img behave better with multi-step schedulers
re-randomizing the noise each step was confusing them.
* diffusers: work more better with more models.
fixed relative path problem with local models.
fixed models on hub not always having a `fp16` branch.
* diffusers: stopgap fix for attention_maps_callback crash after recent merge
* fixup import merge conflicts
correction for 061c5369a2247c6c92cd69606bcf54c4f1962a0b
* test: add tests/inpainting inputs for masked img2img
* diffusers(AddsMaskedGuidance): partial fix for k-schedulers
Prevents them from crashing, but results are still hot garbage.
* fix --safety_checker arg parsing
and add note to diffusers loader about where safety checker gets called
* generate: fix import error
* CI: don't try to read the old init location
* diffusers: support loading an alternate VAE
* CI: remove sh-syntax if-statement so it doesn't crash powershell
* CI: fold strings in yaml because backslash is not line-continuation in powershell
* attention maps callback stuff for diffusers
* build: fix syntax error in environment-mac
* diffusers: add INITIAL_MODELS with diffusers-compatible repos
* re-enable the embedding manager; closes #1778
* Squashed commit of the following:
commit e4a956abc37fcb5cf188388b76b617bc5c8fda7d
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:43:07 2022 +0100
import new load handling from EmbeddingManager and cleanup
commit c4abe91a5ba0d415b45bf734068385668b7a66e6
Merge: 032e856e 1efc6397
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:09:53 2022 +0100
Merge branch 'feature_textual_inversion_mgr' into dev/diffusers_with_textual_inversion_manager
commit 032e856eefb3bbc39534f5daafd25764bcfcef8b
Merge: 8b4f0fe9 bc515e24
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:08:01 2022 +0100
Merge remote-tracking branch 'upstream/dev/diffusers' into dev/diffusers_with_textual_inversion_manager
commit 1efc6397fc6e61c1aff4b0258b93089d61de5955
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:04:28 2022 +0100
cleanup and add performance notes
commit e400f804ac471a0ca2ba432fd658778b20c7bdab
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 14:45:07 2022 +0100
fix bug and update unit tests
commit deb9ae0ae1016750e93ce8275734061f7285a231
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 14:28:29 2022 +0100
textual inversion manager seems to work
commit 162e02505dec777e91a983c4d0fb52e950d25ff0
Merge: cbad4583 12769b3d
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:58:03 2022 +0100
Merge branch 'main' into feature_textual_inversion_mgr
commit cbad45836c6aace6871a90f2621a953f49433131
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:54:10 2022 +0100
use position embeddings
commit 070344c69b0e0db340a183857d0a787b348681d3
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:53:47 2022 +0100
Don't crash CLI on exceptions
commit b035ac8c6772dfd9ba41b8eeb9103181cda028f8
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:11:55 2022 +0100
add missing position_embeddings
commit 12769b3d3562ef71e0f54946b532ad077e10043c
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 13:33:25 2022 +0100
debugging why it don't work
commit bafb7215eabe1515ca5e8388fd3bb2f3ac5362cf
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 13:21:33 2022 +0100
debugging why it don't work
commit 664a6e9e146b42d96703f0cc8baf8f5efec04ee1
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 12:48:38 2022 +0100
use TextualInversionManager in place of embeddings (wip, doesn't work)
commit 8b4f0fe9d6e4e2643b36dfa27864294785d7ba4e
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 12:48:38 2022 +0100
use TextualInversionManager in place of embeddings (wip, doesn't work)
commit ffbe1ab11163ba712e353d89404e301d0e0c6cdf
Merge: 6e4dad60 023df37e
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:37:31 2022 +0100
Merge branch 'feature_textual_inversion_mgr' into dev/diffusers
commit 023df37efffa67434f77def7fc3c9dfb29f699fd
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:36:54 2022 +0100
cleanup
commit 05fac594eaf79d0058e3c48deee93df603f136c2
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:07:49 2022 +0100
tweak error checking
commit 009f32ed39a7280997c3ffab112adadee0b44279
Author: damian <null@damianstewart.com>
Date: Thu Dec 15 21:29:47 2022 +0100
unit tests passing for embeddings with vector length >1
commit beb1b08d9a98112ed2fe073580568e1a18698da3
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 13:39:09 2022 +0100
more explicit equality tests when overwriting
commit 44d8a5a7c85cdabc9ce3a54fd0769a10597b3ca9
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 13:30:13 2022 +0100
wip textual inversion manager (unit tests passing for 1v embedding overwriting)
commit 417c2b57d90924a839616bfb66804faab8039e4c
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 12:30:55 2022 +0100
wip textual inversion manager (unit tests passing for base stuff + padding)
commit 2e80872e3b6f7fd7d8eb8928822bd824b63cb2ff
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 10:57:57 2022 +0100
wip new TextualInversionManager
* stop using WeightedFrozenCLIPEmbedder
* store diffusion models locally
- configure_invokeai.py reconfigured to store diffusion models rather than
CompVis models
- hugging face caching model is used, but cache is set to ~/invokeai/models/repo_id
- models.yaml does **NOT** use path, just repo_id
- "repo_name" changed to "repo_id" to following hugging face conventions
- Models are loaded with full precision pending further work.
* allow non-local files during development
* path takes priority over repo_id
* MVP for model_cache and configure_invokeai
- Feature complete (almost)
- configure_invokeai.py downloads both .ckpt and diffuser models,
along with their VAEs. Both types of download are controlled by
a unified INITIAL_MODELS.yaml file.
- model_cache can load both type of model and switches back and forth
in CPU. No memory leaks detected
TO DO:
1. I have not yet turned on the LocalOnly flag for diffuser models, so
the code will check the Hugging Face repo for updates before using the
locally cached models. This will break firewalled systems. I am thinking
of putting in a global check for internet connectivity at startup time
and setting the LocalOnly flag based on this. It would be good to check
updates if there is connectivity.
2. I have not gone completely through INITIAL_MODELS.yaml to check which
models are available as diffusers and which are not. So models like
PaperCut and VoxelArt may not load properly. The runway and stability
models are checked, as well as the Trinart models.
3. Add stanzas for SD 2.0 and 2.1 in INITIAL_MODELS.yaml
REMAINING PROBLEMS NOT DIRECTLY RELATED TO MODEL_CACHE:
1. When loading a .ckpt file there are lots of messages like this:
Warning! ldm.modules.attention.CrossAttention is no longer being
maintained. Please use InvokeAICrossAttention instead.
I'm not sure how to address this.
2. The ckpt models ***don't actually run*** due to the lack of special-case
support for them in the generator objects. For example, here's the hard
crash you get when you run txt2img against the legacy waifu-diffusion-1.3
model:
```
>> An error occurred:
Traceback (most recent call last):
File "/data/lstein/InvokeAI/ldm/invoke/CLI.py", line 140, in main
main_loop(gen, opt)
File "/data/lstein/InvokeAI/ldm/invoke/CLI.py", line 371, in main_loop
gen.prompt2image(
File "/data/lstein/InvokeAI/ldm/generate.py", line 496, in prompt2image
results = generator.generate(
File "/data/lstein/InvokeAI/ldm/invoke/generator/base.py", line 108, in generate
image = make_image(x_T)
File "/data/lstein/InvokeAI/ldm/invoke/generator/txt2img.py", line 33, in make_image
pipeline_output = pipeline.image_from_embeddings(
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1265, in __getattr__
raise AttributeError("'{}' object has no attribute '{}'".format(
AttributeError: 'LatentDiffusion' object has no attribute 'image_from_embeddings'
```
3. The inpainting diffusion model isn't working. Here's the output of "banana
sushi" when inpainting-1.5 is loaded:
```
Traceback (most recent call last):
File "/data/lstein/InvokeAI/ldm/generate.py", line 496, in prompt2image
results = generator.generate(
File "/data/lstein/InvokeAI/ldm/invoke/generator/base.py", line 108, in generate
image = make_image(x_T)
File "/data/lstein/InvokeAI/ldm/invoke/generator/txt2img.py", line 33, in make_image
pipeline_output = pipeline.image_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 301, in image_from_embeddings
result_latents, result_attention_map_saver = self.latents_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 330, in latents_from_embeddings
result: PipelineIntermediateState = infer_latents_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 185, in __call__
for result in self.generator_method(*args, **kwargs):
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 367, in generate_latents_from_embeddings
step_output = self.step(batched_t, latents, guidance_scale,
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context
return func(*args, **kwargs)
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 409, in step
step_output = self.scheduler.step(noise_pred, timestep, latents, **extra_step_kwargs)
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/diffusers/schedulers/scheduling_lms_discrete.py", line 223, in step
pred_original_sample = sample - sigma * model_output
RuntimeError: The size of tensor a (9) must match the size of tensor b (4) at non-singleton dimension 1
```
* proper support for float32/float16
- configure script now correctly detects user's preference for
fp16/32 and downloads the correct diffuser version. If fp16
version not available, falls back to fp32 version.
- misc code cleanup and simplification in model_cache
* add on-the-fly conversion of .ckpt to diffusers models
1. On-the-fly conversion code can be found in the file ldm/invoke/ckpt_to_diffusers.py.
2. A new !optimize command has been added to the CLI. Should be ported to Web GUI.
User experience on the CLI is this:
```
invoke> !optimize /home/lstein/invokeai/models/ldm/stable-diffusion-v1/sd-v1-4.ckpt
INFO: Converting legacy weights file /home/lstein/invokeai/models/ldm/stable-diffusion-v1/sd-v1-4.ckpt to optimized diffuser model.
This operation will take 30-60s to complete.
Success. Optimized model is now located at /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
Writing new config file entry for sd-v1-4...
>> New configuration:
sd-v1-4:
description: Optimized version of sd-v1-4
format: diffusers
path: /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
OK to import [n]? y
>> Verifying that new model loads...
>> Current VRAM usage: 2.60G
>> Offloading stable-diffusion-2.1 to CPU
>> Loading diffusers model from /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
| Using faster float16 precision
You have disabled the safety checker for <class 'ldm.invoke.generator.diffusers_pipeline.StableDiffusionGeneratorPipeline'> by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion \
license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances,\
disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .
| training width x height = (512 x 512)
>> Model loaded in 3.48s
>> Max VRAM used to load the model: 2.17G
>> Current VRAM usage:2.17G
>> Textual inversions available:
>> Setting Sampler to k_lms (LMSDiscreteScheduler)
Keep model loaded? [y]
```
* add parallel set of generator files for ckpt legacy generation
* generation using legacy ckpt models now working
* diffusers: fix missing attention_maps_callback
fix for 23eb80b40421b2bb8f4b6d3dd30490d11c447b36
* associate legacy CrossAttention with .ckpt models
* enable autoconvert
New --autoconvert CLI option will scan a designated directory for
new .ckpt files, convert them into diffuser models, and import
them into models.yaml.
Works like this:
invoke.py --autoconvert /path/to/weights/directory
In ModelCache added two new methods:
autoconvert_weights(config_path, weights_directory_path, models_directory_path)
convert_and_import(ckpt_path, diffuser_path)
* diffusers: update to diffusers 0.11 (from 0.10.2)
* fix vae loading & width/height calculation
* refactor: encapsulate these conditioning data into one container
* diffusers: fix some noise-scaling issues by pushing the noise-mixing down to the common function
* add support for safetensors and accelerate
* set local_files_only when internet unreachable
* diffusers: fix error-handling path when model repo has no fp16 branch
* fix generatorinpaint error
Fixes :
"ModuleNotFoundError: No module named 'ldm.invoke.generatorinpaint'
https://github.com/invoke-ai/InvokeAI/pull/1583#issuecomment-1363634318
* quench diffuser safety-checker warning
* diffusers: support stochastic DDIM eta parameter
* fix conda env creation on macos
* fix cross-attention with diffusers 0.11
* diffusers: the VAE needs to be tiling as well as the U-Net
* diffusers: comment on subfolders
* diffusers: embiggen!
* diffusers: make model_cache.list_models serializable
* diffusers(inpaint): restore scaling functionality
* fix requirements clash between numba and numpy 1.24
* diffusers: allow inpainting model to do non-inpainting tasks
* start expanding model_cache functionality
* add import_ckpt_model() and import_diffuser_model() methods to model_manager
- in addition, model_cache.py is now renamed to model_manager.py
* allow "recommended" flag to be optional in INITIAL_MODELS.yaml
* configure_invokeai now downloads VAE diffusers in advance
* rename ModelCache to ModelManager
* remove support for `repo_name` in models.yaml
* check for and refuse to load embeddings trained on incompatible models
* models.yaml.example: s/repo_name/repo_id
and remove extra INITIAL_MODELS now that the main one has diffusers models in it.
* add MVP textual inversion script
* refactor(InvokeAIDiffuserComponent): factor out _combine()
* InvokeAIDiffuserComponent: implement threshold
* InvokeAIDiffuserComponent: diagnostic logs for threshold
...this does not look right
* add a curses-based frontend to textual inversion
- not quite working yet
- requires npyscreen installed
- on windows will also have the windows-curses requirement, but not added
to requirements yet
* add curses-based interface for textual inversion
* fix crash in convert_and_import()
- This corrects a "local variable referenced before assignment" error
in model_manager.convert_and_import()
* potential workaround for no 'state_dict' key error
- As reported in https://github.com/huggingface/diffusers/issues/1876
* create TI output dir if needed
* Update environment-lin-cuda.yml (#2159)
Fixing line 42 to be the proper order to define the transformers requirement: ~= instead of =~
* diffusers: update sampler-to-scheduler mapping
based on https://github.com/huggingface/diffusers/issues/277#issuecomment-1371428672
* improve user exp for ckt to diffusers conversion
- !optimize_models command now operates on an existing ckpt file entry in models.yaml
- replaces existing entry, rather than adding a new one
- offers to delete the ckpt file after conversion
* web: adapt progress callback to deal with old generator or new diffusers pipeline
* clean-up model_manager code
- add_model() verified to work for .ckpt local paths,
.ckpt remote URLs, diffusers local paths, and
diffusers repo_ids
- convert_and_import() verified to work for local and
remove .ckpt files
* handle edge cases for import_model() and convert_model()
* add support for safetensor .ckpt files
* fix name error
* code cleanup with pyflake
* improve model setting behavior
- If the user enters an invalid model name at startup time, will not
try to load it, warn, and use default model
- CLI UI enhancement: include currently active model in the command
line prompt.
* update test-invoke-pip.yml
- fix model cache path to point to runwayml/stable-diffusion-v1-5
- remove `skip-sd-weights` from configure_invokeai.py args
* exclude dev/diffusers from "fail for draft PRs"
* disable "fail on PR jobs"
* re-add `--skip-sd-weights` since no space
* update workflow environments
- include `INVOKE_MODEL_RECONFIGURE: '--yes'`
* clean up model load failure handling
- Allow CLI to run even when no model is defined or loadable.
- Inhibit stack trace when model load fails - only show last error
- Give user *option* to run configure_invokeai.py when no models
successfully load.
- Restart invokeai after reconfiguration.
* further edge-case handling
1) only one model in models.yaml file, and that model is broken
2) no models in models.yaml
3) models.yaml doesn't exist at all
* fix incorrect model status listing
- "cached" was not being returned from list_models()
- normalize handling of exceptions during model loading:
- Passing an invalid model name to generate.set_model() will return
a KeyError
- All other exceptions are returned as the appropriate Exception
* CI: do download weights (if not already cached)
* diffusers: fix scheduler loading in offline mode
* CI: fix model name (no longer has `diffusers-` prefix)
* Update txt2img2img.py (#2256)
* fixes to share models with HuggingFace cache system
- If HF_HOME environment variable is defined, then all huggingface models
are stored in that directory following the standard conventions.
- For seamless interoperability, set HF_HOME to ~/.cache/huggingface
- If HF_HOME not defined, then models are stored in ~/invokeai/models.
This is equivalent to setting HF_HOME to ~/invokeai/models
A future commit will add a migration mechanism so that this change doesn't
break previous installs.
* feat - make model storage compatible with hugging face caching system
This commit alters the InvokeAI model directory to be compatible with
hugging face, making it easier to share diffusers (and other models)
across different programs.
- If the HF_HOME environment variable is not set, then models are
cached in ~/invokeai/models in a format that is identical to the
HuggingFace cache.
- If HF_HOME is set, then models are cached wherever HF_HOME points.
- To enable sharing with other HuggingFace library clients, set
HF_HOME to ~/.cache/huggingface to set the default cache location
or to ~/invokeai/models to have huggingface cache inside InvokeAI.
* fixes to share models with HuggingFace cache system
- If HF_HOME environment variable is defined, then all huggingface models
are stored in that directory following the standard conventions.
- For seamless interoperability, set HF_HOME to ~/.cache/huggingface
- If HF_HOME not defined, then models are stored in ~/invokeai/models.
This is equivalent to setting HF_HOME to ~/invokeai/models
A future commit will add a migration mechanism so that this change doesn't
break previous installs.
* fix error "no attribute CkptInpaint"
* model_manager.list_models() returns entire model config stanza+status
* Initial Draft - Model Manager Diffusers
* added hash function to diffusers
* implement sha256 hashes on diffusers models
* Add Model Manager Support for Diffusers
* fix various problems with model manager
- in cli import functions, fix not enough values to unpack from
_get_name_and_desc()
- fix crash when using old-style vae: value with new-style diffuser
* rebuild frontend
* fix dictconfig-not-serializable issue
* fix NoneType' object is not subscriptable crash in model_manager
* fix "str has no attribute get" error in model_manager list_models()
* Add path and repo_id support for Diffusers Model Manager
Also fixes bugs
* Fix tooltip IT localization not working
* Add Version Number To WebUI
* Optimize Model Search
* Fix incorrect font on the Model Manager UI
* Fix image degradation on merge fixes - [Experimental]
This change should effectively fix a couple of things.
- Fix image degradation on subsequent merges of the canvas layers.
- Fix the slight transparent border that is left behind when filling the bounding box with a color.
- Fix the left over line of color when filling a bounding box with color.
So far there are no side effects for this. If any, please report.
* Add local model filtering for Diffusers / Checkpoints
* Go to home on modal close for the Add Modal UI
* Styling Fixes
* Model Manager Diffusers Localization Update
* Add Safe Tensor scanning to Model Manager
* Fix model edit form dispatching string values instead of numbers.
* Resolve VAE handling / edge cases for supplied repos
* defer injecting tokens for textual inversions until they're used for the first time
* squash a console warning
* implement model migration check
* add_model() overwrites previous config rather than merges
* fix model config file attribute merging
* fix precision handling in textual inversion script
* allow ckpt conversion script to work with safetensors .ckpts
Applied patch here:
https://github.com/huggingface/diffusers/commit/beb932c5d111872c5e45387e7b1b2b3dd0524a47
* fix name "args" is not defined crash in textual_inversion_training
* fix a second NameError: name 'args' is not defined crash
* fix loading of the safety checker from the global cache dir
* add installation step to textual inversion frontend
- After a successful training run, the script will copy learned_embeds.bin
to a subfolder of the embeddings directory.
- User given the option to delete the logs and intermediate checkpoints
(which together use 7-8G of space)
- If textual inversion training fails, reports the error gracefully.
* don't crash out on incompatible embeddings
- put try: blocks around places where the system tries to load an embedding
which is incompatible with the currently loaded model
* add support for checkpoint resuming
* textual inversion preferences are saved and restored between sessions
- Preferences are stored in a file named text-inversion-training/preferences.conf
- Currently the resume-from-checkpoint option is not working correctly. Possible
bug in textual_inversion_training.py?
* copy learned_embeddings.bin into right location
* add front end for diffusers model merging
- Front end doesn't do anything yet!!!!
- Made change to model name parsing in CLI to support ability to have merged models
with the "+" character in their names.
* improve inpainting experience
- recommend ckpt version of inpainting-1.5 to user
- fix get_noise() bug in ckpt version of omnibus.py
* update environment*yml
* tweak instructions to install HuggingFace token
* bump version number
* enhance update scripts
- update scripts will now fetch new INITIAL_MODELS.yaml so that
configure_invokeai.py will know about the diffusers versions.
* enhance invoke.sh/invoke.bat launchers
- added configure_invokeai.py to menu
- menu defaults to browser-based invoke
* remove conda workflow (#2321)
* fix `token_ids has shape torch.Size([79]) - expected [77]`
* update CHANGELOG.md with 2.3.* info
- Add information on how formats have changed and the upgrade process.
- Add short bug list.
Co-authored-by: Damian Stewart <d@damianstewart.com>
Co-authored-by: Damian Stewart <null@damianstewart.com>
Co-authored-by: Lincoln Stein <lincoln.stein@gmail.com>
Co-authored-by: Wybartel-luxmc <37852506+Wybartel-luxmc@users.noreply.github.com>
Co-authored-by: mauwii <Mauwii@outlook.de>
Co-authored-by: mickr777 <115216705+mickr777@users.noreply.github.com>
Co-authored-by: blessedcoolant <54517381+blessedcoolant@users.noreply.github.com>
Co-authored-by: Eugene Brodsky <ebr@users.noreply.github.com>
Co-authored-by: Matthias Wild <40327258+mauwii@users.noreply.github.com>
2023-01-15 14:22:46 +00:00
|
|
|
|
2023-02-03 15:04:32 +00:00
|
|
|
upcast_attention = False
|
|
|
|
if original_config_file is None:
|
2023-02-23 20:43:58 +00:00
|
|
|
model_type = ModelManager.probe_model_type(checkpoint)
|
|
|
|
|
|
|
|
if model_type == SDLegacyType.V2:
|
2023-02-06 14:35:23 +00:00
|
|
|
original_config_file = global_config_dir() / 'stable-diffusion' / 'v2-inference-v.yaml'
|
2023-02-03 15:04:32 +00:00
|
|
|
if global_step == 110000:
|
|
|
|
# v2.1 needs to upcast attention
|
|
|
|
upcast_attention = True
|
2023-02-23 20:43:58 +00:00
|
|
|
|
|
|
|
elif model_type == SDLegacyType.V1_INPAINT:
|
2023-02-06 14:35:23 +00:00
|
|
|
original_config_file = global_config_dir() / 'stable-diffusion' / 'v1-inpainting-inference.yaml'
|
2023-02-23 20:43:58 +00:00
|
|
|
|
|
|
|
elif model_type == SDLegacyType.V1:
|
2023-02-06 14:35:23 +00:00
|
|
|
original_config_file = global_config_dir() / 'stable-diffusion' / 'v1-inference.yaml'
|
2023-02-03 15:04:32 +00:00
|
|
|
|
2023-02-23 20:43:58 +00:00
|
|
|
else:
|
|
|
|
raise Exception('Unknown checkpoint type')
|
|
|
|
|
2023-02-03 15:04:32 +00:00
|
|
|
original_config = OmegaConf.load(original_config_file)
|
|
|
|
|
|
|
|
if num_in_channels is not None:
|
|
|
|
original_config["model"]["params"]["unet_config"]["params"]["in_channels"] = num_in_channels
|
|
|
|
|
|
|
|
if (
|
|
|
|
"parameterization" in original_config["model"]["params"]
|
|
|
|
and original_config["model"]["params"]["parameterization"] == "v"
|
|
|
|
):
|
|
|
|
if prediction_type is None:
|
|
|
|
# NOTE: For stable diffusion 2 base it is recommended to pass `prediction_type=="epsilon"`
|
|
|
|
# as it relies on a brittle global step parameter here
|
|
|
|
prediction_type = "epsilon" if global_step == 875000 else "v_prediction"
|
|
|
|
if image_size is None:
|
|
|
|
# NOTE: For stable diffusion 2 base one has to pass `image_size==512`
|
|
|
|
# as it relies on a brittle global step parameter here
|
|
|
|
image_size = 512 if global_step == 875000 else 768
|
use 🧨diffusers model (#1583)
* initial commit of DiffusionPipeline class
* spike: proof of concept using diffusers for txt2img
* doc: type hints for Generator
* refactor(model_cache): factor out load_ckpt
* model_cache: add ability to load a diffusers model pipeline
and update associated things in Generate & Generator to not instantly fail when that happens
* model_cache: fix model default image dimensions
* txt2img: support switching diffusers schedulers
* diffusers: let the scheduler do its scaling of the initial latents
Remove IPNDM scheduler; it is not behaving.
* web server: update image_progress callback for diffusers data
* diffusers: restore prompt weighting feature
* diffusers: fix set-sampler error following model switch
* diffusers: use InvokeAIDiffuserComponent for conditioning
* cross_attention_control: stub (no-op) implementations for diffusers
* model_cache: let offload_model work with DiffusionPipeline, sorta.
* models.yaml.example: add diffusers-format model, set as default
* test-invoke-conda: use diffusers-format model
test-invoke-conda: put huggingface-token where the library can use it
* environment-mac: upgrade to diffusers 0.7 (from 0.6)
this was already done for linux; mac must have been lost in the merge.
* preload_models: explicitly load diffusers models
In non-interactive mode too, as long as you're logged in.
* fix(model_cache): don't check `model.config` in diffusers format
clean-up from recent merge.
* diffusers integration: support img2img
* dev: upgrade to diffusers 0.8 (from 0.7.1)
We get to remove some code by using methods that were factored out in the base class.
* refactor: remove backported img2img.get_timesteps
now that we can use it directly from diffusers 0.8.1
* ci: use diffusers model
* dev: upgrade to diffusers 0.9 (from 0.8.1)
* lint: correct annotations for Python 3.9.
* lint: correct AttributeError.name reference for Python 3.9.
* CI: prefer diffusers-1.4 because it no longer requires a token
The RunwayML models still do.
* build: there's yet another place to update requirements?
* configure: try to download models even without token
Models in the CompVis and stabilityai repos no longer require them. (But runwayml still does.)
* configure: add troubleshooting info for config-not-found
* fix(configure): prepend root to config path
* fix(configure): remove second `default: true` from models example
* CI: simplify test-on-push logic now that we don't need secrets
The "test on push but only in forks" logic was only necessary when tests didn't work for PRs-from-forks.
* create an embedding_manager for diffusers
* internal: avoid importing diffusers DummyObject
see https://github.com/huggingface/diffusers/issues/1479
* fix "config attributes…not expected" diffusers warnings.
* fix deprecated scheduler construction
* work around an apparent MPS torch bug that causes conditioning to have no effect
* 🚧 post-rebase repair
* preliminary support for outpainting (no masking yet)
* monkey-patch diffusers.attention and use Invoke lowvram code
* add always_use_cpu arg to bypass MPS
* add cross-attention control support to diffusers (fails on MPS)
For unknown reasons MPS produces garbage output with .swap(). Use
--always_use_cpu arg to invoke.py for now to test this code on MPS.
* diffusers support for the inpainting model
* fix debug_image to not crash with non-RGB images.
* inpainting for the normal model [WIP]
This seems to be performing well until the LAST STEP, at which point it dissolves to confetti.
* fix off-by-one bug in cross-attention-control (#1774)
prompt token sequences begin with a "beginning-of-sequence" marker <bos> and end with a repeated "end-of-sequence" marker <eos> - to make a default prompt length of <bos> + 75 prompt tokens + <eos>. the .swap() code was failing to take the column for <bos> at index 0 into account. the changes here do that, and also add extra handling for a single <eos> (which may be redundant but which is included for completeness).
based on my understanding and some assumptions about how this all works, the reason .swap() nevertheless seemed to do the right thing, to some extent, is because over multiple steps the conditioning process in Stable Diffusion operates as a feedback loop. a change to token n-1 has flow-on effects to how the [1x4x64x64] latent tensor is modified by all the tokens after it, - and as the next step is processed, all the tokens before it as well. intuitively, a token's conditioning effects "echo" throughout the whole length of the prompt. so even though the token at n-1 was being edited when what the user actually wanted was to edit the token at n, it nevertheless still had some non-negligible effect, in roughly the right direction, often enough that it seemed like it was working properly.
* refactor common CrossAttention stuff into a mixin so that the old ldm code can still work if necessary
* inpainting for the normal model. I think it works this time.
* diffusers: reset num_vectors_per_token
sync with 44a00555718f1df173c60da0ed646cf700e29537
* diffusers: txt2img2img (hires_fix)
with so much slicing and dicing of pipeline methods to stitch them together
* refactor(diffusers): reduce some code duplication amongst the different tasks
* fixup! refactor(diffusers): reduce some code duplication amongst the different tasks
* diffusers: enable DPMSolver++ scheduler
* diffusers: upgrade to diffusers 0.10, add Heun scheduler
* diffusers(ModelCache): stopgap to make from_cpu compatible with diffusers
* CI: default to diffusers-1.5 now that runwayml token requirement is gone
* diffusers: update to 0.10 (and transformers to 4.25)
* diffusers: use xformers when available
diffusers no longer auto-enables this as of 0.10.2.
* diffusers: make masked img2img behave better with multi-step schedulers
re-randomizing the noise each step was confusing them.
* diffusers: work more better with more models.
fixed relative path problem with local models.
fixed models on hub not always having a `fp16` branch.
* diffusers: stopgap fix for attention_maps_callback crash after recent merge
* fixup import merge conflicts
correction for 061c5369a2247c6c92cd69606bcf54c4f1962a0b
* test: add tests/inpainting inputs for masked img2img
* diffusers(AddsMaskedGuidance): partial fix for k-schedulers
Prevents them from crashing, but results are still hot garbage.
* fix --safety_checker arg parsing
and add note to diffusers loader about where safety checker gets called
* generate: fix import error
* CI: don't try to read the old init location
* diffusers: support loading an alternate VAE
* CI: remove sh-syntax if-statement so it doesn't crash powershell
* CI: fold strings in yaml because backslash is not line-continuation in powershell
* attention maps callback stuff for diffusers
* build: fix syntax error in environment-mac
* diffusers: add INITIAL_MODELS with diffusers-compatible repos
* re-enable the embedding manager; closes #1778
* Squashed commit of the following:
commit e4a956abc37fcb5cf188388b76b617bc5c8fda7d
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:43:07 2022 +0100
import new load handling from EmbeddingManager and cleanup
commit c4abe91a5ba0d415b45bf734068385668b7a66e6
Merge: 032e856e 1efc6397
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:09:53 2022 +0100
Merge branch 'feature_textual_inversion_mgr' into dev/diffusers_with_textual_inversion_manager
commit 032e856eefb3bbc39534f5daafd25764bcfcef8b
Merge: 8b4f0fe9 bc515e24
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:08:01 2022 +0100
Merge remote-tracking branch 'upstream/dev/diffusers' into dev/diffusers_with_textual_inversion_manager
commit 1efc6397fc6e61c1aff4b0258b93089d61de5955
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:04:28 2022 +0100
cleanup and add performance notes
commit e400f804ac471a0ca2ba432fd658778b20c7bdab
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 14:45:07 2022 +0100
fix bug and update unit tests
commit deb9ae0ae1016750e93ce8275734061f7285a231
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 14:28:29 2022 +0100
textual inversion manager seems to work
commit 162e02505dec777e91a983c4d0fb52e950d25ff0
Merge: cbad4583 12769b3d
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:58:03 2022 +0100
Merge branch 'main' into feature_textual_inversion_mgr
commit cbad45836c6aace6871a90f2621a953f49433131
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:54:10 2022 +0100
use position embeddings
commit 070344c69b0e0db340a183857d0a787b348681d3
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:53:47 2022 +0100
Don't crash CLI on exceptions
commit b035ac8c6772dfd9ba41b8eeb9103181cda028f8
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:11:55 2022 +0100
add missing position_embeddings
commit 12769b3d3562ef71e0f54946b532ad077e10043c
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 13:33:25 2022 +0100
debugging why it don't work
commit bafb7215eabe1515ca5e8388fd3bb2f3ac5362cf
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 13:21:33 2022 +0100
debugging why it don't work
commit 664a6e9e146b42d96703f0cc8baf8f5efec04ee1
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 12:48:38 2022 +0100
use TextualInversionManager in place of embeddings (wip, doesn't work)
commit 8b4f0fe9d6e4e2643b36dfa27864294785d7ba4e
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 12:48:38 2022 +0100
use TextualInversionManager in place of embeddings (wip, doesn't work)
commit ffbe1ab11163ba712e353d89404e301d0e0c6cdf
Merge: 6e4dad60 023df37e
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:37:31 2022 +0100
Merge branch 'feature_textual_inversion_mgr' into dev/diffusers
commit 023df37efffa67434f77def7fc3c9dfb29f699fd
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:36:54 2022 +0100
cleanup
commit 05fac594eaf79d0058e3c48deee93df603f136c2
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:07:49 2022 +0100
tweak error checking
commit 009f32ed39a7280997c3ffab112adadee0b44279
Author: damian <null@damianstewart.com>
Date: Thu Dec 15 21:29:47 2022 +0100
unit tests passing for embeddings with vector length >1
commit beb1b08d9a98112ed2fe073580568e1a18698da3
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 13:39:09 2022 +0100
more explicit equality tests when overwriting
commit 44d8a5a7c85cdabc9ce3a54fd0769a10597b3ca9
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 13:30:13 2022 +0100
wip textual inversion manager (unit tests passing for 1v embedding overwriting)
commit 417c2b57d90924a839616bfb66804faab8039e4c
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 12:30:55 2022 +0100
wip textual inversion manager (unit tests passing for base stuff + padding)
commit 2e80872e3b6f7fd7d8eb8928822bd824b63cb2ff
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 10:57:57 2022 +0100
wip new TextualInversionManager
* stop using WeightedFrozenCLIPEmbedder
* store diffusion models locally
- configure_invokeai.py reconfigured to store diffusion models rather than
CompVis models
- hugging face caching model is used, but cache is set to ~/invokeai/models/repo_id
- models.yaml does **NOT** use path, just repo_id
- "repo_name" changed to "repo_id" to following hugging face conventions
- Models are loaded with full precision pending further work.
* allow non-local files during development
* path takes priority over repo_id
* MVP for model_cache and configure_invokeai
- Feature complete (almost)
- configure_invokeai.py downloads both .ckpt and diffuser models,
along with their VAEs. Both types of download are controlled by
a unified INITIAL_MODELS.yaml file.
- model_cache can load both type of model and switches back and forth
in CPU. No memory leaks detected
TO DO:
1. I have not yet turned on the LocalOnly flag for diffuser models, so
the code will check the Hugging Face repo for updates before using the
locally cached models. This will break firewalled systems. I am thinking
of putting in a global check for internet connectivity at startup time
and setting the LocalOnly flag based on this. It would be good to check
updates if there is connectivity.
2. I have not gone completely through INITIAL_MODELS.yaml to check which
models are available as diffusers and which are not. So models like
PaperCut and VoxelArt may not load properly. The runway and stability
models are checked, as well as the Trinart models.
3. Add stanzas for SD 2.0 and 2.1 in INITIAL_MODELS.yaml
REMAINING PROBLEMS NOT DIRECTLY RELATED TO MODEL_CACHE:
1. When loading a .ckpt file there are lots of messages like this:
Warning! ldm.modules.attention.CrossAttention is no longer being
maintained. Please use InvokeAICrossAttention instead.
I'm not sure how to address this.
2. The ckpt models ***don't actually run*** due to the lack of special-case
support for them in the generator objects. For example, here's the hard
crash you get when you run txt2img against the legacy waifu-diffusion-1.3
model:
```
>> An error occurred:
Traceback (most recent call last):
File "/data/lstein/InvokeAI/ldm/invoke/CLI.py", line 140, in main
main_loop(gen, opt)
File "/data/lstein/InvokeAI/ldm/invoke/CLI.py", line 371, in main_loop
gen.prompt2image(
File "/data/lstein/InvokeAI/ldm/generate.py", line 496, in prompt2image
results = generator.generate(
File "/data/lstein/InvokeAI/ldm/invoke/generator/base.py", line 108, in generate
image = make_image(x_T)
File "/data/lstein/InvokeAI/ldm/invoke/generator/txt2img.py", line 33, in make_image
pipeline_output = pipeline.image_from_embeddings(
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1265, in __getattr__
raise AttributeError("'{}' object has no attribute '{}'".format(
AttributeError: 'LatentDiffusion' object has no attribute 'image_from_embeddings'
```
3. The inpainting diffusion model isn't working. Here's the output of "banana
sushi" when inpainting-1.5 is loaded:
```
Traceback (most recent call last):
File "/data/lstein/InvokeAI/ldm/generate.py", line 496, in prompt2image
results = generator.generate(
File "/data/lstein/InvokeAI/ldm/invoke/generator/base.py", line 108, in generate
image = make_image(x_T)
File "/data/lstein/InvokeAI/ldm/invoke/generator/txt2img.py", line 33, in make_image
pipeline_output = pipeline.image_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 301, in image_from_embeddings
result_latents, result_attention_map_saver = self.latents_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 330, in latents_from_embeddings
result: PipelineIntermediateState = infer_latents_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 185, in __call__
for result in self.generator_method(*args, **kwargs):
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 367, in generate_latents_from_embeddings
step_output = self.step(batched_t, latents, guidance_scale,
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context
return func(*args, **kwargs)
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 409, in step
step_output = self.scheduler.step(noise_pred, timestep, latents, **extra_step_kwargs)
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/diffusers/schedulers/scheduling_lms_discrete.py", line 223, in step
pred_original_sample = sample - sigma * model_output
RuntimeError: The size of tensor a (9) must match the size of tensor b (4) at non-singleton dimension 1
```
* proper support for float32/float16
- configure script now correctly detects user's preference for
fp16/32 and downloads the correct diffuser version. If fp16
version not available, falls back to fp32 version.
- misc code cleanup and simplification in model_cache
* add on-the-fly conversion of .ckpt to diffusers models
1. On-the-fly conversion code can be found in the file ldm/invoke/ckpt_to_diffusers.py.
2. A new !optimize command has been added to the CLI. Should be ported to Web GUI.
User experience on the CLI is this:
```
invoke> !optimize /home/lstein/invokeai/models/ldm/stable-diffusion-v1/sd-v1-4.ckpt
INFO: Converting legacy weights file /home/lstein/invokeai/models/ldm/stable-diffusion-v1/sd-v1-4.ckpt to optimized diffuser model.
This operation will take 30-60s to complete.
Success. Optimized model is now located at /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
Writing new config file entry for sd-v1-4...
>> New configuration:
sd-v1-4:
description: Optimized version of sd-v1-4
format: diffusers
path: /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
OK to import [n]? y
>> Verifying that new model loads...
>> Current VRAM usage: 2.60G
>> Offloading stable-diffusion-2.1 to CPU
>> Loading diffusers model from /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
| Using faster float16 precision
You have disabled the safety checker for <class 'ldm.invoke.generator.diffusers_pipeline.StableDiffusionGeneratorPipeline'> by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion \
license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances,\
disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .
| training width x height = (512 x 512)
>> Model loaded in 3.48s
>> Max VRAM used to load the model: 2.17G
>> Current VRAM usage:2.17G
>> Textual inversions available:
>> Setting Sampler to k_lms (LMSDiscreteScheduler)
Keep model loaded? [y]
```
* add parallel set of generator files for ckpt legacy generation
* generation using legacy ckpt models now working
* diffusers: fix missing attention_maps_callback
fix for 23eb80b40421b2bb8f4b6d3dd30490d11c447b36
* associate legacy CrossAttention with .ckpt models
* enable autoconvert
New --autoconvert CLI option will scan a designated directory for
new .ckpt files, convert them into diffuser models, and import
them into models.yaml.
Works like this:
invoke.py --autoconvert /path/to/weights/directory
In ModelCache added two new methods:
autoconvert_weights(config_path, weights_directory_path, models_directory_path)
convert_and_import(ckpt_path, diffuser_path)
* diffusers: update to diffusers 0.11 (from 0.10.2)
* fix vae loading & width/height calculation
* refactor: encapsulate these conditioning data into one container
* diffusers: fix some noise-scaling issues by pushing the noise-mixing down to the common function
* add support for safetensors and accelerate
* set local_files_only when internet unreachable
* diffusers: fix error-handling path when model repo has no fp16 branch
* fix generatorinpaint error
Fixes :
"ModuleNotFoundError: No module named 'ldm.invoke.generatorinpaint'
https://github.com/invoke-ai/InvokeAI/pull/1583#issuecomment-1363634318
* quench diffuser safety-checker warning
* diffusers: support stochastic DDIM eta parameter
* fix conda env creation on macos
* fix cross-attention with diffusers 0.11
* diffusers: the VAE needs to be tiling as well as the U-Net
* diffusers: comment on subfolders
* diffusers: embiggen!
* diffusers: make model_cache.list_models serializable
* diffusers(inpaint): restore scaling functionality
* fix requirements clash between numba and numpy 1.24
* diffusers: allow inpainting model to do non-inpainting tasks
* start expanding model_cache functionality
* add import_ckpt_model() and import_diffuser_model() methods to model_manager
- in addition, model_cache.py is now renamed to model_manager.py
* allow "recommended" flag to be optional in INITIAL_MODELS.yaml
* configure_invokeai now downloads VAE diffusers in advance
* rename ModelCache to ModelManager
* remove support for `repo_name` in models.yaml
* check for and refuse to load embeddings trained on incompatible models
* models.yaml.example: s/repo_name/repo_id
and remove extra INITIAL_MODELS now that the main one has diffusers models in it.
* add MVP textual inversion script
* refactor(InvokeAIDiffuserComponent): factor out _combine()
* InvokeAIDiffuserComponent: implement threshold
* InvokeAIDiffuserComponent: diagnostic logs for threshold
...this does not look right
* add a curses-based frontend to textual inversion
- not quite working yet
- requires npyscreen installed
- on windows will also have the windows-curses requirement, but not added
to requirements yet
* add curses-based interface for textual inversion
* fix crash in convert_and_import()
- This corrects a "local variable referenced before assignment" error
in model_manager.convert_and_import()
* potential workaround for no 'state_dict' key error
- As reported in https://github.com/huggingface/diffusers/issues/1876
* create TI output dir if needed
* Update environment-lin-cuda.yml (#2159)
Fixing line 42 to be the proper order to define the transformers requirement: ~= instead of =~
* diffusers: update sampler-to-scheduler mapping
based on https://github.com/huggingface/diffusers/issues/277#issuecomment-1371428672
* improve user exp for ckt to diffusers conversion
- !optimize_models command now operates on an existing ckpt file entry in models.yaml
- replaces existing entry, rather than adding a new one
- offers to delete the ckpt file after conversion
* web: adapt progress callback to deal with old generator or new diffusers pipeline
* clean-up model_manager code
- add_model() verified to work for .ckpt local paths,
.ckpt remote URLs, diffusers local paths, and
diffusers repo_ids
- convert_and_import() verified to work for local and
remove .ckpt files
* handle edge cases for import_model() and convert_model()
* add support for safetensor .ckpt files
* fix name error
* code cleanup with pyflake
* improve model setting behavior
- If the user enters an invalid model name at startup time, will not
try to load it, warn, and use default model
- CLI UI enhancement: include currently active model in the command
line prompt.
* update test-invoke-pip.yml
- fix model cache path to point to runwayml/stable-diffusion-v1-5
- remove `skip-sd-weights` from configure_invokeai.py args
* exclude dev/diffusers from "fail for draft PRs"
* disable "fail on PR jobs"
* re-add `--skip-sd-weights` since no space
* update workflow environments
- include `INVOKE_MODEL_RECONFIGURE: '--yes'`
* clean up model load failure handling
- Allow CLI to run even when no model is defined or loadable.
- Inhibit stack trace when model load fails - only show last error
- Give user *option* to run configure_invokeai.py when no models
successfully load.
- Restart invokeai after reconfiguration.
* further edge-case handling
1) only one model in models.yaml file, and that model is broken
2) no models in models.yaml
3) models.yaml doesn't exist at all
* fix incorrect model status listing
- "cached" was not being returned from list_models()
- normalize handling of exceptions during model loading:
- Passing an invalid model name to generate.set_model() will return
a KeyError
- All other exceptions are returned as the appropriate Exception
* CI: do download weights (if not already cached)
* diffusers: fix scheduler loading in offline mode
* CI: fix model name (no longer has `diffusers-` prefix)
* Update txt2img2img.py (#2256)
* fixes to share models with HuggingFace cache system
- If HF_HOME environment variable is defined, then all huggingface models
are stored in that directory following the standard conventions.
- For seamless interoperability, set HF_HOME to ~/.cache/huggingface
- If HF_HOME not defined, then models are stored in ~/invokeai/models.
This is equivalent to setting HF_HOME to ~/invokeai/models
A future commit will add a migration mechanism so that this change doesn't
break previous installs.
* feat - make model storage compatible with hugging face caching system
This commit alters the InvokeAI model directory to be compatible with
hugging face, making it easier to share diffusers (and other models)
across different programs.
- If the HF_HOME environment variable is not set, then models are
cached in ~/invokeai/models in a format that is identical to the
HuggingFace cache.
- If HF_HOME is set, then models are cached wherever HF_HOME points.
- To enable sharing with other HuggingFace library clients, set
HF_HOME to ~/.cache/huggingface to set the default cache location
or to ~/invokeai/models to have huggingface cache inside InvokeAI.
* fixes to share models with HuggingFace cache system
- If HF_HOME environment variable is defined, then all huggingface models
are stored in that directory following the standard conventions.
- For seamless interoperability, set HF_HOME to ~/.cache/huggingface
- If HF_HOME not defined, then models are stored in ~/invokeai/models.
This is equivalent to setting HF_HOME to ~/invokeai/models
A future commit will add a migration mechanism so that this change doesn't
break previous installs.
* fix error "no attribute CkptInpaint"
* model_manager.list_models() returns entire model config stanza+status
* Initial Draft - Model Manager Diffusers
* added hash function to diffusers
* implement sha256 hashes on diffusers models
* Add Model Manager Support for Diffusers
* fix various problems with model manager
- in cli import functions, fix not enough values to unpack from
_get_name_and_desc()
- fix crash when using old-style vae: value with new-style diffuser
* rebuild frontend
* fix dictconfig-not-serializable issue
* fix NoneType' object is not subscriptable crash in model_manager
* fix "str has no attribute get" error in model_manager list_models()
* Add path and repo_id support for Diffusers Model Manager
Also fixes bugs
* Fix tooltip IT localization not working
* Add Version Number To WebUI
* Optimize Model Search
* Fix incorrect font on the Model Manager UI
* Fix image degradation on merge fixes - [Experimental]
This change should effectively fix a couple of things.
- Fix image degradation on subsequent merges of the canvas layers.
- Fix the slight transparent border that is left behind when filling the bounding box with a color.
- Fix the left over line of color when filling a bounding box with color.
So far there are no side effects for this. If any, please report.
* Add local model filtering for Diffusers / Checkpoints
* Go to home on modal close for the Add Modal UI
* Styling Fixes
* Model Manager Diffusers Localization Update
* Add Safe Tensor scanning to Model Manager
* Fix model edit form dispatching string values instead of numbers.
* Resolve VAE handling / edge cases for supplied repos
* defer injecting tokens for textual inversions until they're used for the first time
* squash a console warning
* implement model migration check
* add_model() overwrites previous config rather than merges
* fix model config file attribute merging
* fix precision handling in textual inversion script
* allow ckpt conversion script to work with safetensors .ckpts
Applied patch here:
https://github.com/huggingface/diffusers/commit/beb932c5d111872c5e45387e7b1b2b3dd0524a47
* fix name "args" is not defined crash in textual_inversion_training
* fix a second NameError: name 'args' is not defined crash
* fix loading of the safety checker from the global cache dir
* add installation step to textual inversion frontend
- After a successful training run, the script will copy learned_embeds.bin
to a subfolder of the embeddings directory.
- User given the option to delete the logs and intermediate checkpoints
(which together use 7-8G of space)
- If textual inversion training fails, reports the error gracefully.
* don't crash out on incompatible embeddings
- put try: blocks around places where the system tries to load an embedding
which is incompatible with the currently loaded model
* add support for checkpoint resuming
* textual inversion preferences are saved and restored between sessions
- Preferences are stored in a file named text-inversion-training/preferences.conf
- Currently the resume-from-checkpoint option is not working correctly. Possible
bug in textual_inversion_training.py?
* copy learned_embeddings.bin into right location
* add front end for diffusers model merging
- Front end doesn't do anything yet!!!!
- Made change to model name parsing in CLI to support ability to have merged models
with the "+" character in their names.
* improve inpainting experience
- recommend ckpt version of inpainting-1.5 to user
- fix get_noise() bug in ckpt version of omnibus.py
* update environment*yml
* tweak instructions to install HuggingFace token
* bump version number
* enhance update scripts
- update scripts will now fetch new INITIAL_MODELS.yaml so that
configure_invokeai.py will know about the diffusers versions.
* enhance invoke.sh/invoke.bat launchers
- added configure_invokeai.py to menu
- menu defaults to browser-based invoke
* remove conda workflow (#2321)
* fix `token_ids has shape torch.Size([79]) - expected [77]`
* update CHANGELOG.md with 2.3.* info
- Add information on how formats have changed and the upgrade process.
- Add short bug list.
Co-authored-by: Damian Stewart <d@damianstewart.com>
Co-authored-by: Damian Stewart <null@damianstewart.com>
Co-authored-by: Lincoln Stein <lincoln.stein@gmail.com>
Co-authored-by: Wybartel-luxmc <37852506+Wybartel-luxmc@users.noreply.github.com>
Co-authored-by: mauwii <Mauwii@outlook.de>
Co-authored-by: mickr777 <115216705+mickr777@users.noreply.github.com>
Co-authored-by: blessedcoolant <54517381+blessedcoolant@users.noreply.github.com>
Co-authored-by: Eugene Brodsky <ebr@users.noreply.github.com>
Co-authored-by: Matthias Wild <40327258+mauwii@users.noreply.github.com>
2023-01-15 14:22:46 +00:00
|
|
|
else:
|
2023-02-03 15:04:32 +00:00
|
|
|
if prediction_type is None:
|
|
|
|
prediction_type = "epsilon"
|
|
|
|
if image_size is None:
|
|
|
|
image_size = 512
|
|
|
|
|
|
|
|
num_train_timesteps = original_config.model.params.timesteps
|
|
|
|
beta_start = original_config.model.params.linear_start
|
|
|
|
beta_end = original_config.model.params.linear_end
|
|
|
|
|
|
|
|
scheduler = DDIMScheduler(
|
|
|
|
beta_end=beta_end,
|
|
|
|
beta_schedule="scaled_linear",
|
|
|
|
beta_start=beta_start,
|
|
|
|
num_train_timesteps=num_train_timesteps,
|
|
|
|
steps_offset=1,
|
|
|
|
clip_sample=False,
|
|
|
|
set_alpha_to_one=False,
|
|
|
|
prediction_type=prediction_type,
|
|
|
|
)
|
|
|
|
# make sure scheduler works correctly with DDIM
|
|
|
|
scheduler.register_to_config(clip_sample=False)
|
|
|
|
|
|
|
|
if scheduler_type == "pndm":
|
|
|
|
config = dict(scheduler.config)
|
|
|
|
config["skip_prk_steps"] = True
|
|
|
|
scheduler = PNDMScheduler.from_config(config)
|
|
|
|
elif scheduler_type == "lms":
|
|
|
|
scheduler = LMSDiscreteScheduler.from_config(scheduler.config)
|
|
|
|
elif scheduler_type == "heun":
|
|
|
|
scheduler = HeunDiscreteScheduler.from_config(scheduler.config)
|
|
|
|
elif scheduler_type == "euler":
|
|
|
|
scheduler = EulerDiscreteScheduler.from_config(scheduler.config)
|
|
|
|
elif scheduler_type == "euler-ancestral":
|
|
|
|
scheduler = EulerAncestralDiscreteScheduler.from_config(scheduler.config)
|
|
|
|
elif scheduler_type == "dpm":
|
|
|
|
scheduler = DPMSolverMultistepScheduler.from_config(scheduler.config)
|
|
|
|
elif scheduler_type == "ddim":
|
|
|
|
scheduler = scheduler
|
|
|
|
else:
|
|
|
|
raise ValueError(f"Scheduler of type {scheduler_type} doesn't exist!")
|
use 🧨diffusers model (#1583)
* initial commit of DiffusionPipeline class
* spike: proof of concept using diffusers for txt2img
* doc: type hints for Generator
* refactor(model_cache): factor out load_ckpt
* model_cache: add ability to load a diffusers model pipeline
and update associated things in Generate & Generator to not instantly fail when that happens
* model_cache: fix model default image dimensions
* txt2img: support switching diffusers schedulers
* diffusers: let the scheduler do its scaling of the initial latents
Remove IPNDM scheduler; it is not behaving.
* web server: update image_progress callback for diffusers data
* diffusers: restore prompt weighting feature
* diffusers: fix set-sampler error following model switch
* diffusers: use InvokeAIDiffuserComponent for conditioning
* cross_attention_control: stub (no-op) implementations for diffusers
* model_cache: let offload_model work with DiffusionPipeline, sorta.
* models.yaml.example: add diffusers-format model, set as default
* test-invoke-conda: use diffusers-format model
test-invoke-conda: put huggingface-token where the library can use it
* environment-mac: upgrade to diffusers 0.7 (from 0.6)
this was already done for linux; mac must have been lost in the merge.
* preload_models: explicitly load diffusers models
In non-interactive mode too, as long as you're logged in.
* fix(model_cache): don't check `model.config` in diffusers format
clean-up from recent merge.
* diffusers integration: support img2img
* dev: upgrade to diffusers 0.8 (from 0.7.1)
We get to remove some code by using methods that were factored out in the base class.
* refactor: remove backported img2img.get_timesteps
now that we can use it directly from diffusers 0.8.1
* ci: use diffusers model
* dev: upgrade to diffusers 0.9 (from 0.8.1)
* lint: correct annotations for Python 3.9.
* lint: correct AttributeError.name reference for Python 3.9.
* CI: prefer diffusers-1.4 because it no longer requires a token
The RunwayML models still do.
* build: there's yet another place to update requirements?
* configure: try to download models even without token
Models in the CompVis and stabilityai repos no longer require them. (But runwayml still does.)
* configure: add troubleshooting info for config-not-found
* fix(configure): prepend root to config path
* fix(configure): remove second `default: true` from models example
* CI: simplify test-on-push logic now that we don't need secrets
The "test on push but only in forks" logic was only necessary when tests didn't work for PRs-from-forks.
* create an embedding_manager for diffusers
* internal: avoid importing diffusers DummyObject
see https://github.com/huggingface/diffusers/issues/1479
* fix "config attributes…not expected" diffusers warnings.
* fix deprecated scheduler construction
* work around an apparent MPS torch bug that causes conditioning to have no effect
* 🚧 post-rebase repair
* preliminary support for outpainting (no masking yet)
* monkey-patch diffusers.attention and use Invoke lowvram code
* add always_use_cpu arg to bypass MPS
* add cross-attention control support to diffusers (fails on MPS)
For unknown reasons MPS produces garbage output with .swap(). Use
--always_use_cpu arg to invoke.py for now to test this code on MPS.
* diffusers support for the inpainting model
* fix debug_image to not crash with non-RGB images.
* inpainting for the normal model [WIP]
This seems to be performing well until the LAST STEP, at which point it dissolves to confetti.
* fix off-by-one bug in cross-attention-control (#1774)
prompt token sequences begin with a "beginning-of-sequence" marker <bos> and end with a repeated "end-of-sequence" marker <eos> - to make a default prompt length of <bos> + 75 prompt tokens + <eos>. the .swap() code was failing to take the column for <bos> at index 0 into account. the changes here do that, and also add extra handling for a single <eos> (which may be redundant but which is included for completeness).
based on my understanding and some assumptions about how this all works, the reason .swap() nevertheless seemed to do the right thing, to some extent, is because over multiple steps the conditioning process in Stable Diffusion operates as a feedback loop. a change to token n-1 has flow-on effects to how the [1x4x64x64] latent tensor is modified by all the tokens after it, - and as the next step is processed, all the tokens before it as well. intuitively, a token's conditioning effects "echo" throughout the whole length of the prompt. so even though the token at n-1 was being edited when what the user actually wanted was to edit the token at n, it nevertheless still had some non-negligible effect, in roughly the right direction, often enough that it seemed like it was working properly.
* refactor common CrossAttention stuff into a mixin so that the old ldm code can still work if necessary
* inpainting for the normal model. I think it works this time.
* diffusers: reset num_vectors_per_token
sync with 44a00555718f1df173c60da0ed646cf700e29537
* diffusers: txt2img2img (hires_fix)
with so much slicing and dicing of pipeline methods to stitch them together
* refactor(diffusers): reduce some code duplication amongst the different tasks
* fixup! refactor(diffusers): reduce some code duplication amongst the different tasks
* diffusers: enable DPMSolver++ scheduler
* diffusers: upgrade to diffusers 0.10, add Heun scheduler
* diffusers(ModelCache): stopgap to make from_cpu compatible with diffusers
* CI: default to diffusers-1.5 now that runwayml token requirement is gone
* diffusers: update to 0.10 (and transformers to 4.25)
* diffusers: use xformers when available
diffusers no longer auto-enables this as of 0.10.2.
* diffusers: make masked img2img behave better with multi-step schedulers
re-randomizing the noise each step was confusing them.
* diffusers: work more better with more models.
fixed relative path problem with local models.
fixed models on hub not always having a `fp16` branch.
* diffusers: stopgap fix for attention_maps_callback crash after recent merge
* fixup import merge conflicts
correction for 061c5369a2247c6c92cd69606bcf54c4f1962a0b
* test: add tests/inpainting inputs for masked img2img
* diffusers(AddsMaskedGuidance): partial fix for k-schedulers
Prevents them from crashing, but results are still hot garbage.
* fix --safety_checker arg parsing
and add note to diffusers loader about where safety checker gets called
* generate: fix import error
* CI: don't try to read the old init location
* diffusers: support loading an alternate VAE
* CI: remove sh-syntax if-statement so it doesn't crash powershell
* CI: fold strings in yaml because backslash is not line-continuation in powershell
* attention maps callback stuff for diffusers
* build: fix syntax error in environment-mac
* diffusers: add INITIAL_MODELS with diffusers-compatible repos
* re-enable the embedding manager; closes #1778
* Squashed commit of the following:
commit e4a956abc37fcb5cf188388b76b617bc5c8fda7d
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:43:07 2022 +0100
import new load handling from EmbeddingManager and cleanup
commit c4abe91a5ba0d415b45bf734068385668b7a66e6
Merge: 032e856e 1efc6397
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:09:53 2022 +0100
Merge branch 'feature_textual_inversion_mgr' into dev/diffusers_with_textual_inversion_manager
commit 032e856eefb3bbc39534f5daafd25764bcfcef8b
Merge: 8b4f0fe9 bc515e24
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:08:01 2022 +0100
Merge remote-tracking branch 'upstream/dev/diffusers' into dev/diffusers_with_textual_inversion_manager
commit 1efc6397fc6e61c1aff4b0258b93089d61de5955
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:04:28 2022 +0100
cleanup and add performance notes
commit e400f804ac471a0ca2ba432fd658778b20c7bdab
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 14:45:07 2022 +0100
fix bug and update unit tests
commit deb9ae0ae1016750e93ce8275734061f7285a231
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 14:28:29 2022 +0100
textual inversion manager seems to work
commit 162e02505dec777e91a983c4d0fb52e950d25ff0
Merge: cbad4583 12769b3d
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:58:03 2022 +0100
Merge branch 'main' into feature_textual_inversion_mgr
commit cbad45836c6aace6871a90f2621a953f49433131
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:54:10 2022 +0100
use position embeddings
commit 070344c69b0e0db340a183857d0a787b348681d3
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:53:47 2022 +0100
Don't crash CLI on exceptions
commit b035ac8c6772dfd9ba41b8eeb9103181cda028f8
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:11:55 2022 +0100
add missing position_embeddings
commit 12769b3d3562ef71e0f54946b532ad077e10043c
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 13:33:25 2022 +0100
debugging why it don't work
commit bafb7215eabe1515ca5e8388fd3bb2f3ac5362cf
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 13:21:33 2022 +0100
debugging why it don't work
commit 664a6e9e146b42d96703f0cc8baf8f5efec04ee1
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 12:48:38 2022 +0100
use TextualInversionManager in place of embeddings (wip, doesn't work)
commit 8b4f0fe9d6e4e2643b36dfa27864294785d7ba4e
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 12:48:38 2022 +0100
use TextualInversionManager in place of embeddings (wip, doesn't work)
commit ffbe1ab11163ba712e353d89404e301d0e0c6cdf
Merge: 6e4dad60 023df37e
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:37:31 2022 +0100
Merge branch 'feature_textual_inversion_mgr' into dev/diffusers
commit 023df37efffa67434f77def7fc3c9dfb29f699fd
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:36:54 2022 +0100
cleanup
commit 05fac594eaf79d0058e3c48deee93df603f136c2
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:07:49 2022 +0100
tweak error checking
commit 009f32ed39a7280997c3ffab112adadee0b44279
Author: damian <null@damianstewart.com>
Date: Thu Dec 15 21:29:47 2022 +0100
unit tests passing for embeddings with vector length >1
commit beb1b08d9a98112ed2fe073580568e1a18698da3
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 13:39:09 2022 +0100
more explicit equality tests when overwriting
commit 44d8a5a7c85cdabc9ce3a54fd0769a10597b3ca9
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 13:30:13 2022 +0100
wip textual inversion manager (unit tests passing for 1v embedding overwriting)
commit 417c2b57d90924a839616bfb66804faab8039e4c
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 12:30:55 2022 +0100
wip textual inversion manager (unit tests passing for base stuff + padding)
commit 2e80872e3b6f7fd7d8eb8928822bd824b63cb2ff
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 10:57:57 2022 +0100
wip new TextualInversionManager
* stop using WeightedFrozenCLIPEmbedder
* store diffusion models locally
- configure_invokeai.py reconfigured to store diffusion models rather than
CompVis models
- hugging face caching model is used, but cache is set to ~/invokeai/models/repo_id
- models.yaml does **NOT** use path, just repo_id
- "repo_name" changed to "repo_id" to following hugging face conventions
- Models are loaded with full precision pending further work.
* allow non-local files during development
* path takes priority over repo_id
* MVP for model_cache and configure_invokeai
- Feature complete (almost)
- configure_invokeai.py downloads both .ckpt and diffuser models,
along with their VAEs. Both types of download are controlled by
a unified INITIAL_MODELS.yaml file.
- model_cache can load both type of model and switches back and forth
in CPU. No memory leaks detected
TO DO:
1. I have not yet turned on the LocalOnly flag for diffuser models, so
the code will check the Hugging Face repo for updates before using the
locally cached models. This will break firewalled systems. I am thinking
of putting in a global check for internet connectivity at startup time
and setting the LocalOnly flag based on this. It would be good to check
updates if there is connectivity.
2. I have not gone completely through INITIAL_MODELS.yaml to check which
models are available as diffusers and which are not. So models like
PaperCut and VoxelArt may not load properly. The runway and stability
models are checked, as well as the Trinart models.
3. Add stanzas for SD 2.0 and 2.1 in INITIAL_MODELS.yaml
REMAINING PROBLEMS NOT DIRECTLY RELATED TO MODEL_CACHE:
1. When loading a .ckpt file there are lots of messages like this:
Warning! ldm.modules.attention.CrossAttention is no longer being
maintained. Please use InvokeAICrossAttention instead.
I'm not sure how to address this.
2. The ckpt models ***don't actually run*** due to the lack of special-case
support for them in the generator objects. For example, here's the hard
crash you get when you run txt2img against the legacy waifu-diffusion-1.3
model:
```
>> An error occurred:
Traceback (most recent call last):
File "/data/lstein/InvokeAI/ldm/invoke/CLI.py", line 140, in main
main_loop(gen, opt)
File "/data/lstein/InvokeAI/ldm/invoke/CLI.py", line 371, in main_loop
gen.prompt2image(
File "/data/lstein/InvokeAI/ldm/generate.py", line 496, in prompt2image
results = generator.generate(
File "/data/lstein/InvokeAI/ldm/invoke/generator/base.py", line 108, in generate
image = make_image(x_T)
File "/data/lstein/InvokeAI/ldm/invoke/generator/txt2img.py", line 33, in make_image
pipeline_output = pipeline.image_from_embeddings(
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1265, in __getattr__
raise AttributeError("'{}' object has no attribute '{}'".format(
AttributeError: 'LatentDiffusion' object has no attribute 'image_from_embeddings'
```
3. The inpainting diffusion model isn't working. Here's the output of "banana
sushi" when inpainting-1.5 is loaded:
```
Traceback (most recent call last):
File "/data/lstein/InvokeAI/ldm/generate.py", line 496, in prompt2image
results = generator.generate(
File "/data/lstein/InvokeAI/ldm/invoke/generator/base.py", line 108, in generate
image = make_image(x_T)
File "/data/lstein/InvokeAI/ldm/invoke/generator/txt2img.py", line 33, in make_image
pipeline_output = pipeline.image_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 301, in image_from_embeddings
result_latents, result_attention_map_saver = self.latents_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 330, in latents_from_embeddings
result: PipelineIntermediateState = infer_latents_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 185, in __call__
for result in self.generator_method(*args, **kwargs):
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 367, in generate_latents_from_embeddings
step_output = self.step(batched_t, latents, guidance_scale,
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context
return func(*args, **kwargs)
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 409, in step
step_output = self.scheduler.step(noise_pred, timestep, latents, **extra_step_kwargs)
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/diffusers/schedulers/scheduling_lms_discrete.py", line 223, in step
pred_original_sample = sample - sigma * model_output
RuntimeError: The size of tensor a (9) must match the size of tensor b (4) at non-singleton dimension 1
```
* proper support for float32/float16
- configure script now correctly detects user's preference for
fp16/32 and downloads the correct diffuser version. If fp16
version not available, falls back to fp32 version.
- misc code cleanup and simplification in model_cache
* add on-the-fly conversion of .ckpt to diffusers models
1. On-the-fly conversion code can be found in the file ldm/invoke/ckpt_to_diffusers.py.
2. A new !optimize command has been added to the CLI. Should be ported to Web GUI.
User experience on the CLI is this:
```
invoke> !optimize /home/lstein/invokeai/models/ldm/stable-diffusion-v1/sd-v1-4.ckpt
INFO: Converting legacy weights file /home/lstein/invokeai/models/ldm/stable-diffusion-v1/sd-v1-4.ckpt to optimized diffuser model.
This operation will take 30-60s to complete.
Success. Optimized model is now located at /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
Writing new config file entry for sd-v1-4...
>> New configuration:
sd-v1-4:
description: Optimized version of sd-v1-4
format: diffusers
path: /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
OK to import [n]? y
>> Verifying that new model loads...
>> Current VRAM usage: 2.60G
>> Offloading stable-diffusion-2.1 to CPU
>> Loading diffusers model from /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
| Using faster float16 precision
You have disabled the safety checker for <class 'ldm.invoke.generator.diffusers_pipeline.StableDiffusionGeneratorPipeline'> by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion \
license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances,\
disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .
| training width x height = (512 x 512)
>> Model loaded in 3.48s
>> Max VRAM used to load the model: 2.17G
>> Current VRAM usage:2.17G
>> Textual inversions available:
>> Setting Sampler to k_lms (LMSDiscreteScheduler)
Keep model loaded? [y]
```
* add parallel set of generator files for ckpt legacy generation
* generation using legacy ckpt models now working
* diffusers: fix missing attention_maps_callback
fix for 23eb80b40421b2bb8f4b6d3dd30490d11c447b36
* associate legacy CrossAttention with .ckpt models
* enable autoconvert
New --autoconvert CLI option will scan a designated directory for
new .ckpt files, convert them into diffuser models, and import
them into models.yaml.
Works like this:
invoke.py --autoconvert /path/to/weights/directory
In ModelCache added two new methods:
autoconvert_weights(config_path, weights_directory_path, models_directory_path)
convert_and_import(ckpt_path, diffuser_path)
* diffusers: update to diffusers 0.11 (from 0.10.2)
* fix vae loading & width/height calculation
* refactor: encapsulate these conditioning data into one container
* diffusers: fix some noise-scaling issues by pushing the noise-mixing down to the common function
* add support for safetensors and accelerate
* set local_files_only when internet unreachable
* diffusers: fix error-handling path when model repo has no fp16 branch
* fix generatorinpaint error
Fixes :
"ModuleNotFoundError: No module named 'ldm.invoke.generatorinpaint'
https://github.com/invoke-ai/InvokeAI/pull/1583#issuecomment-1363634318
* quench diffuser safety-checker warning
* diffusers: support stochastic DDIM eta parameter
* fix conda env creation on macos
* fix cross-attention with diffusers 0.11
* diffusers: the VAE needs to be tiling as well as the U-Net
* diffusers: comment on subfolders
* diffusers: embiggen!
* diffusers: make model_cache.list_models serializable
* diffusers(inpaint): restore scaling functionality
* fix requirements clash between numba and numpy 1.24
* diffusers: allow inpainting model to do non-inpainting tasks
* start expanding model_cache functionality
* add import_ckpt_model() and import_diffuser_model() methods to model_manager
- in addition, model_cache.py is now renamed to model_manager.py
* allow "recommended" flag to be optional in INITIAL_MODELS.yaml
* configure_invokeai now downloads VAE diffusers in advance
* rename ModelCache to ModelManager
* remove support for `repo_name` in models.yaml
* check for and refuse to load embeddings trained on incompatible models
* models.yaml.example: s/repo_name/repo_id
and remove extra INITIAL_MODELS now that the main one has diffusers models in it.
* add MVP textual inversion script
* refactor(InvokeAIDiffuserComponent): factor out _combine()
* InvokeAIDiffuserComponent: implement threshold
* InvokeAIDiffuserComponent: diagnostic logs for threshold
...this does not look right
* add a curses-based frontend to textual inversion
- not quite working yet
- requires npyscreen installed
- on windows will also have the windows-curses requirement, but not added
to requirements yet
* add curses-based interface for textual inversion
* fix crash in convert_and_import()
- This corrects a "local variable referenced before assignment" error
in model_manager.convert_and_import()
* potential workaround for no 'state_dict' key error
- As reported in https://github.com/huggingface/diffusers/issues/1876
* create TI output dir if needed
* Update environment-lin-cuda.yml (#2159)
Fixing line 42 to be the proper order to define the transformers requirement: ~= instead of =~
* diffusers: update sampler-to-scheduler mapping
based on https://github.com/huggingface/diffusers/issues/277#issuecomment-1371428672
* improve user exp for ckt to diffusers conversion
- !optimize_models command now operates on an existing ckpt file entry in models.yaml
- replaces existing entry, rather than adding a new one
- offers to delete the ckpt file after conversion
* web: adapt progress callback to deal with old generator or new diffusers pipeline
* clean-up model_manager code
- add_model() verified to work for .ckpt local paths,
.ckpt remote URLs, diffusers local paths, and
diffusers repo_ids
- convert_and_import() verified to work for local and
remove .ckpt files
* handle edge cases for import_model() and convert_model()
* add support for safetensor .ckpt files
* fix name error
* code cleanup with pyflake
* improve model setting behavior
- If the user enters an invalid model name at startup time, will not
try to load it, warn, and use default model
- CLI UI enhancement: include currently active model in the command
line prompt.
* update test-invoke-pip.yml
- fix model cache path to point to runwayml/stable-diffusion-v1-5
- remove `skip-sd-weights` from configure_invokeai.py args
* exclude dev/diffusers from "fail for draft PRs"
* disable "fail on PR jobs"
* re-add `--skip-sd-weights` since no space
* update workflow environments
- include `INVOKE_MODEL_RECONFIGURE: '--yes'`
* clean up model load failure handling
- Allow CLI to run even when no model is defined or loadable.
- Inhibit stack trace when model load fails - only show last error
- Give user *option* to run configure_invokeai.py when no models
successfully load.
- Restart invokeai after reconfiguration.
* further edge-case handling
1) only one model in models.yaml file, and that model is broken
2) no models in models.yaml
3) models.yaml doesn't exist at all
* fix incorrect model status listing
- "cached" was not being returned from list_models()
- normalize handling of exceptions during model loading:
- Passing an invalid model name to generate.set_model() will return
a KeyError
- All other exceptions are returned as the appropriate Exception
* CI: do download weights (if not already cached)
* diffusers: fix scheduler loading in offline mode
* CI: fix model name (no longer has `diffusers-` prefix)
* Update txt2img2img.py (#2256)
* fixes to share models with HuggingFace cache system
- If HF_HOME environment variable is defined, then all huggingface models
are stored in that directory following the standard conventions.
- For seamless interoperability, set HF_HOME to ~/.cache/huggingface
- If HF_HOME not defined, then models are stored in ~/invokeai/models.
This is equivalent to setting HF_HOME to ~/invokeai/models
A future commit will add a migration mechanism so that this change doesn't
break previous installs.
* feat - make model storage compatible with hugging face caching system
This commit alters the InvokeAI model directory to be compatible with
hugging face, making it easier to share diffusers (and other models)
across different programs.
- If the HF_HOME environment variable is not set, then models are
cached in ~/invokeai/models in a format that is identical to the
HuggingFace cache.
- If HF_HOME is set, then models are cached wherever HF_HOME points.
- To enable sharing with other HuggingFace library clients, set
HF_HOME to ~/.cache/huggingface to set the default cache location
or to ~/invokeai/models to have huggingface cache inside InvokeAI.
* fixes to share models with HuggingFace cache system
- If HF_HOME environment variable is defined, then all huggingface models
are stored in that directory following the standard conventions.
- For seamless interoperability, set HF_HOME to ~/.cache/huggingface
- If HF_HOME not defined, then models are stored in ~/invokeai/models.
This is equivalent to setting HF_HOME to ~/invokeai/models
A future commit will add a migration mechanism so that this change doesn't
break previous installs.
* fix error "no attribute CkptInpaint"
* model_manager.list_models() returns entire model config stanza+status
* Initial Draft - Model Manager Diffusers
* added hash function to diffusers
* implement sha256 hashes on diffusers models
* Add Model Manager Support for Diffusers
* fix various problems with model manager
- in cli import functions, fix not enough values to unpack from
_get_name_and_desc()
- fix crash when using old-style vae: value with new-style diffuser
* rebuild frontend
* fix dictconfig-not-serializable issue
* fix NoneType' object is not subscriptable crash in model_manager
* fix "str has no attribute get" error in model_manager list_models()
* Add path and repo_id support for Diffusers Model Manager
Also fixes bugs
* Fix tooltip IT localization not working
* Add Version Number To WebUI
* Optimize Model Search
* Fix incorrect font on the Model Manager UI
* Fix image degradation on merge fixes - [Experimental]
This change should effectively fix a couple of things.
- Fix image degradation on subsequent merges of the canvas layers.
- Fix the slight transparent border that is left behind when filling the bounding box with a color.
- Fix the left over line of color when filling a bounding box with color.
So far there are no side effects for this. If any, please report.
* Add local model filtering for Diffusers / Checkpoints
* Go to home on modal close for the Add Modal UI
* Styling Fixes
* Model Manager Diffusers Localization Update
* Add Safe Tensor scanning to Model Manager
* Fix model edit form dispatching string values instead of numbers.
* Resolve VAE handling / edge cases for supplied repos
* defer injecting tokens for textual inversions until they're used for the first time
* squash a console warning
* implement model migration check
* add_model() overwrites previous config rather than merges
* fix model config file attribute merging
* fix precision handling in textual inversion script
* allow ckpt conversion script to work with safetensors .ckpts
Applied patch here:
https://github.com/huggingface/diffusers/commit/beb932c5d111872c5e45387e7b1b2b3dd0524a47
* fix name "args" is not defined crash in textual_inversion_training
* fix a second NameError: name 'args' is not defined crash
* fix loading of the safety checker from the global cache dir
* add installation step to textual inversion frontend
- After a successful training run, the script will copy learned_embeds.bin
to a subfolder of the embeddings directory.
- User given the option to delete the logs and intermediate checkpoints
(which together use 7-8G of space)
- If textual inversion training fails, reports the error gracefully.
* don't crash out on incompatible embeddings
- put try: blocks around places where the system tries to load an embedding
which is incompatible with the currently loaded model
* add support for checkpoint resuming
* textual inversion preferences are saved and restored between sessions
- Preferences are stored in a file named text-inversion-training/preferences.conf
- Currently the resume-from-checkpoint option is not working correctly. Possible
bug in textual_inversion_training.py?
* copy learned_embeddings.bin into right location
* add front end for diffusers model merging
- Front end doesn't do anything yet!!!!
- Made change to model name parsing in CLI to support ability to have merged models
with the "+" character in their names.
* improve inpainting experience
- recommend ckpt version of inpainting-1.5 to user
- fix get_noise() bug in ckpt version of omnibus.py
* update environment*yml
* tweak instructions to install HuggingFace token
* bump version number
* enhance update scripts
- update scripts will now fetch new INITIAL_MODELS.yaml so that
configure_invokeai.py will know about the diffusers versions.
* enhance invoke.sh/invoke.bat launchers
- added configure_invokeai.py to menu
- menu defaults to browser-based invoke
* remove conda workflow (#2321)
* fix `token_ids has shape torch.Size([79]) - expected [77]`
* update CHANGELOG.md with 2.3.* info
- Add information on how formats have changed and the upgrade process.
- Add short bug list.
Co-authored-by: Damian Stewart <d@damianstewart.com>
Co-authored-by: Damian Stewart <null@damianstewart.com>
Co-authored-by: Lincoln Stein <lincoln.stein@gmail.com>
Co-authored-by: Wybartel-luxmc <37852506+Wybartel-luxmc@users.noreply.github.com>
Co-authored-by: mauwii <Mauwii@outlook.de>
Co-authored-by: mickr777 <115216705+mickr777@users.noreply.github.com>
Co-authored-by: blessedcoolant <54517381+blessedcoolant@users.noreply.github.com>
Co-authored-by: Eugene Brodsky <ebr@users.noreply.github.com>
Co-authored-by: Matthias Wild <40327258+mauwii@users.noreply.github.com>
2023-01-15 14:22:46 +00:00
|
|
|
|
2023-02-03 15:04:32 +00:00
|
|
|
# Convert the UNet2DConditionModel model.
|
|
|
|
unet_config = create_unet_diffusers_config(original_config, image_size=image_size)
|
|
|
|
unet_config["upcast_attention"] = upcast_attention
|
|
|
|
unet = UNet2DConditionModel(**unet_config)
|
use 🧨diffusers model (#1583)
* initial commit of DiffusionPipeline class
* spike: proof of concept using diffusers for txt2img
* doc: type hints for Generator
* refactor(model_cache): factor out load_ckpt
* model_cache: add ability to load a diffusers model pipeline
and update associated things in Generate & Generator to not instantly fail when that happens
* model_cache: fix model default image dimensions
* txt2img: support switching diffusers schedulers
* diffusers: let the scheduler do its scaling of the initial latents
Remove IPNDM scheduler; it is not behaving.
* web server: update image_progress callback for diffusers data
* diffusers: restore prompt weighting feature
* diffusers: fix set-sampler error following model switch
* diffusers: use InvokeAIDiffuserComponent for conditioning
* cross_attention_control: stub (no-op) implementations for diffusers
* model_cache: let offload_model work with DiffusionPipeline, sorta.
* models.yaml.example: add diffusers-format model, set as default
* test-invoke-conda: use diffusers-format model
test-invoke-conda: put huggingface-token where the library can use it
* environment-mac: upgrade to diffusers 0.7 (from 0.6)
this was already done for linux; mac must have been lost in the merge.
* preload_models: explicitly load diffusers models
In non-interactive mode too, as long as you're logged in.
* fix(model_cache): don't check `model.config` in diffusers format
clean-up from recent merge.
* diffusers integration: support img2img
* dev: upgrade to diffusers 0.8 (from 0.7.1)
We get to remove some code by using methods that were factored out in the base class.
* refactor: remove backported img2img.get_timesteps
now that we can use it directly from diffusers 0.8.1
* ci: use diffusers model
* dev: upgrade to diffusers 0.9 (from 0.8.1)
* lint: correct annotations for Python 3.9.
* lint: correct AttributeError.name reference for Python 3.9.
* CI: prefer diffusers-1.4 because it no longer requires a token
The RunwayML models still do.
* build: there's yet another place to update requirements?
* configure: try to download models even without token
Models in the CompVis and stabilityai repos no longer require them. (But runwayml still does.)
* configure: add troubleshooting info for config-not-found
* fix(configure): prepend root to config path
* fix(configure): remove second `default: true` from models example
* CI: simplify test-on-push logic now that we don't need secrets
The "test on push but only in forks" logic was only necessary when tests didn't work for PRs-from-forks.
* create an embedding_manager for diffusers
* internal: avoid importing diffusers DummyObject
see https://github.com/huggingface/diffusers/issues/1479
* fix "config attributes…not expected" diffusers warnings.
* fix deprecated scheduler construction
* work around an apparent MPS torch bug that causes conditioning to have no effect
* 🚧 post-rebase repair
* preliminary support for outpainting (no masking yet)
* monkey-patch diffusers.attention and use Invoke lowvram code
* add always_use_cpu arg to bypass MPS
* add cross-attention control support to diffusers (fails on MPS)
For unknown reasons MPS produces garbage output with .swap(). Use
--always_use_cpu arg to invoke.py for now to test this code on MPS.
* diffusers support for the inpainting model
* fix debug_image to not crash with non-RGB images.
* inpainting for the normal model [WIP]
This seems to be performing well until the LAST STEP, at which point it dissolves to confetti.
* fix off-by-one bug in cross-attention-control (#1774)
prompt token sequences begin with a "beginning-of-sequence" marker <bos> and end with a repeated "end-of-sequence" marker <eos> - to make a default prompt length of <bos> + 75 prompt tokens + <eos>. the .swap() code was failing to take the column for <bos> at index 0 into account. the changes here do that, and also add extra handling for a single <eos> (which may be redundant but which is included for completeness).
based on my understanding and some assumptions about how this all works, the reason .swap() nevertheless seemed to do the right thing, to some extent, is because over multiple steps the conditioning process in Stable Diffusion operates as a feedback loop. a change to token n-1 has flow-on effects to how the [1x4x64x64] latent tensor is modified by all the tokens after it, - and as the next step is processed, all the tokens before it as well. intuitively, a token's conditioning effects "echo" throughout the whole length of the prompt. so even though the token at n-1 was being edited when what the user actually wanted was to edit the token at n, it nevertheless still had some non-negligible effect, in roughly the right direction, often enough that it seemed like it was working properly.
* refactor common CrossAttention stuff into a mixin so that the old ldm code can still work if necessary
* inpainting for the normal model. I think it works this time.
* diffusers: reset num_vectors_per_token
sync with 44a00555718f1df173c60da0ed646cf700e29537
* diffusers: txt2img2img (hires_fix)
with so much slicing and dicing of pipeline methods to stitch them together
* refactor(diffusers): reduce some code duplication amongst the different tasks
* fixup! refactor(diffusers): reduce some code duplication amongst the different tasks
* diffusers: enable DPMSolver++ scheduler
* diffusers: upgrade to diffusers 0.10, add Heun scheduler
* diffusers(ModelCache): stopgap to make from_cpu compatible with diffusers
* CI: default to diffusers-1.5 now that runwayml token requirement is gone
* diffusers: update to 0.10 (and transformers to 4.25)
* diffusers: use xformers when available
diffusers no longer auto-enables this as of 0.10.2.
* diffusers: make masked img2img behave better with multi-step schedulers
re-randomizing the noise each step was confusing them.
* diffusers: work more better with more models.
fixed relative path problem with local models.
fixed models on hub not always having a `fp16` branch.
* diffusers: stopgap fix for attention_maps_callback crash after recent merge
* fixup import merge conflicts
correction for 061c5369a2247c6c92cd69606bcf54c4f1962a0b
* test: add tests/inpainting inputs for masked img2img
* diffusers(AddsMaskedGuidance): partial fix for k-schedulers
Prevents them from crashing, but results are still hot garbage.
* fix --safety_checker arg parsing
and add note to diffusers loader about where safety checker gets called
* generate: fix import error
* CI: don't try to read the old init location
* diffusers: support loading an alternate VAE
* CI: remove sh-syntax if-statement so it doesn't crash powershell
* CI: fold strings in yaml because backslash is not line-continuation in powershell
* attention maps callback stuff for diffusers
* build: fix syntax error in environment-mac
* diffusers: add INITIAL_MODELS with diffusers-compatible repos
* re-enable the embedding manager; closes #1778
* Squashed commit of the following:
commit e4a956abc37fcb5cf188388b76b617bc5c8fda7d
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:43:07 2022 +0100
import new load handling from EmbeddingManager and cleanup
commit c4abe91a5ba0d415b45bf734068385668b7a66e6
Merge: 032e856e 1efc6397
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:09:53 2022 +0100
Merge branch 'feature_textual_inversion_mgr' into dev/diffusers_with_textual_inversion_manager
commit 032e856eefb3bbc39534f5daafd25764bcfcef8b
Merge: 8b4f0fe9 bc515e24
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:08:01 2022 +0100
Merge remote-tracking branch 'upstream/dev/diffusers' into dev/diffusers_with_textual_inversion_manager
commit 1efc6397fc6e61c1aff4b0258b93089d61de5955
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:04:28 2022 +0100
cleanup and add performance notes
commit e400f804ac471a0ca2ba432fd658778b20c7bdab
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 14:45:07 2022 +0100
fix bug and update unit tests
commit deb9ae0ae1016750e93ce8275734061f7285a231
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 14:28:29 2022 +0100
textual inversion manager seems to work
commit 162e02505dec777e91a983c4d0fb52e950d25ff0
Merge: cbad4583 12769b3d
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:58:03 2022 +0100
Merge branch 'main' into feature_textual_inversion_mgr
commit cbad45836c6aace6871a90f2621a953f49433131
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:54:10 2022 +0100
use position embeddings
commit 070344c69b0e0db340a183857d0a787b348681d3
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:53:47 2022 +0100
Don't crash CLI on exceptions
commit b035ac8c6772dfd9ba41b8eeb9103181cda028f8
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:11:55 2022 +0100
add missing position_embeddings
commit 12769b3d3562ef71e0f54946b532ad077e10043c
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 13:33:25 2022 +0100
debugging why it don't work
commit bafb7215eabe1515ca5e8388fd3bb2f3ac5362cf
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 13:21:33 2022 +0100
debugging why it don't work
commit 664a6e9e146b42d96703f0cc8baf8f5efec04ee1
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 12:48:38 2022 +0100
use TextualInversionManager in place of embeddings (wip, doesn't work)
commit 8b4f0fe9d6e4e2643b36dfa27864294785d7ba4e
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 12:48:38 2022 +0100
use TextualInversionManager in place of embeddings (wip, doesn't work)
commit ffbe1ab11163ba712e353d89404e301d0e0c6cdf
Merge: 6e4dad60 023df37e
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:37:31 2022 +0100
Merge branch 'feature_textual_inversion_mgr' into dev/diffusers
commit 023df37efffa67434f77def7fc3c9dfb29f699fd
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:36:54 2022 +0100
cleanup
commit 05fac594eaf79d0058e3c48deee93df603f136c2
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:07:49 2022 +0100
tweak error checking
commit 009f32ed39a7280997c3ffab112adadee0b44279
Author: damian <null@damianstewart.com>
Date: Thu Dec 15 21:29:47 2022 +0100
unit tests passing for embeddings with vector length >1
commit beb1b08d9a98112ed2fe073580568e1a18698da3
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 13:39:09 2022 +0100
more explicit equality tests when overwriting
commit 44d8a5a7c85cdabc9ce3a54fd0769a10597b3ca9
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 13:30:13 2022 +0100
wip textual inversion manager (unit tests passing for 1v embedding overwriting)
commit 417c2b57d90924a839616bfb66804faab8039e4c
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 12:30:55 2022 +0100
wip textual inversion manager (unit tests passing for base stuff + padding)
commit 2e80872e3b6f7fd7d8eb8928822bd824b63cb2ff
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 10:57:57 2022 +0100
wip new TextualInversionManager
* stop using WeightedFrozenCLIPEmbedder
* store diffusion models locally
- configure_invokeai.py reconfigured to store diffusion models rather than
CompVis models
- hugging face caching model is used, but cache is set to ~/invokeai/models/repo_id
- models.yaml does **NOT** use path, just repo_id
- "repo_name" changed to "repo_id" to following hugging face conventions
- Models are loaded with full precision pending further work.
* allow non-local files during development
* path takes priority over repo_id
* MVP for model_cache and configure_invokeai
- Feature complete (almost)
- configure_invokeai.py downloads both .ckpt and diffuser models,
along with their VAEs. Both types of download are controlled by
a unified INITIAL_MODELS.yaml file.
- model_cache can load both type of model and switches back and forth
in CPU. No memory leaks detected
TO DO:
1. I have not yet turned on the LocalOnly flag for diffuser models, so
the code will check the Hugging Face repo for updates before using the
locally cached models. This will break firewalled systems. I am thinking
of putting in a global check for internet connectivity at startup time
and setting the LocalOnly flag based on this. It would be good to check
updates if there is connectivity.
2. I have not gone completely through INITIAL_MODELS.yaml to check which
models are available as diffusers and which are not. So models like
PaperCut and VoxelArt may not load properly. The runway and stability
models are checked, as well as the Trinart models.
3. Add stanzas for SD 2.0 and 2.1 in INITIAL_MODELS.yaml
REMAINING PROBLEMS NOT DIRECTLY RELATED TO MODEL_CACHE:
1. When loading a .ckpt file there are lots of messages like this:
Warning! ldm.modules.attention.CrossAttention is no longer being
maintained. Please use InvokeAICrossAttention instead.
I'm not sure how to address this.
2. The ckpt models ***don't actually run*** due to the lack of special-case
support for them in the generator objects. For example, here's the hard
crash you get when you run txt2img against the legacy waifu-diffusion-1.3
model:
```
>> An error occurred:
Traceback (most recent call last):
File "/data/lstein/InvokeAI/ldm/invoke/CLI.py", line 140, in main
main_loop(gen, opt)
File "/data/lstein/InvokeAI/ldm/invoke/CLI.py", line 371, in main_loop
gen.prompt2image(
File "/data/lstein/InvokeAI/ldm/generate.py", line 496, in prompt2image
results = generator.generate(
File "/data/lstein/InvokeAI/ldm/invoke/generator/base.py", line 108, in generate
image = make_image(x_T)
File "/data/lstein/InvokeAI/ldm/invoke/generator/txt2img.py", line 33, in make_image
pipeline_output = pipeline.image_from_embeddings(
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1265, in __getattr__
raise AttributeError("'{}' object has no attribute '{}'".format(
AttributeError: 'LatentDiffusion' object has no attribute 'image_from_embeddings'
```
3. The inpainting diffusion model isn't working. Here's the output of "banana
sushi" when inpainting-1.5 is loaded:
```
Traceback (most recent call last):
File "/data/lstein/InvokeAI/ldm/generate.py", line 496, in prompt2image
results = generator.generate(
File "/data/lstein/InvokeAI/ldm/invoke/generator/base.py", line 108, in generate
image = make_image(x_T)
File "/data/lstein/InvokeAI/ldm/invoke/generator/txt2img.py", line 33, in make_image
pipeline_output = pipeline.image_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 301, in image_from_embeddings
result_latents, result_attention_map_saver = self.latents_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 330, in latents_from_embeddings
result: PipelineIntermediateState = infer_latents_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 185, in __call__
for result in self.generator_method(*args, **kwargs):
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 367, in generate_latents_from_embeddings
step_output = self.step(batched_t, latents, guidance_scale,
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context
return func(*args, **kwargs)
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 409, in step
step_output = self.scheduler.step(noise_pred, timestep, latents, **extra_step_kwargs)
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/diffusers/schedulers/scheduling_lms_discrete.py", line 223, in step
pred_original_sample = sample - sigma * model_output
RuntimeError: The size of tensor a (9) must match the size of tensor b (4) at non-singleton dimension 1
```
* proper support for float32/float16
- configure script now correctly detects user's preference for
fp16/32 and downloads the correct diffuser version. If fp16
version not available, falls back to fp32 version.
- misc code cleanup and simplification in model_cache
* add on-the-fly conversion of .ckpt to diffusers models
1. On-the-fly conversion code can be found in the file ldm/invoke/ckpt_to_diffusers.py.
2. A new !optimize command has been added to the CLI. Should be ported to Web GUI.
User experience on the CLI is this:
```
invoke> !optimize /home/lstein/invokeai/models/ldm/stable-diffusion-v1/sd-v1-4.ckpt
INFO: Converting legacy weights file /home/lstein/invokeai/models/ldm/stable-diffusion-v1/sd-v1-4.ckpt to optimized diffuser model.
This operation will take 30-60s to complete.
Success. Optimized model is now located at /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
Writing new config file entry for sd-v1-4...
>> New configuration:
sd-v1-4:
description: Optimized version of sd-v1-4
format: diffusers
path: /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
OK to import [n]? y
>> Verifying that new model loads...
>> Current VRAM usage: 2.60G
>> Offloading stable-diffusion-2.1 to CPU
>> Loading diffusers model from /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
| Using faster float16 precision
You have disabled the safety checker for <class 'ldm.invoke.generator.diffusers_pipeline.StableDiffusionGeneratorPipeline'> by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion \
license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances,\
disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .
| training width x height = (512 x 512)
>> Model loaded in 3.48s
>> Max VRAM used to load the model: 2.17G
>> Current VRAM usage:2.17G
>> Textual inversions available:
>> Setting Sampler to k_lms (LMSDiscreteScheduler)
Keep model loaded? [y]
```
* add parallel set of generator files for ckpt legacy generation
* generation using legacy ckpt models now working
* diffusers: fix missing attention_maps_callback
fix for 23eb80b40421b2bb8f4b6d3dd30490d11c447b36
* associate legacy CrossAttention with .ckpt models
* enable autoconvert
New --autoconvert CLI option will scan a designated directory for
new .ckpt files, convert them into diffuser models, and import
them into models.yaml.
Works like this:
invoke.py --autoconvert /path/to/weights/directory
In ModelCache added two new methods:
autoconvert_weights(config_path, weights_directory_path, models_directory_path)
convert_and_import(ckpt_path, diffuser_path)
* diffusers: update to diffusers 0.11 (from 0.10.2)
* fix vae loading & width/height calculation
* refactor: encapsulate these conditioning data into one container
* diffusers: fix some noise-scaling issues by pushing the noise-mixing down to the common function
* add support for safetensors and accelerate
* set local_files_only when internet unreachable
* diffusers: fix error-handling path when model repo has no fp16 branch
* fix generatorinpaint error
Fixes :
"ModuleNotFoundError: No module named 'ldm.invoke.generatorinpaint'
https://github.com/invoke-ai/InvokeAI/pull/1583#issuecomment-1363634318
* quench diffuser safety-checker warning
* diffusers: support stochastic DDIM eta parameter
* fix conda env creation on macos
* fix cross-attention with diffusers 0.11
* diffusers: the VAE needs to be tiling as well as the U-Net
* diffusers: comment on subfolders
* diffusers: embiggen!
* diffusers: make model_cache.list_models serializable
* diffusers(inpaint): restore scaling functionality
* fix requirements clash between numba and numpy 1.24
* diffusers: allow inpainting model to do non-inpainting tasks
* start expanding model_cache functionality
* add import_ckpt_model() and import_diffuser_model() methods to model_manager
- in addition, model_cache.py is now renamed to model_manager.py
* allow "recommended" flag to be optional in INITIAL_MODELS.yaml
* configure_invokeai now downloads VAE diffusers in advance
* rename ModelCache to ModelManager
* remove support for `repo_name` in models.yaml
* check for and refuse to load embeddings trained on incompatible models
* models.yaml.example: s/repo_name/repo_id
and remove extra INITIAL_MODELS now that the main one has diffusers models in it.
* add MVP textual inversion script
* refactor(InvokeAIDiffuserComponent): factor out _combine()
* InvokeAIDiffuserComponent: implement threshold
* InvokeAIDiffuserComponent: diagnostic logs for threshold
...this does not look right
* add a curses-based frontend to textual inversion
- not quite working yet
- requires npyscreen installed
- on windows will also have the windows-curses requirement, but not added
to requirements yet
* add curses-based interface for textual inversion
* fix crash in convert_and_import()
- This corrects a "local variable referenced before assignment" error
in model_manager.convert_and_import()
* potential workaround for no 'state_dict' key error
- As reported in https://github.com/huggingface/diffusers/issues/1876
* create TI output dir if needed
* Update environment-lin-cuda.yml (#2159)
Fixing line 42 to be the proper order to define the transformers requirement: ~= instead of =~
* diffusers: update sampler-to-scheduler mapping
based on https://github.com/huggingface/diffusers/issues/277#issuecomment-1371428672
* improve user exp for ckt to diffusers conversion
- !optimize_models command now operates on an existing ckpt file entry in models.yaml
- replaces existing entry, rather than adding a new one
- offers to delete the ckpt file after conversion
* web: adapt progress callback to deal with old generator or new diffusers pipeline
* clean-up model_manager code
- add_model() verified to work for .ckpt local paths,
.ckpt remote URLs, diffusers local paths, and
diffusers repo_ids
- convert_and_import() verified to work for local and
remove .ckpt files
* handle edge cases for import_model() and convert_model()
* add support for safetensor .ckpt files
* fix name error
* code cleanup with pyflake
* improve model setting behavior
- If the user enters an invalid model name at startup time, will not
try to load it, warn, and use default model
- CLI UI enhancement: include currently active model in the command
line prompt.
* update test-invoke-pip.yml
- fix model cache path to point to runwayml/stable-diffusion-v1-5
- remove `skip-sd-weights` from configure_invokeai.py args
* exclude dev/diffusers from "fail for draft PRs"
* disable "fail on PR jobs"
* re-add `--skip-sd-weights` since no space
* update workflow environments
- include `INVOKE_MODEL_RECONFIGURE: '--yes'`
* clean up model load failure handling
- Allow CLI to run even when no model is defined or loadable.
- Inhibit stack trace when model load fails - only show last error
- Give user *option* to run configure_invokeai.py when no models
successfully load.
- Restart invokeai after reconfiguration.
* further edge-case handling
1) only one model in models.yaml file, and that model is broken
2) no models in models.yaml
3) models.yaml doesn't exist at all
* fix incorrect model status listing
- "cached" was not being returned from list_models()
- normalize handling of exceptions during model loading:
- Passing an invalid model name to generate.set_model() will return
a KeyError
- All other exceptions are returned as the appropriate Exception
* CI: do download weights (if not already cached)
* diffusers: fix scheduler loading in offline mode
* CI: fix model name (no longer has `diffusers-` prefix)
* Update txt2img2img.py (#2256)
* fixes to share models with HuggingFace cache system
- If HF_HOME environment variable is defined, then all huggingface models
are stored in that directory following the standard conventions.
- For seamless interoperability, set HF_HOME to ~/.cache/huggingface
- If HF_HOME not defined, then models are stored in ~/invokeai/models.
This is equivalent to setting HF_HOME to ~/invokeai/models
A future commit will add a migration mechanism so that this change doesn't
break previous installs.
* feat - make model storage compatible with hugging face caching system
This commit alters the InvokeAI model directory to be compatible with
hugging face, making it easier to share diffusers (and other models)
across different programs.
- If the HF_HOME environment variable is not set, then models are
cached in ~/invokeai/models in a format that is identical to the
HuggingFace cache.
- If HF_HOME is set, then models are cached wherever HF_HOME points.
- To enable sharing with other HuggingFace library clients, set
HF_HOME to ~/.cache/huggingface to set the default cache location
or to ~/invokeai/models to have huggingface cache inside InvokeAI.
* fixes to share models with HuggingFace cache system
- If HF_HOME environment variable is defined, then all huggingface models
are stored in that directory following the standard conventions.
- For seamless interoperability, set HF_HOME to ~/.cache/huggingface
- If HF_HOME not defined, then models are stored in ~/invokeai/models.
This is equivalent to setting HF_HOME to ~/invokeai/models
A future commit will add a migration mechanism so that this change doesn't
break previous installs.
* fix error "no attribute CkptInpaint"
* model_manager.list_models() returns entire model config stanza+status
* Initial Draft - Model Manager Diffusers
* added hash function to diffusers
* implement sha256 hashes on diffusers models
* Add Model Manager Support for Diffusers
* fix various problems with model manager
- in cli import functions, fix not enough values to unpack from
_get_name_and_desc()
- fix crash when using old-style vae: value with new-style diffuser
* rebuild frontend
* fix dictconfig-not-serializable issue
* fix NoneType' object is not subscriptable crash in model_manager
* fix "str has no attribute get" error in model_manager list_models()
* Add path and repo_id support for Diffusers Model Manager
Also fixes bugs
* Fix tooltip IT localization not working
* Add Version Number To WebUI
* Optimize Model Search
* Fix incorrect font on the Model Manager UI
* Fix image degradation on merge fixes - [Experimental]
This change should effectively fix a couple of things.
- Fix image degradation on subsequent merges of the canvas layers.
- Fix the slight transparent border that is left behind when filling the bounding box with a color.
- Fix the left over line of color when filling a bounding box with color.
So far there are no side effects for this. If any, please report.
* Add local model filtering for Diffusers / Checkpoints
* Go to home on modal close for the Add Modal UI
* Styling Fixes
* Model Manager Diffusers Localization Update
* Add Safe Tensor scanning to Model Manager
* Fix model edit form dispatching string values instead of numbers.
* Resolve VAE handling / edge cases for supplied repos
* defer injecting tokens for textual inversions until they're used for the first time
* squash a console warning
* implement model migration check
* add_model() overwrites previous config rather than merges
* fix model config file attribute merging
* fix precision handling in textual inversion script
* allow ckpt conversion script to work with safetensors .ckpts
Applied patch here:
https://github.com/huggingface/diffusers/commit/beb932c5d111872c5e45387e7b1b2b3dd0524a47
* fix name "args" is not defined crash in textual_inversion_training
* fix a second NameError: name 'args' is not defined crash
* fix loading of the safety checker from the global cache dir
* add installation step to textual inversion frontend
- After a successful training run, the script will copy learned_embeds.bin
to a subfolder of the embeddings directory.
- User given the option to delete the logs and intermediate checkpoints
(which together use 7-8G of space)
- If textual inversion training fails, reports the error gracefully.
* don't crash out on incompatible embeddings
- put try: blocks around places where the system tries to load an embedding
which is incompatible with the currently loaded model
* add support for checkpoint resuming
* textual inversion preferences are saved and restored between sessions
- Preferences are stored in a file named text-inversion-training/preferences.conf
- Currently the resume-from-checkpoint option is not working correctly. Possible
bug in textual_inversion_training.py?
* copy learned_embeddings.bin into right location
* add front end for diffusers model merging
- Front end doesn't do anything yet!!!!
- Made change to model name parsing in CLI to support ability to have merged models
with the "+" character in their names.
* improve inpainting experience
- recommend ckpt version of inpainting-1.5 to user
- fix get_noise() bug in ckpt version of omnibus.py
* update environment*yml
* tweak instructions to install HuggingFace token
* bump version number
* enhance update scripts
- update scripts will now fetch new INITIAL_MODELS.yaml so that
configure_invokeai.py will know about the diffusers versions.
* enhance invoke.sh/invoke.bat launchers
- added configure_invokeai.py to menu
- menu defaults to browser-based invoke
* remove conda workflow (#2321)
* fix `token_ids has shape torch.Size([79]) - expected [77]`
* update CHANGELOG.md with 2.3.* info
- Add information on how formats have changed and the upgrade process.
- Add short bug list.
Co-authored-by: Damian Stewart <d@damianstewart.com>
Co-authored-by: Damian Stewart <null@damianstewart.com>
Co-authored-by: Lincoln Stein <lincoln.stein@gmail.com>
Co-authored-by: Wybartel-luxmc <37852506+Wybartel-luxmc@users.noreply.github.com>
Co-authored-by: mauwii <Mauwii@outlook.de>
Co-authored-by: mickr777 <115216705+mickr777@users.noreply.github.com>
Co-authored-by: blessedcoolant <54517381+blessedcoolant@users.noreply.github.com>
Co-authored-by: Eugene Brodsky <ebr@users.noreply.github.com>
Co-authored-by: Matthias Wild <40327258+mauwii@users.noreply.github.com>
2023-01-15 14:22:46 +00:00
|
|
|
|
2023-02-03 15:04:32 +00:00
|
|
|
converted_unet_checkpoint = convert_ldm_unet_checkpoint(
|
|
|
|
checkpoint, unet_config, path=checkpoint_path, extract_ema=extract_ema
|
|
|
|
)
|
use 🧨diffusers model (#1583)
* initial commit of DiffusionPipeline class
* spike: proof of concept using diffusers for txt2img
* doc: type hints for Generator
* refactor(model_cache): factor out load_ckpt
* model_cache: add ability to load a diffusers model pipeline
and update associated things in Generate & Generator to not instantly fail when that happens
* model_cache: fix model default image dimensions
* txt2img: support switching diffusers schedulers
* diffusers: let the scheduler do its scaling of the initial latents
Remove IPNDM scheduler; it is not behaving.
* web server: update image_progress callback for diffusers data
* diffusers: restore prompt weighting feature
* diffusers: fix set-sampler error following model switch
* diffusers: use InvokeAIDiffuserComponent for conditioning
* cross_attention_control: stub (no-op) implementations for diffusers
* model_cache: let offload_model work with DiffusionPipeline, sorta.
* models.yaml.example: add diffusers-format model, set as default
* test-invoke-conda: use diffusers-format model
test-invoke-conda: put huggingface-token where the library can use it
* environment-mac: upgrade to diffusers 0.7 (from 0.6)
this was already done for linux; mac must have been lost in the merge.
* preload_models: explicitly load diffusers models
In non-interactive mode too, as long as you're logged in.
* fix(model_cache): don't check `model.config` in diffusers format
clean-up from recent merge.
* diffusers integration: support img2img
* dev: upgrade to diffusers 0.8 (from 0.7.1)
We get to remove some code by using methods that were factored out in the base class.
* refactor: remove backported img2img.get_timesteps
now that we can use it directly from diffusers 0.8.1
* ci: use diffusers model
* dev: upgrade to diffusers 0.9 (from 0.8.1)
* lint: correct annotations for Python 3.9.
* lint: correct AttributeError.name reference for Python 3.9.
* CI: prefer diffusers-1.4 because it no longer requires a token
The RunwayML models still do.
* build: there's yet another place to update requirements?
* configure: try to download models even without token
Models in the CompVis and stabilityai repos no longer require them. (But runwayml still does.)
* configure: add troubleshooting info for config-not-found
* fix(configure): prepend root to config path
* fix(configure): remove second `default: true` from models example
* CI: simplify test-on-push logic now that we don't need secrets
The "test on push but only in forks" logic was only necessary when tests didn't work for PRs-from-forks.
* create an embedding_manager for diffusers
* internal: avoid importing diffusers DummyObject
see https://github.com/huggingface/diffusers/issues/1479
* fix "config attributes…not expected" diffusers warnings.
* fix deprecated scheduler construction
* work around an apparent MPS torch bug that causes conditioning to have no effect
* 🚧 post-rebase repair
* preliminary support for outpainting (no masking yet)
* monkey-patch diffusers.attention and use Invoke lowvram code
* add always_use_cpu arg to bypass MPS
* add cross-attention control support to diffusers (fails on MPS)
For unknown reasons MPS produces garbage output with .swap(). Use
--always_use_cpu arg to invoke.py for now to test this code on MPS.
* diffusers support for the inpainting model
* fix debug_image to not crash with non-RGB images.
* inpainting for the normal model [WIP]
This seems to be performing well until the LAST STEP, at which point it dissolves to confetti.
* fix off-by-one bug in cross-attention-control (#1774)
prompt token sequences begin with a "beginning-of-sequence" marker <bos> and end with a repeated "end-of-sequence" marker <eos> - to make a default prompt length of <bos> + 75 prompt tokens + <eos>. the .swap() code was failing to take the column for <bos> at index 0 into account. the changes here do that, and also add extra handling for a single <eos> (which may be redundant but which is included for completeness).
based on my understanding and some assumptions about how this all works, the reason .swap() nevertheless seemed to do the right thing, to some extent, is because over multiple steps the conditioning process in Stable Diffusion operates as a feedback loop. a change to token n-1 has flow-on effects to how the [1x4x64x64] latent tensor is modified by all the tokens after it, - and as the next step is processed, all the tokens before it as well. intuitively, a token's conditioning effects "echo" throughout the whole length of the prompt. so even though the token at n-1 was being edited when what the user actually wanted was to edit the token at n, it nevertheless still had some non-negligible effect, in roughly the right direction, often enough that it seemed like it was working properly.
* refactor common CrossAttention stuff into a mixin so that the old ldm code can still work if necessary
* inpainting for the normal model. I think it works this time.
* diffusers: reset num_vectors_per_token
sync with 44a00555718f1df173c60da0ed646cf700e29537
* diffusers: txt2img2img (hires_fix)
with so much slicing and dicing of pipeline methods to stitch them together
* refactor(diffusers): reduce some code duplication amongst the different tasks
* fixup! refactor(diffusers): reduce some code duplication amongst the different tasks
* diffusers: enable DPMSolver++ scheduler
* diffusers: upgrade to diffusers 0.10, add Heun scheduler
* diffusers(ModelCache): stopgap to make from_cpu compatible with diffusers
* CI: default to diffusers-1.5 now that runwayml token requirement is gone
* diffusers: update to 0.10 (and transformers to 4.25)
* diffusers: use xformers when available
diffusers no longer auto-enables this as of 0.10.2.
* diffusers: make masked img2img behave better with multi-step schedulers
re-randomizing the noise each step was confusing them.
* diffusers: work more better with more models.
fixed relative path problem with local models.
fixed models on hub not always having a `fp16` branch.
* diffusers: stopgap fix for attention_maps_callback crash after recent merge
* fixup import merge conflicts
correction for 061c5369a2247c6c92cd69606bcf54c4f1962a0b
* test: add tests/inpainting inputs for masked img2img
* diffusers(AddsMaskedGuidance): partial fix for k-schedulers
Prevents them from crashing, but results are still hot garbage.
* fix --safety_checker arg parsing
and add note to diffusers loader about where safety checker gets called
* generate: fix import error
* CI: don't try to read the old init location
* diffusers: support loading an alternate VAE
* CI: remove sh-syntax if-statement so it doesn't crash powershell
* CI: fold strings in yaml because backslash is not line-continuation in powershell
* attention maps callback stuff for diffusers
* build: fix syntax error in environment-mac
* diffusers: add INITIAL_MODELS with diffusers-compatible repos
* re-enable the embedding manager; closes #1778
* Squashed commit of the following:
commit e4a956abc37fcb5cf188388b76b617bc5c8fda7d
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:43:07 2022 +0100
import new load handling from EmbeddingManager and cleanup
commit c4abe91a5ba0d415b45bf734068385668b7a66e6
Merge: 032e856e 1efc6397
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:09:53 2022 +0100
Merge branch 'feature_textual_inversion_mgr' into dev/diffusers_with_textual_inversion_manager
commit 032e856eefb3bbc39534f5daafd25764bcfcef8b
Merge: 8b4f0fe9 bc515e24
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:08:01 2022 +0100
Merge remote-tracking branch 'upstream/dev/diffusers' into dev/diffusers_with_textual_inversion_manager
commit 1efc6397fc6e61c1aff4b0258b93089d61de5955
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:04:28 2022 +0100
cleanup and add performance notes
commit e400f804ac471a0ca2ba432fd658778b20c7bdab
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 14:45:07 2022 +0100
fix bug and update unit tests
commit deb9ae0ae1016750e93ce8275734061f7285a231
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 14:28:29 2022 +0100
textual inversion manager seems to work
commit 162e02505dec777e91a983c4d0fb52e950d25ff0
Merge: cbad4583 12769b3d
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:58:03 2022 +0100
Merge branch 'main' into feature_textual_inversion_mgr
commit cbad45836c6aace6871a90f2621a953f49433131
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:54:10 2022 +0100
use position embeddings
commit 070344c69b0e0db340a183857d0a787b348681d3
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:53:47 2022 +0100
Don't crash CLI on exceptions
commit b035ac8c6772dfd9ba41b8eeb9103181cda028f8
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:11:55 2022 +0100
add missing position_embeddings
commit 12769b3d3562ef71e0f54946b532ad077e10043c
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 13:33:25 2022 +0100
debugging why it don't work
commit bafb7215eabe1515ca5e8388fd3bb2f3ac5362cf
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 13:21:33 2022 +0100
debugging why it don't work
commit 664a6e9e146b42d96703f0cc8baf8f5efec04ee1
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 12:48:38 2022 +0100
use TextualInversionManager in place of embeddings (wip, doesn't work)
commit 8b4f0fe9d6e4e2643b36dfa27864294785d7ba4e
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 12:48:38 2022 +0100
use TextualInversionManager in place of embeddings (wip, doesn't work)
commit ffbe1ab11163ba712e353d89404e301d0e0c6cdf
Merge: 6e4dad60 023df37e
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:37:31 2022 +0100
Merge branch 'feature_textual_inversion_mgr' into dev/diffusers
commit 023df37efffa67434f77def7fc3c9dfb29f699fd
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:36:54 2022 +0100
cleanup
commit 05fac594eaf79d0058e3c48deee93df603f136c2
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:07:49 2022 +0100
tweak error checking
commit 009f32ed39a7280997c3ffab112adadee0b44279
Author: damian <null@damianstewart.com>
Date: Thu Dec 15 21:29:47 2022 +0100
unit tests passing for embeddings with vector length >1
commit beb1b08d9a98112ed2fe073580568e1a18698da3
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 13:39:09 2022 +0100
more explicit equality tests when overwriting
commit 44d8a5a7c85cdabc9ce3a54fd0769a10597b3ca9
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 13:30:13 2022 +0100
wip textual inversion manager (unit tests passing for 1v embedding overwriting)
commit 417c2b57d90924a839616bfb66804faab8039e4c
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 12:30:55 2022 +0100
wip textual inversion manager (unit tests passing for base stuff + padding)
commit 2e80872e3b6f7fd7d8eb8928822bd824b63cb2ff
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 10:57:57 2022 +0100
wip new TextualInversionManager
* stop using WeightedFrozenCLIPEmbedder
* store diffusion models locally
- configure_invokeai.py reconfigured to store diffusion models rather than
CompVis models
- hugging face caching model is used, but cache is set to ~/invokeai/models/repo_id
- models.yaml does **NOT** use path, just repo_id
- "repo_name" changed to "repo_id" to following hugging face conventions
- Models are loaded with full precision pending further work.
* allow non-local files during development
* path takes priority over repo_id
* MVP for model_cache and configure_invokeai
- Feature complete (almost)
- configure_invokeai.py downloads both .ckpt and diffuser models,
along with their VAEs. Both types of download are controlled by
a unified INITIAL_MODELS.yaml file.
- model_cache can load both type of model and switches back and forth
in CPU. No memory leaks detected
TO DO:
1. I have not yet turned on the LocalOnly flag for diffuser models, so
the code will check the Hugging Face repo for updates before using the
locally cached models. This will break firewalled systems. I am thinking
of putting in a global check for internet connectivity at startup time
and setting the LocalOnly flag based on this. It would be good to check
updates if there is connectivity.
2. I have not gone completely through INITIAL_MODELS.yaml to check which
models are available as diffusers and which are not. So models like
PaperCut and VoxelArt may not load properly. The runway and stability
models are checked, as well as the Trinart models.
3. Add stanzas for SD 2.0 and 2.1 in INITIAL_MODELS.yaml
REMAINING PROBLEMS NOT DIRECTLY RELATED TO MODEL_CACHE:
1. When loading a .ckpt file there are lots of messages like this:
Warning! ldm.modules.attention.CrossAttention is no longer being
maintained. Please use InvokeAICrossAttention instead.
I'm not sure how to address this.
2. The ckpt models ***don't actually run*** due to the lack of special-case
support for them in the generator objects. For example, here's the hard
crash you get when you run txt2img against the legacy waifu-diffusion-1.3
model:
```
>> An error occurred:
Traceback (most recent call last):
File "/data/lstein/InvokeAI/ldm/invoke/CLI.py", line 140, in main
main_loop(gen, opt)
File "/data/lstein/InvokeAI/ldm/invoke/CLI.py", line 371, in main_loop
gen.prompt2image(
File "/data/lstein/InvokeAI/ldm/generate.py", line 496, in prompt2image
results = generator.generate(
File "/data/lstein/InvokeAI/ldm/invoke/generator/base.py", line 108, in generate
image = make_image(x_T)
File "/data/lstein/InvokeAI/ldm/invoke/generator/txt2img.py", line 33, in make_image
pipeline_output = pipeline.image_from_embeddings(
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1265, in __getattr__
raise AttributeError("'{}' object has no attribute '{}'".format(
AttributeError: 'LatentDiffusion' object has no attribute 'image_from_embeddings'
```
3. The inpainting diffusion model isn't working. Here's the output of "banana
sushi" when inpainting-1.5 is loaded:
```
Traceback (most recent call last):
File "/data/lstein/InvokeAI/ldm/generate.py", line 496, in prompt2image
results = generator.generate(
File "/data/lstein/InvokeAI/ldm/invoke/generator/base.py", line 108, in generate
image = make_image(x_T)
File "/data/lstein/InvokeAI/ldm/invoke/generator/txt2img.py", line 33, in make_image
pipeline_output = pipeline.image_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 301, in image_from_embeddings
result_latents, result_attention_map_saver = self.latents_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 330, in latents_from_embeddings
result: PipelineIntermediateState = infer_latents_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 185, in __call__
for result in self.generator_method(*args, **kwargs):
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 367, in generate_latents_from_embeddings
step_output = self.step(batched_t, latents, guidance_scale,
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context
return func(*args, **kwargs)
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 409, in step
step_output = self.scheduler.step(noise_pred, timestep, latents, **extra_step_kwargs)
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/diffusers/schedulers/scheduling_lms_discrete.py", line 223, in step
pred_original_sample = sample - sigma * model_output
RuntimeError: The size of tensor a (9) must match the size of tensor b (4) at non-singleton dimension 1
```
* proper support for float32/float16
- configure script now correctly detects user's preference for
fp16/32 and downloads the correct diffuser version. If fp16
version not available, falls back to fp32 version.
- misc code cleanup and simplification in model_cache
* add on-the-fly conversion of .ckpt to diffusers models
1. On-the-fly conversion code can be found in the file ldm/invoke/ckpt_to_diffusers.py.
2. A new !optimize command has been added to the CLI. Should be ported to Web GUI.
User experience on the CLI is this:
```
invoke> !optimize /home/lstein/invokeai/models/ldm/stable-diffusion-v1/sd-v1-4.ckpt
INFO: Converting legacy weights file /home/lstein/invokeai/models/ldm/stable-diffusion-v1/sd-v1-4.ckpt to optimized diffuser model.
This operation will take 30-60s to complete.
Success. Optimized model is now located at /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
Writing new config file entry for sd-v1-4...
>> New configuration:
sd-v1-4:
description: Optimized version of sd-v1-4
format: diffusers
path: /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
OK to import [n]? y
>> Verifying that new model loads...
>> Current VRAM usage: 2.60G
>> Offloading stable-diffusion-2.1 to CPU
>> Loading diffusers model from /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
| Using faster float16 precision
You have disabled the safety checker for <class 'ldm.invoke.generator.diffusers_pipeline.StableDiffusionGeneratorPipeline'> by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion \
license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances,\
disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .
| training width x height = (512 x 512)
>> Model loaded in 3.48s
>> Max VRAM used to load the model: 2.17G
>> Current VRAM usage:2.17G
>> Textual inversions available:
>> Setting Sampler to k_lms (LMSDiscreteScheduler)
Keep model loaded? [y]
```
* add parallel set of generator files for ckpt legacy generation
* generation using legacy ckpt models now working
* diffusers: fix missing attention_maps_callback
fix for 23eb80b40421b2bb8f4b6d3dd30490d11c447b36
* associate legacy CrossAttention with .ckpt models
* enable autoconvert
New --autoconvert CLI option will scan a designated directory for
new .ckpt files, convert them into diffuser models, and import
them into models.yaml.
Works like this:
invoke.py --autoconvert /path/to/weights/directory
In ModelCache added two new methods:
autoconvert_weights(config_path, weights_directory_path, models_directory_path)
convert_and_import(ckpt_path, diffuser_path)
* diffusers: update to diffusers 0.11 (from 0.10.2)
* fix vae loading & width/height calculation
* refactor: encapsulate these conditioning data into one container
* diffusers: fix some noise-scaling issues by pushing the noise-mixing down to the common function
* add support for safetensors and accelerate
* set local_files_only when internet unreachable
* diffusers: fix error-handling path when model repo has no fp16 branch
* fix generatorinpaint error
Fixes :
"ModuleNotFoundError: No module named 'ldm.invoke.generatorinpaint'
https://github.com/invoke-ai/InvokeAI/pull/1583#issuecomment-1363634318
* quench diffuser safety-checker warning
* diffusers: support stochastic DDIM eta parameter
* fix conda env creation on macos
* fix cross-attention with diffusers 0.11
* diffusers: the VAE needs to be tiling as well as the U-Net
* diffusers: comment on subfolders
* diffusers: embiggen!
* diffusers: make model_cache.list_models serializable
* diffusers(inpaint): restore scaling functionality
* fix requirements clash between numba and numpy 1.24
* diffusers: allow inpainting model to do non-inpainting tasks
* start expanding model_cache functionality
* add import_ckpt_model() and import_diffuser_model() methods to model_manager
- in addition, model_cache.py is now renamed to model_manager.py
* allow "recommended" flag to be optional in INITIAL_MODELS.yaml
* configure_invokeai now downloads VAE diffusers in advance
* rename ModelCache to ModelManager
* remove support for `repo_name` in models.yaml
* check for and refuse to load embeddings trained on incompatible models
* models.yaml.example: s/repo_name/repo_id
and remove extra INITIAL_MODELS now that the main one has diffusers models in it.
* add MVP textual inversion script
* refactor(InvokeAIDiffuserComponent): factor out _combine()
* InvokeAIDiffuserComponent: implement threshold
* InvokeAIDiffuserComponent: diagnostic logs for threshold
...this does not look right
* add a curses-based frontend to textual inversion
- not quite working yet
- requires npyscreen installed
- on windows will also have the windows-curses requirement, but not added
to requirements yet
* add curses-based interface for textual inversion
* fix crash in convert_and_import()
- This corrects a "local variable referenced before assignment" error
in model_manager.convert_and_import()
* potential workaround for no 'state_dict' key error
- As reported in https://github.com/huggingface/diffusers/issues/1876
* create TI output dir if needed
* Update environment-lin-cuda.yml (#2159)
Fixing line 42 to be the proper order to define the transformers requirement: ~= instead of =~
* diffusers: update sampler-to-scheduler mapping
based on https://github.com/huggingface/diffusers/issues/277#issuecomment-1371428672
* improve user exp for ckt to diffusers conversion
- !optimize_models command now operates on an existing ckpt file entry in models.yaml
- replaces existing entry, rather than adding a new one
- offers to delete the ckpt file after conversion
* web: adapt progress callback to deal with old generator or new diffusers pipeline
* clean-up model_manager code
- add_model() verified to work for .ckpt local paths,
.ckpt remote URLs, diffusers local paths, and
diffusers repo_ids
- convert_and_import() verified to work for local and
remove .ckpt files
* handle edge cases for import_model() and convert_model()
* add support for safetensor .ckpt files
* fix name error
* code cleanup with pyflake
* improve model setting behavior
- If the user enters an invalid model name at startup time, will not
try to load it, warn, and use default model
- CLI UI enhancement: include currently active model in the command
line prompt.
* update test-invoke-pip.yml
- fix model cache path to point to runwayml/stable-diffusion-v1-5
- remove `skip-sd-weights` from configure_invokeai.py args
* exclude dev/diffusers from "fail for draft PRs"
* disable "fail on PR jobs"
* re-add `--skip-sd-weights` since no space
* update workflow environments
- include `INVOKE_MODEL_RECONFIGURE: '--yes'`
* clean up model load failure handling
- Allow CLI to run even when no model is defined or loadable.
- Inhibit stack trace when model load fails - only show last error
- Give user *option* to run configure_invokeai.py when no models
successfully load.
- Restart invokeai after reconfiguration.
* further edge-case handling
1) only one model in models.yaml file, and that model is broken
2) no models in models.yaml
3) models.yaml doesn't exist at all
* fix incorrect model status listing
- "cached" was not being returned from list_models()
- normalize handling of exceptions during model loading:
- Passing an invalid model name to generate.set_model() will return
a KeyError
- All other exceptions are returned as the appropriate Exception
* CI: do download weights (if not already cached)
* diffusers: fix scheduler loading in offline mode
* CI: fix model name (no longer has `diffusers-` prefix)
* Update txt2img2img.py (#2256)
* fixes to share models with HuggingFace cache system
- If HF_HOME environment variable is defined, then all huggingface models
are stored in that directory following the standard conventions.
- For seamless interoperability, set HF_HOME to ~/.cache/huggingface
- If HF_HOME not defined, then models are stored in ~/invokeai/models.
This is equivalent to setting HF_HOME to ~/invokeai/models
A future commit will add a migration mechanism so that this change doesn't
break previous installs.
* feat - make model storage compatible with hugging face caching system
This commit alters the InvokeAI model directory to be compatible with
hugging face, making it easier to share diffusers (and other models)
across different programs.
- If the HF_HOME environment variable is not set, then models are
cached in ~/invokeai/models in a format that is identical to the
HuggingFace cache.
- If HF_HOME is set, then models are cached wherever HF_HOME points.
- To enable sharing with other HuggingFace library clients, set
HF_HOME to ~/.cache/huggingface to set the default cache location
or to ~/invokeai/models to have huggingface cache inside InvokeAI.
* fixes to share models with HuggingFace cache system
- If HF_HOME environment variable is defined, then all huggingface models
are stored in that directory following the standard conventions.
- For seamless interoperability, set HF_HOME to ~/.cache/huggingface
- If HF_HOME not defined, then models are stored in ~/invokeai/models.
This is equivalent to setting HF_HOME to ~/invokeai/models
A future commit will add a migration mechanism so that this change doesn't
break previous installs.
* fix error "no attribute CkptInpaint"
* model_manager.list_models() returns entire model config stanza+status
* Initial Draft - Model Manager Diffusers
* added hash function to diffusers
* implement sha256 hashes on diffusers models
* Add Model Manager Support for Diffusers
* fix various problems with model manager
- in cli import functions, fix not enough values to unpack from
_get_name_and_desc()
- fix crash when using old-style vae: value with new-style diffuser
* rebuild frontend
* fix dictconfig-not-serializable issue
* fix NoneType' object is not subscriptable crash in model_manager
* fix "str has no attribute get" error in model_manager list_models()
* Add path and repo_id support for Diffusers Model Manager
Also fixes bugs
* Fix tooltip IT localization not working
* Add Version Number To WebUI
* Optimize Model Search
* Fix incorrect font on the Model Manager UI
* Fix image degradation on merge fixes - [Experimental]
This change should effectively fix a couple of things.
- Fix image degradation on subsequent merges of the canvas layers.
- Fix the slight transparent border that is left behind when filling the bounding box with a color.
- Fix the left over line of color when filling a bounding box with color.
So far there are no side effects for this. If any, please report.
* Add local model filtering for Diffusers / Checkpoints
* Go to home on modal close for the Add Modal UI
* Styling Fixes
* Model Manager Diffusers Localization Update
* Add Safe Tensor scanning to Model Manager
* Fix model edit form dispatching string values instead of numbers.
* Resolve VAE handling / edge cases for supplied repos
* defer injecting tokens for textual inversions until they're used for the first time
* squash a console warning
* implement model migration check
* add_model() overwrites previous config rather than merges
* fix model config file attribute merging
* fix precision handling in textual inversion script
* allow ckpt conversion script to work with safetensors .ckpts
Applied patch here:
https://github.com/huggingface/diffusers/commit/beb932c5d111872c5e45387e7b1b2b3dd0524a47
* fix name "args" is not defined crash in textual_inversion_training
* fix a second NameError: name 'args' is not defined crash
* fix loading of the safety checker from the global cache dir
* add installation step to textual inversion frontend
- After a successful training run, the script will copy learned_embeds.bin
to a subfolder of the embeddings directory.
- User given the option to delete the logs and intermediate checkpoints
(which together use 7-8G of space)
- If textual inversion training fails, reports the error gracefully.
* don't crash out on incompatible embeddings
- put try: blocks around places where the system tries to load an embedding
which is incompatible with the currently loaded model
* add support for checkpoint resuming
* textual inversion preferences are saved and restored between sessions
- Preferences are stored in a file named text-inversion-training/preferences.conf
- Currently the resume-from-checkpoint option is not working correctly. Possible
bug in textual_inversion_training.py?
* copy learned_embeddings.bin into right location
* add front end for diffusers model merging
- Front end doesn't do anything yet!!!!
- Made change to model name parsing in CLI to support ability to have merged models
with the "+" character in their names.
* improve inpainting experience
- recommend ckpt version of inpainting-1.5 to user
- fix get_noise() bug in ckpt version of omnibus.py
* update environment*yml
* tweak instructions to install HuggingFace token
* bump version number
* enhance update scripts
- update scripts will now fetch new INITIAL_MODELS.yaml so that
configure_invokeai.py will know about the diffusers versions.
* enhance invoke.sh/invoke.bat launchers
- added configure_invokeai.py to menu
- menu defaults to browser-based invoke
* remove conda workflow (#2321)
* fix `token_ids has shape torch.Size([79]) - expected [77]`
* update CHANGELOG.md with 2.3.* info
- Add information on how formats have changed and the upgrade process.
- Add short bug list.
Co-authored-by: Damian Stewart <d@damianstewart.com>
Co-authored-by: Damian Stewart <null@damianstewart.com>
Co-authored-by: Lincoln Stein <lincoln.stein@gmail.com>
Co-authored-by: Wybartel-luxmc <37852506+Wybartel-luxmc@users.noreply.github.com>
Co-authored-by: mauwii <Mauwii@outlook.de>
Co-authored-by: mickr777 <115216705+mickr777@users.noreply.github.com>
Co-authored-by: blessedcoolant <54517381+blessedcoolant@users.noreply.github.com>
Co-authored-by: Eugene Brodsky <ebr@users.noreply.github.com>
Co-authored-by: Matthias Wild <40327258+mauwii@users.noreply.github.com>
2023-01-15 14:22:46 +00:00
|
|
|
|
2023-02-03 15:04:32 +00:00
|
|
|
unet.load_state_dict(converted_unet_checkpoint)
|
use 🧨diffusers model (#1583)
* initial commit of DiffusionPipeline class
* spike: proof of concept using diffusers for txt2img
* doc: type hints for Generator
* refactor(model_cache): factor out load_ckpt
* model_cache: add ability to load a diffusers model pipeline
and update associated things in Generate & Generator to not instantly fail when that happens
* model_cache: fix model default image dimensions
* txt2img: support switching diffusers schedulers
* diffusers: let the scheduler do its scaling of the initial latents
Remove IPNDM scheduler; it is not behaving.
* web server: update image_progress callback for diffusers data
* diffusers: restore prompt weighting feature
* diffusers: fix set-sampler error following model switch
* diffusers: use InvokeAIDiffuserComponent for conditioning
* cross_attention_control: stub (no-op) implementations for diffusers
* model_cache: let offload_model work with DiffusionPipeline, sorta.
* models.yaml.example: add diffusers-format model, set as default
* test-invoke-conda: use diffusers-format model
test-invoke-conda: put huggingface-token where the library can use it
* environment-mac: upgrade to diffusers 0.7 (from 0.6)
this was already done for linux; mac must have been lost in the merge.
* preload_models: explicitly load diffusers models
In non-interactive mode too, as long as you're logged in.
* fix(model_cache): don't check `model.config` in diffusers format
clean-up from recent merge.
* diffusers integration: support img2img
* dev: upgrade to diffusers 0.8 (from 0.7.1)
We get to remove some code by using methods that were factored out in the base class.
* refactor: remove backported img2img.get_timesteps
now that we can use it directly from diffusers 0.8.1
* ci: use diffusers model
* dev: upgrade to diffusers 0.9 (from 0.8.1)
* lint: correct annotations for Python 3.9.
* lint: correct AttributeError.name reference for Python 3.9.
* CI: prefer diffusers-1.4 because it no longer requires a token
The RunwayML models still do.
* build: there's yet another place to update requirements?
* configure: try to download models even without token
Models in the CompVis and stabilityai repos no longer require them. (But runwayml still does.)
* configure: add troubleshooting info for config-not-found
* fix(configure): prepend root to config path
* fix(configure): remove second `default: true` from models example
* CI: simplify test-on-push logic now that we don't need secrets
The "test on push but only in forks" logic was only necessary when tests didn't work for PRs-from-forks.
* create an embedding_manager for diffusers
* internal: avoid importing diffusers DummyObject
see https://github.com/huggingface/diffusers/issues/1479
* fix "config attributes…not expected" diffusers warnings.
* fix deprecated scheduler construction
* work around an apparent MPS torch bug that causes conditioning to have no effect
* 🚧 post-rebase repair
* preliminary support for outpainting (no masking yet)
* monkey-patch diffusers.attention and use Invoke lowvram code
* add always_use_cpu arg to bypass MPS
* add cross-attention control support to diffusers (fails on MPS)
For unknown reasons MPS produces garbage output with .swap(). Use
--always_use_cpu arg to invoke.py for now to test this code on MPS.
* diffusers support for the inpainting model
* fix debug_image to not crash with non-RGB images.
* inpainting for the normal model [WIP]
This seems to be performing well until the LAST STEP, at which point it dissolves to confetti.
* fix off-by-one bug in cross-attention-control (#1774)
prompt token sequences begin with a "beginning-of-sequence" marker <bos> and end with a repeated "end-of-sequence" marker <eos> - to make a default prompt length of <bos> + 75 prompt tokens + <eos>. the .swap() code was failing to take the column for <bos> at index 0 into account. the changes here do that, and also add extra handling for a single <eos> (which may be redundant but which is included for completeness).
based on my understanding and some assumptions about how this all works, the reason .swap() nevertheless seemed to do the right thing, to some extent, is because over multiple steps the conditioning process in Stable Diffusion operates as a feedback loop. a change to token n-1 has flow-on effects to how the [1x4x64x64] latent tensor is modified by all the tokens after it, - and as the next step is processed, all the tokens before it as well. intuitively, a token's conditioning effects "echo" throughout the whole length of the prompt. so even though the token at n-1 was being edited when what the user actually wanted was to edit the token at n, it nevertheless still had some non-negligible effect, in roughly the right direction, often enough that it seemed like it was working properly.
* refactor common CrossAttention stuff into a mixin so that the old ldm code can still work if necessary
* inpainting for the normal model. I think it works this time.
* diffusers: reset num_vectors_per_token
sync with 44a00555718f1df173c60da0ed646cf700e29537
* diffusers: txt2img2img (hires_fix)
with so much slicing and dicing of pipeline methods to stitch them together
* refactor(diffusers): reduce some code duplication amongst the different tasks
* fixup! refactor(diffusers): reduce some code duplication amongst the different tasks
* diffusers: enable DPMSolver++ scheduler
* diffusers: upgrade to diffusers 0.10, add Heun scheduler
* diffusers(ModelCache): stopgap to make from_cpu compatible with diffusers
* CI: default to diffusers-1.5 now that runwayml token requirement is gone
* diffusers: update to 0.10 (and transformers to 4.25)
* diffusers: use xformers when available
diffusers no longer auto-enables this as of 0.10.2.
* diffusers: make masked img2img behave better with multi-step schedulers
re-randomizing the noise each step was confusing them.
* diffusers: work more better with more models.
fixed relative path problem with local models.
fixed models on hub not always having a `fp16` branch.
* diffusers: stopgap fix for attention_maps_callback crash after recent merge
* fixup import merge conflicts
correction for 061c5369a2247c6c92cd69606bcf54c4f1962a0b
* test: add tests/inpainting inputs for masked img2img
* diffusers(AddsMaskedGuidance): partial fix for k-schedulers
Prevents them from crashing, but results are still hot garbage.
* fix --safety_checker arg parsing
and add note to diffusers loader about where safety checker gets called
* generate: fix import error
* CI: don't try to read the old init location
* diffusers: support loading an alternate VAE
* CI: remove sh-syntax if-statement so it doesn't crash powershell
* CI: fold strings in yaml because backslash is not line-continuation in powershell
* attention maps callback stuff for diffusers
* build: fix syntax error in environment-mac
* diffusers: add INITIAL_MODELS with diffusers-compatible repos
* re-enable the embedding manager; closes #1778
* Squashed commit of the following:
commit e4a956abc37fcb5cf188388b76b617bc5c8fda7d
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:43:07 2022 +0100
import new load handling from EmbeddingManager and cleanup
commit c4abe91a5ba0d415b45bf734068385668b7a66e6
Merge: 032e856e 1efc6397
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:09:53 2022 +0100
Merge branch 'feature_textual_inversion_mgr' into dev/diffusers_with_textual_inversion_manager
commit 032e856eefb3bbc39534f5daafd25764bcfcef8b
Merge: 8b4f0fe9 bc515e24
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:08:01 2022 +0100
Merge remote-tracking branch 'upstream/dev/diffusers' into dev/diffusers_with_textual_inversion_manager
commit 1efc6397fc6e61c1aff4b0258b93089d61de5955
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:04:28 2022 +0100
cleanup and add performance notes
commit e400f804ac471a0ca2ba432fd658778b20c7bdab
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 14:45:07 2022 +0100
fix bug and update unit tests
commit deb9ae0ae1016750e93ce8275734061f7285a231
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 14:28:29 2022 +0100
textual inversion manager seems to work
commit 162e02505dec777e91a983c4d0fb52e950d25ff0
Merge: cbad4583 12769b3d
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:58:03 2022 +0100
Merge branch 'main' into feature_textual_inversion_mgr
commit cbad45836c6aace6871a90f2621a953f49433131
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:54:10 2022 +0100
use position embeddings
commit 070344c69b0e0db340a183857d0a787b348681d3
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:53:47 2022 +0100
Don't crash CLI on exceptions
commit b035ac8c6772dfd9ba41b8eeb9103181cda028f8
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:11:55 2022 +0100
add missing position_embeddings
commit 12769b3d3562ef71e0f54946b532ad077e10043c
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 13:33:25 2022 +0100
debugging why it don't work
commit bafb7215eabe1515ca5e8388fd3bb2f3ac5362cf
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 13:21:33 2022 +0100
debugging why it don't work
commit 664a6e9e146b42d96703f0cc8baf8f5efec04ee1
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 12:48:38 2022 +0100
use TextualInversionManager in place of embeddings (wip, doesn't work)
commit 8b4f0fe9d6e4e2643b36dfa27864294785d7ba4e
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 12:48:38 2022 +0100
use TextualInversionManager in place of embeddings (wip, doesn't work)
commit ffbe1ab11163ba712e353d89404e301d0e0c6cdf
Merge: 6e4dad60 023df37e
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:37:31 2022 +0100
Merge branch 'feature_textual_inversion_mgr' into dev/diffusers
commit 023df37efffa67434f77def7fc3c9dfb29f699fd
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:36:54 2022 +0100
cleanup
commit 05fac594eaf79d0058e3c48deee93df603f136c2
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:07:49 2022 +0100
tweak error checking
commit 009f32ed39a7280997c3ffab112adadee0b44279
Author: damian <null@damianstewart.com>
Date: Thu Dec 15 21:29:47 2022 +0100
unit tests passing for embeddings with vector length >1
commit beb1b08d9a98112ed2fe073580568e1a18698da3
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 13:39:09 2022 +0100
more explicit equality tests when overwriting
commit 44d8a5a7c85cdabc9ce3a54fd0769a10597b3ca9
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 13:30:13 2022 +0100
wip textual inversion manager (unit tests passing for 1v embedding overwriting)
commit 417c2b57d90924a839616bfb66804faab8039e4c
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 12:30:55 2022 +0100
wip textual inversion manager (unit tests passing for base stuff + padding)
commit 2e80872e3b6f7fd7d8eb8928822bd824b63cb2ff
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 10:57:57 2022 +0100
wip new TextualInversionManager
* stop using WeightedFrozenCLIPEmbedder
* store diffusion models locally
- configure_invokeai.py reconfigured to store diffusion models rather than
CompVis models
- hugging face caching model is used, but cache is set to ~/invokeai/models/repo_id
- models.yaml does **NOT** use path, just repo_id
- "repo_name" changed to "repo_id" to following hugging face conventions
- Models are loaded with full precision pending further work.
* allow non-local files during development
* path takes priority over repo_id
* MVP for model_cache and configure_invokeai
- Feature complete (almost)
- configure_invokeai.py downloads both .ckpt and diffuser models,
along with their VAEs. Both types of download are controlled by
a unified INITIAL_MODELS.yaml file.
- model_cache can load both type of model and switches back and forth
in CPU. No memory leaks detected
TO DO:
1. I have not yet turned on the LocalOnly flag for diffuser models, so
the code will check the Hugging Face repo for updates before using the
locally cached models. This will break firewalled systems. I am thinking
of putting in a global check for internet connectivity at startup time
and setting the LocalOnly flag based on this. It would be good to check
updates if there is connectivity.
2. I have not gone completely through INITIAL_MODELS.yaml to check which
models are available as diffusers and which are not. So models like
PaperCut and VoxelArt may not load properly. The runway and stability
models are checked, as well as the Trinart models.
3. Add stanzas for SD 2.0 and 2.1 in INITIAL_MODELS.yaml
REMAINING PROBLEMS NOT DIRECTLY RELATED TO MODEL_CACHE:
1. When loading a .ckpt file there are lots of messages like this:
Warning! ldm.modules.attention.CrossAttention is no longer being
maintained. Please use InvokeAICrossAttention instead.
I'm not sure how to address this.
2. The ckpt models ***don't actually run*** due to the lack of special-case
support for them in the generator objects. For example, here's the hard
crash you get when you run txt2img against the legacy waifu-diffusion-1.3
model:
```
>> An error occurred:
Traceback (most recent call last):
File "/data/lstein/InvokeAI/ldm/invoke/CLI.py", line 140, in main
main_loop(gen, opt)
File "/data/lstein/InvokeAI/ldm/invoke/CLI.py", line 371, in main_loop
gen.prompt2image(
File "/data/lstein/InvokeAI/ldm/generate.py", line 496, in prompt2image
results = generator.generate(
File "/data/lstein/InvokeAI/ldm/invoke/generator/base.py", line 108, in generate
image = make_image(x_T)
File "/data/lstein/InvokeAI/ldm/invoke/generator/txt2img.py", line 33, in make_image
pipeline_output = pipeline.image_from_embeddings(
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1265, in __getattr__
raise AttributeError("'{}' object has no attribute '{}'".format(
AttributeError: 'LatentDiffusion' object has no attribute 'image_from_embeddings'
```
3. The inpainting diffusion model isn't working. Here's the output of "banana
sushi" when inpainting-1.5 is loaded:
```
Traceback (most recent call last):
File "/data/lstein/InvokeAI/ldm/generate.py", line 496, in prompt2image
results = generator.generate(
File "/data/lstein/InvokeAI/ldm/invoke/generator/base.py", line 108, in generate
image = make_image(x_T)
File "/data/lstein/InvokeAI/ldm/invoke/generator/txt2img.py", line 33, in make_image
pipeline_output = pipeline.image_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 301, in image_from_embeddings
result_latents, result_attention_map_saver = self.latents_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 330, in latents_from_embeddings
result: PipelineIntermediateState = infer_latents_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 185, in __call__
for result in self.generator_method(*args, **kwargs):
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 367, in generate_latents_from_embeddings
step_output = self.step(batched_t, latents, guidance_scale,
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context
return func(*args, **kwargs)
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 409, in step
step_output = self.scheduler.step(noise_pred, timestep, latents, **extra_step_kwargs)
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/diffusers/schedulers/scheduling_lms_discrete.py", line 223, in step
pred_original_sample = sample - sigma * model_output
RuntimeError: The size of tensor a (9) must match the size of tensor b (4) at non-singleton dimension 1
```
* proper support for float32/float16
- configure script now correctly detects user's preference for
fp16/32 and downloads the correct diffuser version. If fp16
version not available, falls back to fp32 version.
- misc code cleanup and simplification in model_cache
* add on-the-fly conversion of .ckpt to diffusers models
1. On-the-fly conversion code can be found in the file ldm/invoke/ckpt_to_diffusers.py.
2. A new !optimize command has been added to the CLI. Should be ported to Web GUI.
User experience on the CLI is this:
```
invoke> !optimize /home/lstein/invokeai/models/ldm/stable-diffusion-v1/sd-v1-4.ckpt
INFO: Converting legacy weights file /home/lstein/invokeai/models/ldm/stable-diffusion-v1/sd-v1-4.ckpt to optimized diffuser model.
This operation will take 30-60s to complete.
Success. Optimized model is now located at /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
Writing new config file entry for sd-v1-4...
>> New configuration:
sd-v1-4:
description: Optimized version of sd-v1-4
format: diffusers
path: /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
OK to import [n]? y
>> Verifying that new model loads...
>> Current VRAM usage: 2.60G
>> Offloading stable-diffusion-2.1 to CPU
>> Loading diffusers model from /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
| Using faster float16 precision
You have disabled the safety checker for <class 'ldm.invoke.generator.diffusers_pipeline.StableDiffusionGeneratorPipeline'> by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion \
license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances,\
disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .
| training width x height = (512 x 512)
>> Model loaded in 3.48s
>> Max VRAM used to load the model: 2.17G
>> Current VRAM usage:2.17G
>> Textual inversions available:
>> Setting Sampler to k_lms (LMSDiscreteScheduler)
Keep model loaded? [y]
```
* add parallel set of generator files for ckpt legacy generation
* generation using legacy ckpt models now working
* diffusers: fix missing attention_maps_callback
fix for 23eb80b40421b2bb8f4b6d3dd30490d11c447b36
* associate legacy CrossAttention with .ckpt models
* enable autoconvert
New --autoconvert CLI option will scan a designated directory for
new .ckpt files, convert them into diffuser models, and import
them into models.yaml.
Works like this:
invoke.py --autoconvert /path/to/weights/directory
In ModelCache added two new methods:
autoconvert_weights(config_path, weights_directory_path, models_directory_path)
convert_and_import(ckpt_path, diffuser_path)
* diffusers: update to diffusers 0.11 (from 0.10.2)
* fix vae loading & width/height calculation
* refactor: encapsulate these conditioning data into one container
* diffusers: fix some noise-scaling issues by pushing the noise-mixing down to the common function
* add support for safetensors and accelerate
* set local_files_only when internet unreachable
* diffusers: fix error-handling path when model repo has no fp16 branch
* fix generatorinpaint error
Fixes :
"ModuleNotFoundError: No module named 'ldm.invoke.generatorinpaint'
https://github.com/invoke-ai/InvokeAI/pull/1583#issuecomment-1363634318
* quench diffuser safety-checker warning
* diffusers: support stochastic DDIM eta parameter
* fix conda env creation on macos
* fix cross-attention with diffusers 0.11
* diffusers: the VAE needs to be tiling as well as the U-Net
* diffusers: comment on subfolders
* diffusers: embiggen!
* diffusers: make model_cache.list_models serializable
* diffusers(inpaint): restore scaling functionality
* fix requirements clash between numba and numpy 1.24
* diffusers: allow inpainting model to do non-inpainting tasks
* start expanding model_cache functionality
* add import_ckpt_model() and import_diffuser_model() methods to model_manager
- in addition, model_cache.py is now renamed to model_manager.py
* allow "recommended" flag to be optional in INITIAL_MODELS.yaml
* configure_invokeai now downloads VAE diffusers in advance
* rename ModelCache to ModelManager
* remove support for `repo_name` in models.yaml
* check for and refuse to load embeddings trained on incompatible models
* models.yaml.example: s/repo_name/repo_id
and remove extra INITIAL_MODELS now that the main one has diffusers models in it.
* add MVP textual inversion script
* refactor(InvokeAIDiffuserComponent): factor out _combine()
* InvokeAIDiffuserComponent: implement threshold
* InvokeAIDiffuserComponent: diagnostic logs for threshold
...this does not look right
* add a curses-based frontend to textual inversion
- not quite working yet
- requires npyscreen installed
- on windows will also have the windows-curses requirement, but not added
to requirements yet
* add curses-based interface for textual inversion
* fix crash in convert_and_import()
- This corrects a "local variable referenced before assignment" error
in model_manager.convert_and_import()
* potential workaround for no 'state_dict' key error
- As reported in https://github.com/huggingface/diffusers/issues/1876
* create TI output dir if needed
* Update environment-lin-cuda.yml (#2159)
Fixing line 42 to be the proper order to define the transformers requirement: ~= instead of =~
* diffusers: update sampler-to-scheduler mapping
based on https://github.com/huggingface/diffusers/issues/277#issuecomment-1371428672
* improve user exp for ckt to diffusers conversion
- !optimize_models command now operates on an existing ckpt file entry in models.yaml
- replaces existing entry, rather than adding a new one
- offers to delete the ckpt file after conversion
* web: adapt progress callback to deal with old generator or new diffusers pipeline
* clean-up model_manager code
- add_model() verified to work for .ckpt local paths,
.ckpt remote URLs, diffusers local paths, and
diffusers repo_ids
- convert_and_import() verified to work for local and
remove .ckpt files
* handle edge cases for import_model() and convert_model()
* add support for safetensor .ckpt files
* fix name error
* code cleanup with pyflake
* improve model setting behavior
- If the user enters an invalid model name at startup time, will not
try to load it, warn, and use default model
- CLI UI enhancement: include currently active model in the command
line prompt.
* update test-invoke-pip.yml
- fix model cache path to point to runwayml/stable-diffusion-v1-5
- remove `skip-sd-weights` from configure_invokeai.py args
* exclude dev/diffusers from "fail for draft PRs"
* disable "fail on PR jobs"
* re-add `--skip-sd-weights` since no space
* update workflow environments
- include `INVOKE_MODEL_RECONFIGURE: '--yes'`
* clean up model load failure handling
- Allow CLI to run even when no model is defined or loadable.
- Inhibit stack trace when model load fails - only show last error
- Give user *option* to run configure_invokeai.py when no models
successfully load.
- Restart invokeai after reconfiguration.
* further edge-case handling
1) only one model in models.yaml file, and that model is broken
2) no models in models.yaml
3) models.yaml doesn't exist at all
* fix incorrect model status listing
- "cached" was not being returned from list_models()
- normalize handling of exceptions during model loading:
- Passing an invalid model name to generate.set_model() will return
a KeyError
- All other exceptions are returned as the appropriate Exception
* CI: do download weights (if not already cached)
* diffusers: fix scheduler loading in offline mode
* CI: fix model name (no longer has `diffusers-` prefix)
* Update txt2img2img.py (#2256)
* fixes to share models with HuggingFace cache system
- If HF_HOME environment variable is defined, then all huggingface models
are stored in that directory following the standard conventions.
- For seamless interoperability, set HF_HOME to ~/.cache/huggingface
- If HF_HOME not defined, then models are stored in ~/invokeai/models.
This is equivalent to setting HF_HOME to ~/invokeai/models
A future commit will add a migration mechanism so that this change doesn't
break previous installs.
* feat - make model storage compatible with hugging face caching system
This commit alters the InvokeAI model directory to be compatible with
hugging face, making it easier to share diffusers (and other models)
across different programs.
- If the HF_HOME environment variable is not set, then models are
cached in ~/invokeai/models in a format that is identical to the
HuggingFace cache.
- If HF_HOME is set, then models are cached wherever HF_HOME points.
- To enable sharing with other HuggingFace library clients, set
HF_HOME to ~/.cache/huggingface to set the default cache location
or to ~/invokeai/models to have huggingface cache inside InvokeAI.
* fixes to share models with HuggingFace cache system
- If HF_HOME environment variable is defined, then all huggingface models
are stored in that directory following the standard conventions.
- For seamless interoperability, set HF_HOME to ~/.cache/huggingface
- If HF_HOME not defined, then models are stored in ~/invokeai/models.
This is equivalent to setting HF_HOME to ~/invokeai/models
A future commit will add a migration mechanism so that this change doesn't
break previous installs.
* fix error "no attribute CkptInpaint"
* model_manager.list_models() returns entire model config stanza+status
* Initial Draft - Model Manager Diffusers
* added hash function to diffusers
* implement sha256 hashes on diffusers models
* Add Model Manager Support for Diffusers
* fix various problems with model manager
- in cli import functions, fix not enough values to unpack from
_get_name_and_desc()
- fix crash when using old-style vae: value with new-style diffuser
* rebuild frontend
* fix dictconfig-not-serializable issue
* fix NoneType' object is not subscriptable crash in model_manager
* fix "str has no attribute get" error in model_manager list_models()
* Add path and repo_id support for Diffusers Model Manager
Also fixes bugs
* Fix tooltip IT localization not working
* Add Version Number To WebUI
* Optimize Model Search
* Fix incorrect font on the Model Manager UI
* Fix image degradation on merge fixes - [Experimental]
This change should effectively fix a couple of things.
- Fix image degradation on subsequent merges of the canvas layers.
- Fix the slight transparent border that is left behind when filling the bounding box with a color.
- Fix the left over line of color when filling a bounding box with color.
So far there are no side effects for this. If any, please report.
* Add local model filtering for Diffusers / Checkpoints
* Go to home on modal close for the Add Modal UI
* Styling Fixes
* Model Manager Diffusers Localization Update
* Add Safe Tensor scanning to Model Manager
* Fix model edit form dispatching string values instead of numbers.
* Resolve VAE handling / edge cases for supplied repos
* defer injecting tokens for textual inversions until they're used for the first time
* squash a console warning
* implement model migration check
* add_model() overwrites previous config rather than merges
* fix model config file attribute merging
* fix precision handling in textual inversion script
* allow ckpt conversion script to work with safetensors .ckpts
Applied patch here:
https://github.com/huggingface/diffusers/commit/beb932c5d111872c5e45387e7b1b2b3dd0524a47
* fix name "args" is not defined crash in textual_inversion_training
* fix a second NameError: name 'args' is not defined crash
* fix loading of the safety checker from the global cache dir
* add installation step to textual inversion frontend
- After a successful training run, the script will copy learned_embeds.bin
to a subfolder of the embeddings directory.
- User given the option to delete the logs and intermediate checkpoints
(which together use 7-8G of space)
- If textual inversion training fails, reports the error gracefully.
* don't crash out on incompatible embeddings
- put try: blocks around places where the system tries to load an embedding
which is incompatible with the currently loaded model
* add support for checkpoint resuming
* textual inversion preferences are saved and restored between sessions
- Preferences are stored in a file named text-inversion-training/preferences.conf
- Currently the resume-from-checkpoint option is not working correctly. Possible
bug in textual_inversion_training.py?
* copy learned_embeddings.bin into right location
* add front end for diffusers model merging
- Front end doesn't do anything yet!!!!
- Made change to model name parsing in CLI to support ability to have merged models
with the "+" character in their names.
* improve inpainting experience
- recommend ckpt version of inpainting-1.5 to user
- fix get_noise() bug in ckpt version of omnibus.py
* update environment*yml
* tweak instructions to install HuggingFace token
* bump version number
* enhance update scripts
- update scripts will now fetch new INITIAL_MODELS.yaml so that
configure_invokeai.py will know about the diffusers versions.
* enhance invoke.sh/invoke.bat launchers
- added configure_invokeai.py to menu
- menu defaults to browser-based invoke
* remove conda workflow (#2321)
* fix `token_ids has shape torch.Size([79]) - expected [77]`
* update CHANGELOG.md with 2.3.* info
- Add information on how formats have changed and the upgrade process.
- Add short bug list.
Co-authored-by: Damian Stewart <d@damianstewart.com>
Co-authored-by: Damian Stewart <null@damianstewart.com>
Co-authored-by: Lincoln Stein <lincoln.stein@gmail.com>
Co-authored-by: Wybartel-luxmc <37852506+Wybartel-luxmc@users.noreply.github.com>
Co-authored-by: mauwii <Mauwii@outlook.de>
Co-authored-by: mickr777 <115216705+mickr777@users.noreply.github.com>
Co-authored-by: blessedcoolant <54517381+blessedcoolant@users.noreply.github.com>
Co-authored-by: Eugene Brodsky <ebr@users.noreply.github.com>
Co-authored-by: Matthias Wild <40327258+mauwii@users.noreply.github.com>
2023-01-15 14:22:46 +00:00
|
|
|
|
2023-02-03 15:04:32 +00:00
|
|
|
# Convert the VAE model, or use the one passed
|
|
|
|
if not vae:
|
|
|
|
print(' | Using checkpoint model\'s original VAE')
|
|
|
|
vae_config = create_vae_diffusers_config(original_config, image_size=image_size)
|
|
|
|
converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config)
|
use 🧨diffusers model (#1583)
* initial commit of DiffusionPipeline class
* spike: proof of concept using diffusers for txt2img
* doc: type hints for Generator
* refactor(model_cache): factor out load_ckpt
* model_cache: add ability to load a diffusers model pipeline
and update associated things in Generate & Generator to not instantly fail when that happens
* model_cache: fix model default image dimensions
* txt2img: support switching diffusers schedulers
* diffusers: let the scheduler do its scaling of the initial latents
Remove IPNDM scheduler; it is not behaving.
* web server: update image_progress callback for diffusers data
* diffusers: restore prompt weighting feature
* diffusers: fix set-sampler error following model switch
* diffusers: use InvokeAIDiffuserComponent for conditioning
* cross_attention_control: stub (no-op) implementations for diffusers
* model_cache: let offload_model work with DiffusionPipeline, sorta.
* models.yaml.example: add diffusers-format model, set as default
* test-invoke-conda: use diffusers-format model
test-invoke-conda: put huggingface-token where the library can use it
* environment-mac: upgrade to diffusers 0.7 (from 0.6)
this was already done for linux; mac must have been lost in the merge.
* preload_models: explicitly load diffusers models
In non-interactive mode too, as long as you're logged in.
* fix(model_cache): don't check `model.config` in diffusers format
clean-up from recent merge.
* diffusers integration: support img2img
* dev: upgrade to diffusers 0.8 (from 0.7.1)
We get to remove some code by using methods that were factored out in the base class.
* refactor: remove backported img2img.get_timesteps
now that we can use it directly from diffusers 0.8.1
* ci: use diffusers model
* dev: upgrade to diffusers 0.9 (from 0.8.1)
* lint: correct annotations for Python 3.9.
* lint: correct AttributeError.name reference for Python 3.9.
* CI: prefer diffusers-1.4 because it no longer requires a token
The RunwayML models still do.
* build: there's yet another place to update requirements?
* configure: try to download models even without token
Models in the CompVis and stabilityai repos no longer require them. (But runwayml still does.)
* configure: add troubleshooting info for config-not-found
* fix(configure): prepend root to config path
* fix(configure): remove second `default: true` from models example
* CI: simplify test-on-push logic now that we don't need secrets
The "test on push but only in forks" logic was only necessary when tests didn't work for PRs-from-forks.
* create an embedding_manager for diffusers
* internal: avoid importing diffusers DummyObject
see https://github.com/huggingface/diffusers/issues/1479
* fix "config attributes…not expected" diffusers warnings.
* fix deprecated scheduler construction
* work around an apparent MPS torch bug that causes conditioning to have no effect
* 🚧 post-rebase repair
* preliminary support for outpainting (no masking yet)
* monkey-patch diffusers.attention and use Invoke lowvram code
* add always_use_cpu arg to bypass MPS
* add cross-attention control support to diffusers (fails on MPS)
For unknown reasons MPS produces garbage output with .swap(). Use
--always_use_cpu arg to invoke.py for now to test this code on MPS.
* diffusers support for the inpainting model
* fix debug_image to not crash with non-RGB images.
* inpainting for the normal model [WIP]
This seems to be performing well until the LAST STEP, at which point it dissolves to confetti.
* fix off-by-one bug in cross-attention-control (#1774)
prompt token sequences begin with a "beginning-of-sequence" marker <bos> and end with a repeated "end-of-sequence" marker <eos> - to make a default prompt length of <bos> + 75 prompt tokens + <eos>. the .swap() code was failing to take the column for <bos> at index 0 into account. the changes here do that, and also add extra handling for a single <eos> (which may be redundant but which is included for completeness).
based on my understanding and some assumptions about how this all works, the reason .swap() nevertheless seemed to do the right thing, to some extent, is because over multiple steps the conditioning process in Stable Diffusion operates as a feedback loop. a change to token n-1 has flow-on effects to how the [1x4x64x64] latent tensor is modified by all the tokens after it, - and as the next step is processed, all the tokens before it as well. intuitively, a token's conditioning effects "echo" throughout the whole length of the prompt. so even though the token at n-1 was being edited when what the user actually wanted was to edit the token at n, it nevertheless still had some non-negligible effect, in roughly the right direction, often enough that it seemed like it was working properly.
* refactor common CrossAttention stuff into a mixin so that the old ldm code can still work if necessary
* inpainting for the normal model. I think it works this time.
* diffusers: reset num_vectors_per_token
sync with 44a00555718f1df173c60da0ed646cf700e29537
* diffusers: txt2img2img (hires_fix)
with so much slicing and dicing of pipeline methods to stitch them together
* refactor(diffusers): reduce some code duplication amongst the different tasks
* fixup! refactor(diffusers): reduce some code duplication amongst the different tasks
* diffusers: enable DPMSolver++ scheduler
* diffusers: upgrade to diffusers 0.10, add Heun scheduler
* diffusers(ModelCache): stopgap to make from_cpu compatible with diffusers
* CI: default to diffusers-1.5 now that runwayml token requirement is gone
* diffusers: update to 0.10 (and transformers to 4.25)
* diffusers: use xformers when available
diffusers no longer auto-enables this as of 0.10.2.
* diffusers: make masked img2img behave better with multi-step schedulers
re-randomizing the noise each step was confusing them.
* diffusers: work more better with more models.
fixed relative path problem with local models.
fixed models on hub not always having a `fp16` branch.
* diffusers: stopgap fix for attention_maps_callback crash after recent merge
* fixup import merge conflicts
correction for 061c5369a2247c6c92cd69606bcf54c4f1962a0b
* test: add tests/inpainting inputs for masked img2img
* diffusers(AddsMaskedGuidance): partial fix for k-schedulers
Prevents them from crashing, but results are still hot garbage.
* fix --safety_checker arg parsing
and add note to diffusers loader about where safety checker gets called
* generate: fix import error
* CI: don't try to read the old init location
* diffusers: support loading an alternate VAE
* CI: remove sh-syntax if-statement so it doesn't crash powershell
* CI: fold strings in yaml because backslash is not line-continuation in powershell
* attention maps callback stuff for diffusers
* build: fix syntax error in environment-mac
* diffusers: add INITIAL_MODELS with diffusers-compatible repos
* re-enable the embedding manager; closes #1778
* Squashed commit of the following:
commit e4a956abc37fcb5cf188388b76b617bc5c8fda7d
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:43:07 2022 +0100
import new load handling from EmbeddingManager and cleanup
commit c4abe91a5ba0d415b45bf734068385668b7a66e6
Merge: 032e856e 1efc6397
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:09:53 2022 +0100
Merge branch 'feature_textual_inversion_mgr' into dev/diffusers_with_textual_inversion_manager
commit 032e856eefb3bbc39534f5daafd25764bcfcef8b
Merge: 8b4f0fe9 bc515e24
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:08:01 2022 +0100
Merge remote-tracking branch 'upstream/dev/diffusers' into dev/diffusers_with_textual_inversion_manager
commit 1efc6397fc6e61c1aff4b0258b93089d61de5955
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:04:28 2022 +0100
cleanup and add performance notes
commit e400f804ac471a0ca2ba432fd658778b20c7bdab
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 14:45:07 2022 +0100
fix bug and update unit tests
commit deb9ae0ae1016750e93ce8275734061f7285a231
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 14:28:29 2022 +0100
textual inversion manager seems to work
commit 162e02505dec777e91a983c4d0fb52e950d25ff0
Merge: cbad4583 12769b3d
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:58:03 2022 +0100
Merge branch 'main' into feature_textual_inversion_mgr
commit cbad45836c6aace6871a90f2621a953f49433131
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:54:10 2022 +0100
use position embeddings
commit 070344c69b0e0db340a183857d0a787b348681d3
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:53:47 2022 +0100
Don't crash CLI on exceptions
commit b035ac8c6772dfd9ba41b8eeb9103181cda028f8
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:11:55 2022 +0100
add missing position_embeddings
commit 12769b3d3562ef71e0f54946b532ad077e10043c
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 13:33:25 2022 +0100
debugging why it don't work
commit bafb7215eabe1515ca5e8388fd3bb2f3ac5362cf
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 13:21:33 2022 +0100
debugging why it don't work
commit 664a6e9e146b42d96703f0cc8baf8f5efec04ee1
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 12:48:38 2022 +0100
use TextualInversionManager in place of embeddings (wip, doesn't work)
commit 8b4f0fe9d6e4e2643b36dfa27864294785d7ba4e
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 12:48:38 2022 +0100
use TextualInversionManager in place of embeddings (wip, doesn't work)
commit ffbe1ab11163ba712e353d89404e301d0e0c6cdf
Merge: 6e4dad60 023df37e
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:37:31 2022 +0100
Merge branch 'feature_textual_inversion_mgr' into dev/diffusers
commit 023df37efffa67434f77def7fc3c9dfb29f699fd
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:36:54 2022 +0100
cleanup
commit 05fac594eaf79d0058e3c48deee93df603f136c2
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:07:49 2022 +0100
tweak error checking
commit 009f32ed39a7280997c3ffab112adadee0b44279
Author: damian <null@damianstewart.com>
Date: Thu Dec 15 21:29:47 2022 +0100
unit tests passing for embeddings with vector length >1
commit beb1b08d9a98112ed2fe073580568e1a18698da3
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 13:39:09 2022 +0100
more explicit equality tests when overwriting
commit 44d8a5a7c85cdabc9ce3a54fd0769a10597b3ca9
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 13:30:13 2022 +0100
wip textual inversion manager (unit tests passing for 1v embedding overwriting)
commit 417c2b57d90924a839616bfb66804faab8039e4c
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 12:30:55 2022 +0100
wip textual inversion manager (unit tests passing for base stuff + padding)
commit 2e80872e3b6f7fd7d8eb8928822bd824b63cb2ff
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 10:57:57 2022 +0100
wip new TextualInversionManager
* stop using WeightedFrozenCLIPEmbedder
* store diffusion models locally
- configure_invokeai.py reconfigured to store diffusion models rather than
CompVis models
- hugging face caching model is used, but cache is set to ~/invokeai/models/repo_id
- models.yaml does **NOT** use path, just repo_id
- "repo_name" changed to "repo_id" to following hugging face conventions
- Models are loaded with full precision pending further work.
* allow non-local files during development
* path takes priority over repo_id
* MVP for model_cache and configure_invokeai
- Feature complete (almost)
- configure_invokeai.py downloads both .ckpt and diffuser models,
along with their VAEs. Both types of download are controlled by
a unified INITIAL_MODELS.yaml file.
- model_cache can load both type of model and switches back and forth
in CPU. No memory leaks detected
TO DO:
1. I have not yet turned on the LocalOnly flag for diffuser models, so
the code will check the Hugging Face repo for updates before using the
locally cached models. This will break firewalled systems. I am thinking
of putting in a global check for internet connectivity at startup time
and setting the LocalOnly flag based on this. It would be good to check
updates if there is connectivity.
2. I have not gone completely through INITIAL_MODELS.yaml to check which
models are available as diffusers and which are not. So models like
PaperCut and VoxelArt may not load properly. The runway and stability
models are checked, as well as the Trinart models.
3. Add stanzas for SD 2.0 and 2.1 in INITIAL_MODELS.yaml
REMAINING PROBLEMS NOT DIRECTLY RELATED TO MODEL_CACHE:
1. When loading a .ckpt file there are lots of messages like this:
Warning! ldm.modules.attention.CrossAttention is no longer being
maintained. Please use InvokeAICrossAttention instead.
I'm not sure how to address this.
2. The ckpt models ***don't actually run*** due to the lack of special-case
support for them in the generator objects. For example, here's the hard
crash you get when you run txt2img against the legacy waifu-diffusion-1.3
model:
```
>> An error occurred:
Traceback (most recent call last):
File "/data/lstein/InvokeAI/ldm/invoke/CLI.py", line 140, in main
main_loop(gen, opt)
File "/data/lstein/InvokeAI/ldm/invoke/CLI.py", line 371, in main_loop
gen.prompt2image(
File "/data/lstein/InvokeAI/ldm/generate.py", line 496, in prompt2image
results = generator.generate(
File "/data/lstein/InvokeAI/ldm/invoke/generator/base.py", line 108, in generate
image = make_image(x_T)
File "/data/lstein/InvokeAI/ldm/invoke/generator/txt2img.py", line 33, in make_image
pipeline_output = pipeline.image_from_embeddings(
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1265, in __getattr__
raise AttributeError("'{}' object has no attribute '{}'".format(
AttributeError: 'LatentDiffusion' object has no attribute 'image_from_embeddings'
```
3. The inpainting diffusion model isn't working. Here's the output of "banana
sushi" when inpainting-1.5 is loaded:
```
Traceback (most recent call last):
File "/data/lstein/InvokeAI/ldm/generate.py", line 496, in prompt2image
results = generator.generate(
File "/data/lstein/InvokeAI/ldm/invoke/generator/base.py", line 108, in generate
image = make_image(x_T)
File "/data/lstein/InvokeAI/ldm/invoke/generator/txt2img.py", line 33, in make_image
pipeline_output = pipeline.image_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 301, in image_from_embeddings
result_latents, result_attention_map_saver = self.latents_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 330, in latents_from_embeddings
result: PipelineIntermediateState = infer_latents_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 185, in __call__
for result in self.generator_method(*args, **kwargs):
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 367, in generate_latents_from_embeddings
step_output = self.step(batched_t, latents, guidance_scale,
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context
return func(*args, **kwargs)
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 409, in step
step_output = self.scheduler.step(noise_pred, timestep, latents, **extra_step_kwargs)
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/diffusers/schedulers/scheduling_lms_discrete.py", line 223, in step
pred_original_sample = sample - sigma * model_output
RuntimeError: The size of tensor a (9) must match the size of tensor b (4) at non-singleton dimension 1
```
* proper support for float32/float16
- configure script now correctly detects user's preference for
fp16/32 and downloads the correct diffuser version. If fp16
version not available, falls back to fp32 version.
- misc code cleanup and simplification in model_cache
* add on-the-fly conversion of .ckpt to diffusers models
1. On-the-fly conversion code can be found in the file ldm/invoke/ckpt_to_diffusers.py.
2. A new !optimize command has been added to the CLI. Should be ported to Web GUI.
User experience on the CLI is this:
```
invoke> !optimize /home/lstein/invokeai/models/ldm/stable-diffusion-v1/sd-v1-4.ckpt
INFO: Converting legacy weights file /home/lstein/invokeai/models/ldm/stable-diffusion-v1/sd-v1-4.ckpt to optimized diffuser model.
This operation will take 30-60s to complete.
Success. Optimized model is now located at /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
Writing new config file entry for sd-v1-4...
>> New configuration:
sd-v1-4:
description: Optimized version of sd-v1-4
format: diffusers
path: /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
OK to import [n]? y
>> Verifying that new model loads...
>> Current VRAM usage: 2.60G
>> Offloading stable-diffusion-2.1 to CPU
>> Loading diffusers model from /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
| Using faster float16 precision
You have disabled the safety checker for <class 'ldm.invoke.generator.diffusers_pipeline.StableDiffusionGeneratorPipeline'> by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion \
license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances,\
disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .
| training width x height = (512 x 512)
>> Model loaded in 3.48s
>> Max VRAM used to load the model: 2.17G
>> Current VRAM usage:2.17G
>> Textual inversions available:
>> Setting Sampler to k_lms (LMSDiscreteScheduler)
Keep model loaded? [y]
```
* add parallel set of generator files for ckpt legacy generation
* generation using legacy ckpt models now working
* diffusers: fix missing attention_maps_callback
fix for 23eb80b40421b2bb8f4b6d3dd30490d11c447b36
* associate legacy CrossAttention with .ckpt models
* enable autoconvert
New --autoconvert CLI option will scan a designated directory for
new .ckpt files, convert them into diffuser models, and import
them into models.yaml.
Works like this:
invoke.py --autoconvert /path/to/weights/directory
In ModelCache added two new methods:
autoconvert_weights(config_path, weights_directory_path, models_directory_path)
convert_and_import(ckpt_path, diffuser_path)
* diffusers: update to diffusers 0.11 (from 0.10.2)
* fix vae loading & width/height calculation
* refactor: encapsulate these conditioning data into one container
* diffusers: fix some noise-scaling issues by pushing the noise-mixing down to the common function
* add support for safetensors and accelerate
* set local_files_only when internet unreachable
* diffusers: fix error-handling path when model repo has no fp16 branch
* fix generatorinpaint error
Fixes :
"ModuleNotFoundError: No module named 'ldm.invoke.generatorinpaint'
https://github.com/invoke-ai/InvokeAI/pull/1583#issuecomment-1363634318
* quench diffuser safety-checker warning
* diffusers: support stochastic DDIM eta parameter
* fix conda env creation on macos
* fix cross-attention with diffusers 0.11
* diffusers: the VAE needs to be tiling as well as the U-Net
* diffusers: comment on subfolders
* diffusers: embiggen!
* diffusers: make model_cache.list_models serializable
* diffusers(inpaint): restore scaling functionality
* fix requirements clash between numba and numpy 1.24
* diffusers: allow inpainting model to do non-inpainting tasks
* start expanding model_cache functionality
* add import_ckpt_model() and import_diffuser_model() methods to model_manager
- in addition, model_cache.py is now renamed to model_manager.py
* allow "recommended" flag to be optional in INITIAL_MODELS.yaml
* configure_invokeai now downloads VAE diffusers in advance
* rename ModelCache to ModelManager
* remove support for `repo_name` in models.yaml
* check for and refuse to load embeddings trained on incompatible models
* models.yaml.example: s/repo_name/repo_id
and remove extra INITIAL_MODELS now that the main one has diffusers models in it.
* add MVP textual inversion script
* refactor(InvokeAIDiffuserComponent): factor out _combine()
* InvokeAIDiffuserComponent: implement threshold
* InvokeAIDiffuserComponent: diagnostic logs for threshold
...this does not look right
* add a curses-based frontend to textual inversion
- not quite working yet
- requires npyscreen installed
- on windows will also have the windows-curses requirement, but not added
to requirements yet
* add curses-based interface for textual inversion
* fix crash in convert_and_import()
- This corrects a "local variable referenced before assignment" error
in model_manager.convert_and_import()
* potential workaround for no 'state_dict' key error
- As reported in https://github.com/huggingface/diffusers/issues/1876
* create TI output dir if needed
* Update environment-lin-cuda.yml (#2159)
Fixing line 42 to be the proper order to define the transformers requirement: ~= instead of =~
* diffusers: update sampler-to-scheduler mapping
based on https://github.com/huggingface/diffusers/issues/277#issuecomment-1371428672
* improve user exp for ckt to diffusers conversion
- !optimize_models command now operates on an existing ckpt file entry in models.yaml
- replaces existing entry, rather than adding a new one
- offers to delete the ckpt file after conversion
* web: adapt progress callback to deal with old generator or new diffusers pipeline
* clean-up model_manager code
- add_model() verified to work for .ckpt local paths,
.ckpt remote URLs, diffusers local paths, and
diffusers repo_ids
- convert_and_import() verified to work for local and
remove .ckpt files
* handle edge cases for import_model() and convert_model()
* add support for safetensor .ckpt files
* fix name error
* code cleanup with pyflake
* improve model setting behavior
- If the user enters an invalid model name at startup time, will not
try to load it, warn, and use default model
- CLI UI enhancement: include currently active model in the command
line prompt.
* update test-invoke-pip.yml
- fix model cache path to point to runwayml/stable-diffusion-v1-5
- remove `skip-sd-weights` from configure_invokeai.py args
* exclude dev/diffusers from "fail for draft PRs"
* disable "fail on PR jobs"
* re-add `--skip-sd-weights` since no space
* update workflow environments
- include `INVOKE_MODEL_RECONFIGURE: '--yes'`
* clean up model load failure handling
- Allow CLI to run even when no model is defined or loadable.
- Inhibit stack trace when model load fails - only show last error
- Give user *option* to run configure_invokeai.py when no models
successfully load.
- Restart invokeai after reconfiguration.
* further edge-case handling
1) only one model in models.yaml file, and that model is broken
2) no models in models.yaml
3) models.yaml doesn't exist at all
* fix incorrect model status listing
- "cached" was not being returned from list_models()
- normalize handling of exceptions during model loading:
- Passing an invalid model name to generate.set_model() will return
a KeyError
- All other exceptions are returned as the appropriate Exception
* CI: do download weights (if not already cached)
* diffusers: fix scheduler loading in offline mode
* CI: fix model name (no longer has `diffusers-` prefix)
* Update txt2img2img.py (#2256)
* fixes to share models with HuggingFace cache system
- If HF_HOME environment variable is defined, then all huggingface models
are stored in that directory following the standard conventions.
- For seamless interoperability, set HF_HOME to ~/.cache/huggingface
- If HF_HOME not defined, then models are stored in ~/invokeai/models.
This is equivalent to setting HF_HOME to ~/invokeai/models
A future commit will add a migration mechanism so that this change doesn't
break previous installs.
* feat - make model storage compatible with hugging face caching system
This commit alters the InvokeAI model directory to be compatible with
hugging face, making it easier to share diffusers (and other models)
across different programs.
- If the HF_HOME environment variable is not set, then models are
cached in ~/invokeai/models in a format that is identical to the
HuggingFace cache.
- If HF_HOME is set, then models are cached wherever HF_HOME points.
- To enable sharing with other HuggingFace library clients, set
HF_HOME to ~/.cache/huggingface to set the default cache location
or to ~/invokeai/models to have huggingface cache inside InvokeAI.
* fixes to share models with HuggingFace cache system
- If HF_HOME environment variable is defined, then all huggingface models
are stored in that directory following the standard conventions.
- For seamless interoperability, set HF_HOME to ~/.cache/huggingface
- If HF_HOME not defined, then models are stored in ~/invokeai/models.
This is equivalent to setting HF_HOME to ~/invokeai/models
A future commit will add a migration mechanism so that this change doesn't
break previous installs.
* fix error "no attribute CkptInpaint"
* model_manager.list_models() returns entire model config stanza+status
* Initial Draft - Model Manager Diffusers
* added hash function to diffusers
* implement sha256 hashes on diffusers models
* Add Model Manager Support for Diffusers
* fix various problems with model manager
- in cli import functions, fix not enough values to unpack from
_get_name_and_desc()
- fix crash when using old-style vae: value with new-style diffuser
* rebuild frontend
* fix dictconfig-not-serializable issue
* fix NoneType' object is not subscriptable crash in model_manager
* fix "str has no attribute get" error in model_manager list_models()
* Add path and repo_id support for Diffusers Model Manager
Also fixes bugs
* Fix tooltip IT localization not working
* Add Version Number To WebUI
* Optimize Model Search
* Fix incorrect font on the Model Manager UI
* Fix image degradation on merge fixes - [Experimental]
This change should effectively fix a couple of things.
- Fix image degradation on subsequent merges of the canvas layers.
- Fix the slight transparent border that is left behind when filling the bounding box with a color.
- Fix the left over line of color when filling a bounding box with color.
So far there are no side effects for this. If any, please report.
* Add local model filtering for Diffusers / Checkpoints
* Go to home on modal close for the Add Modal UI
* Styling Fixes
* Model Manager Diffusers Localization Update
* Add Safe Tensor scanning to Model Manager
* Fix model edit form dispatching string values instead of numbers.
* Resolve VAE handling / edge cases for supplied repos
* defer injecting tokens for textual inversions until they're used for the first time
* squash a console warning
* implement model migration check
* add_model() overwrites previous config rather than merges
* fix model config file attribute merging
* fix precision handling in textual inversion script
* allow ckpt conversion script to work with safetensors .ckpts
Applied patch here:
https://github.com/huggingface/diffusers/commit/beb932c5d111872c5e45387e7b1b2b3dd0524a47
* fix name "args" is not defined crash in textual_inversion_training
* fix a second NameError: name 'args' is not defined crash
* fix loading of the safety checker from the global cache dir
* add installation step to textual inversion frontend
- After a successful training run, the script will copy learned_embeds.bin
to a subfolder of the embeddings directory.
- User given the option to delete the logs and intermediate checkpoints
(which together use 7-8G of space)
- If textual inversion training fails, reports the error gracefully.
* don't crash out on incompatible embeddings
- put try: blocks around places where the system tries to load an embedding
which is incompatible with the currently loaded model
* add support for checkpoint resuming
* textual inversion preferences are saved and restored between sessions
- Preferences are stored in a file named text-inversion-training/preferences.conf
- Currently the resume-from-checkpoint option is not working correctly. Possible
bug in textual_inversion_training.py?
* copy learned_embeddings.bin into right location
* add front end for diffusers model merging
- Front end doesn't do anything yet!!!!
- Made change to model name parsing in CLI to support ability to have merged models
with the "+" character in their names.
* improve inpainting experience
- recommend ckpt version of inpainting-1.5 to user
- fix get_noise() bug in ckpt version of omnibus.py
* update environment*yml
* tweak instructions to install HuggingFace token
* bump version number
* enhance update scripts
- update scripts will now fetch new INITIAL_MODELS.yaml so that
configure_invokeai.py will know about the diffusers versions.
* enhance invoke.sh/invoke.bat launchers
- added configure_invokeai.py to menu
- menu defaults to browser-based invoke
* remove conda workflow (#2321)
* fix `token_ids has shape torch.Size([79]) - expected [77]`
* update CHANGELOG.md with 2.3.* info
- Add information on how formats have changed and the upgrade process.
- Add short bug list.
Co-authored-by: Damian Stewart <d@damianstewart.com>
Co-authored-by: Damian Stewart <null@damianstewart.com>
Co-authored-by: Lincoln Stein <lincoln.stein@gmail.com>
Co-authored-by: Wybartel-luxmc <37852506+Wybartel-luxmc@users.noreply.github.com>
Co-authored-by: mauwii <Mauwii@outlook.de>
Co-authored-by: mickr777 <115216705+mickr777@users.noreply.github.com>
Co-authored-by: blessedcoolant <54517381+blessedcoolant@users.noreply.github.com>
Co-authored-by: Eugene Brodsky <ebr@users.noreply.github.com>
Co-authored-by: Matthias Wild <40327258+mauwii@users.noreply.github.com>
2023-01-15 14:22:46 +00:00
|
|
|
|
2023-02-03 15:04:32 +00:00
|
|
|
vae = AutoencoderKL(**vae_config)
|
|
|
|
vae.load_state_dict(converted_vae_checkpoint)
|
|
|
|
else:
|
|
|
|
print(' | Using external VAE specified in config')
|
|
|
|
|
|
|
|
# Convert the text model.
|
|
|
|
model_type = pipeline_type
|
|
|
|
if model_type is None:
|
|
|
|
model_type = original_config.model.params.cond_stage_config.target.split(".")[-1]
|
|
|
|
|
|
|
|
if model_type == "FrozenOpenCLIPEmbedder":
|
|
|
|
text_model = convert_open_clip_checkpoint(checkpoint)
|
|
|
|
tokenizer = CLIPTokenizer.from_pretrained("stabilityai/stable-diffusion-2",
|
|
|
|
subfolder="tokenizer",
|
2023-02-23 20:43:58 +00:00
|
|
|
cache_dir=cache_dir,
|
2023-02-03 15:04:32 +00:00
|
|
|
)
|
|
|
|
pipe = pipeline_class(
|
|
|
|
vae=vae,
|
|
|
|
text_encoder=text_model,
|
|
|
|
tokenizer=tokenizer,
|
|
|
|
unet=unet,
|
|
|
|
scheduler=scheduler,
|
|
|
|
safety_checker=None,
|
|
|
|
feature_extractor=None,
|
|
|
|
requires_safety_checker=False,
|
|
|
|
)
|
|
|
|
elif model_type == "PaintByExample":
|
|
|
|
vision_model = convert_paint_by_example_checkpoint(checkpoint)
|
|
|
|
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14",cache_dir=cache_dir)
|
|
|
|
feature_extractor = AutoFeatureExtractor.from_pretrained("CompVis/stable-diffusion-safety-checker",cache_dir=cache_dir)
|
|
|
|
pipe = PaintByExamplePipeline(
|
|
|
|
vae=vae,
|
|
|
|
image_encoder=vision_model,
|
|
|
|
unet=unet,
|
|
|
|
scheduler=scheduler,
|
|
|
|
safety_checker=None,
|
|
|
|
feature_extractor=feature_extractor,
|
|
|
|
)
|
|
|
|
elif model_type in ['FrozenCLIPEmbedder','WeightedFrozenCLIPEmbedder']:
|
|
|
|
text_model = convert_ldm_clip_checkpoint(checkpoint)
|
|
|
|
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14",cache_dir=cache_dir)
|
2023-02-18 16:07:38 +00:00
|
|
|
safety_checker = StableDiffusionSafetyChecker.from_pretrained('CompVis/stable-diffusion-safety-checker',cache_dir=global_cache_dir("hub"))
|
2023-02-03 15:04:32 +00:00
|
|
|
feature_extractor = AutoFeatureExtractor.from_pretrained("CompVis/stable-diffusion-safety-checker",cache_dir=cache_dir)
|
|
|
|
pipe = pipeline_class(
|
2023-02-20 06:12:02 +00:00
|
|
|
vae=vae.to(precision),
|
|
|
|
text_encoder=text_model.to(precision),
|
2023-02-03 15:04:32 +00:00
|
|
|
tokenizer=tokenizer,
|
2023-02-20 06:12:02 +00:00
|
|
|
unet=unet.to(precision),
|
2023-02-03 15:04:32 +00:00
|
|
|
scheduler=scheduler,
|
2023-02-20 06:12:02 +00:00
|
|
|
safety_checker=safety_checker.to(precision),
|
2023-02-03 15:04:32 +00:00
|
|
|
feature_extractor=feature_extractor,
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
text_config = create_ldm_bert_config(original_config)
|
|
|
|
text_model = convert_ldm_bert_checkpoint(checkpoint, text_config)
|
|
|
|
tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased",cache_dir=cache_dir)
|
|
|
|
pipe = LDMTextToImagePipeline(vqvae=vae, bert=text_model, tokenizer=tokenizer, unet=unet, scheduler=scheduler)
|
|
|
|
dlogging.set_verbosity(verbosity)
|
use 🧨diffusers model (#1583)
* initial commit of DiffusionPipeline class
* spike: proof of concept using diffusers for txt2img
* doc: type hints for Generator
* refactor(model_cache): factor out load_ckpt
* model_cache: add ability to load a diffusers model pipeline
and update associated things in Generate & Generator to not instantly fail when that happens
* model_cache: fix model default image dimensions
* txt2img: support switching diffusers schedulers
* diffusers: let the scheduler do its scaling of the initial latents
Remove IPNDM scheduler; it is not behaving.
* web server: update image_progress callback for diffusers data
* diffusers: restore prompt weighting feature
* diffusers: fix set-sampler error following model switch
* diffusers: use InvokeAIDiffuserComponent for conditioning
* cross_attention_control: stub (no-op) implementations for diffusers
* model_cache: let offload_model work with DiffusionPipeline, sorta.
* models.yaml.example: add diffusers-format model, set as default
* test-invoke-conda: use diffusers-format model
test-invoke-conda: put huggingface-token where the library can use it
* environment-mac: upgrade to diffusers 0.7 (from 0.6)
this was already done for linux; mac must have been lost in the merge.
* preload_models: explicitly load diffusers models
In non-interactive mode too, as long as you're logged in.
* fix(model_cache): don't check `model.config` in diffusers format
clean-up from recent merge.
* diffusers integration: support img2img
* dev: upgrade to diffusers 0.8 (from 0.7.1)
We get to remove some code by using methods that were factored out in the base class.
* refactor: remove backported img2img.get_timesteps
now that we can use it directly from diffusers 0.8.1
* ci: use diffusers model
* dev: upgrade to diffusers 0.9 (from 0.8.1)
* lint: correct annotations for Python 3.9.
* lint: correct AttributeError.name reference for Python 3.9.
* CI: prefer diffusers-1.4 because it no longer requires a token
The RunwayML models still do.
* build: there's yet another place to update requirements?
* configure: try to download models even without token
Models in the CompVis and stabilityai repos no longer require them. (But runwayml still does.)
* configure: add troubleshooting info for config-not-found
* fix(configure): prepend root to config path
* fix(configure): remove second `default: true` from models example
* CI: simplify test-on-push logic now that we don't need secrets
The "test on push but only in forks" logic was only necessary when tests didn't work for PRs-from-forks.
* create an embedding_manager for diffusers
* internal: avoid importing diffusers DummyObject
see https://github.com/huggingface/diffusers/issues/1479
* fix "config attributes…not expected" diffusers warnings.
* fix deprecated scheduler construction
* work around an apparent MPS torch bug that causes conditioning to have no effect
* 🚧 post-rebase repair
* preliminary support for outpainting (no masking yet)
* monkey-patch diffusers.attention and use Invoke lowvram code
* add always_use_cpu arg to bypass MPS
* add cross-attention control support to diffusers (fails on MPS)
For unknown reasons MPS produces garbage output with .swap(). Use
--always_use_cpu arg to invoke.py for now to test this code on MPS.
* diffusers support for the inpainting model
* fix debug_image to not crash with non-RGB images.
* inpainting for the normal model [WIP]
This seems to be performing well until the LAST STEP, at which point it dissolves to confetti.
* fix off-by-one bug in cross-attention-control (#1774)
prompt token sequences begin with a "beginning-of-sequence" marker <bos> and end with a repeated "end-of-sequence" marker <eos> - to make a default prompt length of <bos> + 75 prompt tokens + <eos>. the .swap() code was failing to take the column for <bos> at index 0 into account. the changes here do that, and also add extra handling for a single <eos> (which may be redundant but which is included for completeness).
based on my understanding and some assumptions about how this all works, the reason .swap() nevertheless seemed to do the right thing, to some extent, is because over multiple steps the conditioning process in Stable Diffusion operates as a feedback loop. a change to token n-1 has flow-on effects to how the [1x4x64x64] latent tensor is modified by all the tokens after it, - and as the next step is processed, all the tokens before it as well. intuitively, a token's conditioning effects "echo" throughout the whole length of the prompt. so even though the token at n-1 was being edited when what the user actually wanted was to edit the token at n, it nevertheless still had some non-negligible effect, in roughly the right direction, often enough that it seemed like it was working properly.
* refactor common CrossAttention stuff into a mixin so that the old ldm code can still work if necessary
* inpainting for the normal model. I think it works this time.
* diffusers: reset num_vectors_per_token
sync with 44a00555718f1df173c60da0ed646cf700e29537
* diffusers: txt2img2img (hires_fix)
with so much slicing and dicing of pipeline methods to stitch them together
* refactor(diffusers): reduce some code duplication amongst the different tasks
* fixup! refactor(diffusers): reduce some code duplication amongst the different tasks
* diffusers: enable DPMSolver++ scheduler
* diffusers: upgrade to diffusers 0.10, add Heun scheduler
* diffusers(ModelCache): stopgap to make from_cpu compatible with diffusers
* CI: default to diffusers-1.5 now that runwayml token requirement is gone
* diffusers: update to 0.10 (and transformers to 4.25)
* diffusers: use xformers when available
diffusers no longer auto-enables this as of 0.10.2.
* diffusers: make masked img2img behave better with multi-step schedulers
re-randomizing the noise each step was confusing them.
* diffusers: work more better with more models.
fixed relative path problem with local models.
fixed models on hub not always having a `fp16` branch.
* diffusers: stopgap fix for attention_maps_callback crash after recent merge
* fixup import merge conflicts
correction for 061c5369a2247c6c92cd69606bcf54c4f1962a0b
* test: add tests/inpainting inputs for masked img2img
* diffusers(AddsMaskedGuidance): partial fix for k-schedulers
Prevents them from crashing, but results are still hot garbage.
* fix --safety_checker arg parsing
and add note to diffusers loader about where safety checker gets called
* generate: fix import error
* CI: don't try to read the old init location
* diffusers: support loading an alternate VAE
* CI: remove sh-syntax if-statement so it doesn't crash powershell
* CI: fold strings in yaml because backslash is not line-continuation in powershell
* attention maps callback stuff for diffusers
* build: fix syntax error in environment-mac
* diffusers: add INITIAL_MODELS with diffusers-compatible repos
* re-enable the embedding manager; closes #1778
* Squashed commit of the following:
commit e4a956abc37fcb5cf188388b76b617bc5c8fda7d
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:43:07 2022 +0100
import new load handling from EmbeddingManager and cleanup
commit c4abe91a5ba0d415b45bf734068385668b7a66e6
Merge: 032e856e 1efc6397
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:09:53 2022 +0100
Merge branch 'feature_textual_inversion_mgr' into dev/diffusers_with_textual_inversion_manager
commit 032e856eefb3bbc39534f5daafd25764bcfcef8b
Merge: 8b4f0fe9 bc515e24
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:08:01 2022 +0100
Merge remote-tracking branch 'upstream/dev/diffusers' into dev/diffusers_with_textual_inversion_manager
commit 1efc6397fc6e61c1aff4b0258b93089d61de5955
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:04:28 2022 +0100
cleanup and add performance notes
commit e400f804ac471a0ca2ba432fd658778b20c7bdab
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 14:45:07 2022 +0100
fix bug and update unit tests
commit deb9ae0ae1016750e93ce8275734061f7285a231
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 14:28:29 2022 +0100
textual inversion manager seems to work
commit 162e02505dec777e91a983c4d0fb52e950d25ff0
Merge: cbad4583 12769b3d
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:58:03 2022 +0100
Merge branch 'main' into feature_textual_inversion_mgr
commit cbad45836c6aace6871a90f2621a953f49433131
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:54:10 2022 +0100
use position embeddings
commit 070344c69b0e0db340a183857d0a787b348681d3
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:53:47 2022 +0100
Don't crash CLI on exceptions
commit b035ac8c6772dfd9ba41b8eeb9103181cda028f8
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:11:55 2022 +0100
add missing position_embeddings
commit 12769b3d3562ef71e0f54946b532ad077e10043c
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 13:33:25 2022 +0100
debugging why it don't work
commit bafb7215eabe1515ca5e8388fd3bb2f3ac5362cf
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 13:21:33 2022 +0100
debugging why it don't work
commit 664a6e9e146b42d96703f0cc8baf8f5efec04ee1
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 12:48:38 2022 +0100
use TextualInversionManager in place of embeddings (wip, doesn't work)
commit 8b4f0fe9d6e4e2643b36dfa27864294785d7ba4e
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 12:48:38 2022 +0100
use TextualInversionManager in place of embeddings (wip, doesn't work)
commit ffbe1ab11163ba712e353d89404e301d0e0c6cdf
Merge: 6e4dad60 023df37e
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:37:31 2022 +0100
Merge branch 'feature_textual_inversion_mgr' into dev/diffusers
commit 023df37efffa67434f77def7fc3c9dfb29f699fd
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:36:54 2022 +0100
cleanup
commit 05fac594eaf79d0058e3c48deee93df603f136c2
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:07:49 2022 +0100
tweak error checking
commit 009f32ed39a7280997c3ffab112adadee0b44279
Author: damian <null@damianstewart.com>
Date: Thu Dec 15 21:29:47 2022 +0100
unit tests passing for embeddings with vector length >1
commit beb1b08d9a98112ed2fe073580568e1a18698da3
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 13:39:09 2022 +0100
more explicit equality tests when overwriting
commit 44d8a5a7c85cdabc9ce3a54fd0769a10597b3ca9
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 13:30:13 2022 +0100
wip textual inversion manager (unit tests passing for 1v embedding overwriting)
commit 417c2b57d90924a839616bfb66804faab8039e4c
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 12:30:55 2022 +0100
wip textual inversion manager (unit tests passing for base stuff + padding)
commit 2e80872e3b6f7fd7d8eb8928822bd824b63cb2ff
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 10:57:57 2022 +0100
wip new TextualInversionManager
* stop using WeightedFrozenCLIPEmbedder
* store diffusion models locally
- configure_invokeai.py reconfigured to store diffusion models rather than
CompVis models
- hugging face caching model is used, but cache is set to ~/invokeai/models/repo_id
- models.yaml does **NOT** use path, just repo_id
- "repo_name" changed to "repo_id" to following hugging face conventions
- Models are loaded with full precision pending further work.
* allow non-local files during development
* path takes priority over repo_id
* MVP for model_cache and configure_invokeai
- Feature complete (almost)
- configure_invokeai.py downloads both .ckpt and diffuser models,
along with their VAEs. Both types of download are controlled by
a unified INITIAL_MODELS.yaml file.
- model_cache can load both type of model and switches back and forth
in CPU. No memory leaks detected
TO DO:
1. I have not yet turned on the LocalOnly flag for diffuser models, so
the code will check the Hugging Face repo for updates before using the
locally cached models. This will break firewalled systems. I am thinking
of putting in a global check for internet connectivity at startup time
and setting the LocalOnly flag based on this. It would be good to check
updates if there is connectivity.
2. I have not gone completely through INITIAL_MODELS.yaml to check which
models are available as diffusers and which are not. So models like
PaperCut and VoxelArt may not load properly. The runway and stability
models are checked, as well as the Trinart models.
3. Add stanzas for SD 2.0 and 2.1 in INITIAL_MODELS.yaml
REMAINING PROBLEMS NOT DIRECTLY RELATED TO MODEL_CACHE:
1. When loading a .ckpt file there are lots of messages like this:
Warning! ldm.modules.attention.CrossAttention is no longer being
maintained. Please use InvokeAICrossAttention instead.
I'm not sure how to address this.
2. The ckpt models ***don't actually run*** due to the lack of special-case
support for them in the generator objects. For example, here's the hard
crash you get when you run txt2img against the legacy waifu-diffusion-1.3
model:
```
>> An error occurred:
Traceback (most recent call last):
File "/data/lstein/InvokeAI/ldm/invoke/CLI.py", line 140, in main
main_loop(gen, opt)
File "/data/lstein/InvokeAI/ldm/invoke/CLI.py", line 371, in main_loop
gen.prompt2image(
File "/data/lstein/InvokeAI/ldm/generate.py", line 496, in prompt2image
results = generator.generate(
File "/data/lstein/InvokeAI/ldm/invoke/generator/base.py", line 108, in generate
image = make_image(x_T)
File "/data/lstein/InvokeAI/ldm/invoke/generator/txt2img.py", line 33, in make_image
pipeline_output = pipeline.image_from_embeddings(
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1265, in __getattr__
raise AttributeError("'{}' object has no attribute '{}'".format(
AttributeError: 'LatentDiffusion' object has no attribute 'image_from_embeddings'
```
3. The inpainting diffusion model isn't working. Here's the output of "banana
sushi" when inpainting-1.5 is loaded:
```
Traceback (most recent call last):
File "/data/lstein/InvokeAI/ldm/generate.py", line 496, in prompt2image
results = generator.generate(
File "/data/lstein/InvokeAI/ldm/invoke/generator/base.py", line 108, in generate
image = make_image(x_T)
File "/data/lstein/InvokeAI/ldm/invoke/generator/txt2img.py", line 33, in make_image
pipeline_output = pipeline.image_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 301, in image_from_embeddings
result_latents, result_attention_map_saver = self.latents_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 330, in latents_from_embeddings
result: PipelineIntermediateState = infer_latents_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 185, in __call__
for result in self.generator_method(*args, **kwargs):
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 367, in generate_latents_from_embeddings
step_output = self.step(batched_t, latents, guidance_scale,
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context
return func(*args, **kwargs)
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 409, in step
step_output = self.scheduler.step(noise_pred, timestep, latents, **extra_step_kwargs)
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/diffusers/schedulers/scheduling_lms_discrete.py", line 223, in step
pred_original_sample = sample - sigma * model_output
RuntimeError: The size of tensor a (9) must match the size of tensor b (4) at non-singleton dimension 1
```
* proper support for float32/float16
- configure script now correctly detects user's preference for
fp16/32 and downloads the correct diffuser version. If fp16
version not available, falls back to fp32 version.
- misc code cleanup and simplification in model_cache
* add on-the-fly conversion of .ckpt to diffusers models
1. On-the-fly conversion code can be found in the file ldm/invoke/ckpt_to_diffusers.py.
2. A new !optimize command has been added to the CLI. Should be ported to Web GUI.
User experience on the CLI is this:
```
invoke> !optimize /home/lstein/invokeai/models/ldm/stable-diffusion-v1/sd-v1-4.ckpt
INFO: Converting legacy weights file /home/lstein/invokeai/models/ldm/stable-diffusion-v1/sd-v1-4.ckpt to optimized diffuser model.
This operation will take 30-60s to complete.
Success. Optimized model is now located at /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
Writing new config file entry for sd-v1-4...
>> New configuration:
sd-v1-4:
description: Optimized version of sd-v1-4
format: diffusers
path: /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
OK to import [n]? y
>> Verifying that new model loads...
>> Current VRAM usage: 2.60G
>> Offloading stable-diffusion-2.1 to CPU
>> Loading diffusers model from /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
| Using faster float16 precision
You have disabled the safety checker for <class 'ldm.invoke.generator.diffusers_pipeline.StableDiffusionGeneratorPipeline'> by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion \
license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances,\
disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .
| training width x height = (512 x 512)
>> Model loaded in 3.48s
>> Max VRAM used to load the model: 2.17G
>> Current VRAM usage:2.17G
>> Textual inversions available:
>> Setting Sampler to k_lms (LMSDiscreteScheduler)
Keep model loaded? [y]
```
* add parallel set of generator files for ckpt legacy generation
* generation using legacy ckpt models now working
* diffusers: fix missing attention_maps_callback
fix for 23eb80b40421b2bb8f4b6d3dd30490d11c447b36
* associate legacy CrossAttention with .ckpt models
* enable autoconvert
New --autoconvert CLI option will scan a designated directory for
new .ckpt files, convert them into diffuser models, and import
them into models.yaml.
Works like this:
invoke.py --autoconvert /path/to/weights/directory
In ModelCache added two new methods:
autoconvert_weights(config_path, weights_directory_path, models_directory_path)
convert_and_import(ckpt_path, diffuser_path)
* diffusers: update to diffusers 0.11 (from 0.10.2)
* fix vae loading & width/height calculation
* refactor: encapsulate these conditioning data into one container
* diffusers: fix some noise-scaling issues by pushing the noise-mixing down to the common function
* add support for safetensors and accelerate
* set local_files_only when internet unreachable
* diffusers: fix error-handling path when model repo has no fp16 branch
* fix generatorinpaint error
Fixes :
"ModuleNotFoundError: No module named 'ldm.invoke.generatorinpaint'
https://github.com/invoke-ai/InvokeAI/pull/1583#issuecomment-1363634318
* quench diffuser safety-checker warning
* diffusers: support stochastic DDIM eta parameter
* fix conda env creation on macos
* fix cross-attention with diffusers 0.11
* diffusers: the VAE needs to be tiling as well as the U-Net
* diffusers: comment on subfolders
* diffusers: embiggen!
* diffusers: make model_cache.list_models serializable
* diffusers(inpaint): restore scaling functionality
* fix requirements clash between numba and numpy 1.24
* diffusers: allow inpainting model to do non-inpainting tasks
* start expanding model_cache functionality
* add import_ckpt_model() and import_diffuser_model() methods to model_manager
- in addition, model_cache.py is now renamed to model_manager.py
* allow "recommended" flag to be optional in INITIAL_MODELS.yaml
* configure_invokeai now downloads VAE diffusers in advance
* rename ModelCache to ModelManager
* remove support for `repo_name` in models.yaml
* check for and refuse to load embeddings trained on incompatible models
* models.yaml.example: s/repo_name/repo_id
and remove extra INITIAL_MODELS now that the main one has diffusers models in it.
* add MVP textual inversion script
* refactor(InvokeAIDiffuserComponent): factor out _combine()
* InvokeAIDiffuserComponent: implement threshold
* InvokeAIDiffuserComponent: diagnostic logs for threshold
...this does not look right
* add a curses-based frontend to textual inversion
- not quite working yet
- requires npyscreen installed
- on windows will also have the windows-curses requirement, but not added
to requirements yet
* add curses-based interface for textual inversion
* fix crash in convert_and_import()
- This corrects a "local variable referenced before assignment" error
in model_manager.convert_and_import()
* potential workaround for no 'state_dict' key error
- As reported in https://github.com/huggingface/diffusers/issues/1876
* create TI output dir if needed
* Update environment-lin-cuda.yml (#2159)
Fixing line 42 to be the proper order to define the transformers requirement: ~= instead of =~
* diffusers: update sampler-to-scheduler mapping
based on https://github.com/huggingface/diffusers/issues/277#issuecomment-1371428672
* improve user exp for ckt to diffusers conversion
- !optimize_models command now operates on an existing ckpt file entry in models.yaml
- replaces existing entry, rather than adding a new one
- offers to delete the ckpt file after conversion
* web: adapt progress callback to deal with old generator or new diffusers pipeline
* clean-up model_manager code
- add_model() verified to work for .ckpt local paths,
.ckpt remote URLs, diffusers local paths, and
diffusers repo_ids
- convert_and_import() verified to work for local and
remove .ckpt files
* handle edge cases for import_model() and convert_model()
* add support for safetensor .ckpt files
* fix name error
* code cleanup with pyflake
* improve model setting behavior
- If the user enters an invalid model name at startup time, will not
try to load it, warn, and use default model
- CLI UI enhancement: include currently active model in the command
line prompt.
* update test-invoke-pip.yml
- fix model cache path to point to runwayml/stable-diffusion-v1-5
- remove `skip-sd-weights` from configure_invokeai.py args
* exclude dev/diffusers from "fail for draft PRs"
* disable "fail on PR jobs"
* re-add `--skip-sd-weights` since no space
* update workflow environments
- include `INVOKE_MODEL_RECONFIGURE: '--yes'`
* clean up model load failure handling
- Allow CLI to run even when no model is defined or loadable.
- Inhibit stack trace when model load fails - only show last error
- Give user *option* to run configure_invokeai.py when no models
successfully load.
- Restart invokeai after reconfiguration.
* further edge-case handling
1) only one model in models.yaml file, and that model is broken
2) no models in models.yaml
3) models.yaml doesn't exist at all
* fix incorrect model status listing
- "cached" was not being returned from list_models()
- normalize handling of exceptions during model loading:
- Passing an invalid model name to generate.set_model() will return
a KeyError
- All other exceptions are returned as the appropriate Exception
* CI: do download weights (if not already cached)
* diffusers: fix scheduler loading in offline mode
* CI: fix model name (no longer has `diffusers-` prefix)
* Update txt2img2img.py (#2256)
* fixes to share models with HuggingFace cache system
- If HF_HOME environment variable is defined, then all huggingface models
are stored in that directory following the standard conventions.
- For seamless interoperability, set HF_HOME to ~/.cache/huggingface
- If HF_HOME not defined, then models are stored in ~/invokeai/models.
This is equivalent to setting HF_HOME to ~/invokeai/models
A future commit will add a migration mechanism so that this change doesn't
break previous installs.
* feat - make model storage compatible with hugging face caching system
This commit alters the InvokeAI model directory to be compatible with
hugging face, making it easier to share diffusers (and other models)
across different programs.
- If the HF_HOME environment variable is not set, then models are
cached in ~/invokeai/models in a format that is identical to the
HuggingFace cache.
- If HF_HOME is set, then models are cached wherever HF_HOME points.
- To enable sharing with other HuggingFace library clients, set
HF_HOME to ~/.cache/huggingface to set the default cache location
or to ~/invokeai/models to have huggingface cache inside InvokeAI.
* fixes to share models with HuggingFace cache system
- If HF_HOME environment variable is defined, then all huggingface models
are stored in that directory following the standard conventions.
- For seamless interoperability, set HF_HOME to ~/.cache/huggingface
- If HF_HOME not defined, then models are stored in ~/invokeai/models.
This is equivalent to setting HF_HOME to ~/invokeai/models
A future commit will add a migration mechanism so that this change doesn't
break previous installs.
* fix error "no attribute CkptInpaint"
* model_manager.list_models() returns entire model config stanza+status
* Initial Draft - Model Manager Diffusers
* added hash function to diffusers
* implement sha256 hashes on diffusers models
* Add Model Manager Support for Diffusers
* fix various problems with model manager
- in cli import functions, fix not enough values to unpack from
_get_name_and_desc()
- fix crash when using old-style vae: value with new-style diffuser
* rebuild frontend
* fix dictconfig-not-serializable issue
* fix NoneType' object is not subscriptable crash in model_manager
* fix "str has no attribute get" error in model_manager list_models()
* Add path and repo_id support for Diffusers Model Manager
Also fixes bugs
* Fix tooltip IT localization not working
* Add Version Number To WebUI
* Optimize Model Search
* Fix incorrect font on the Model Manager UI
* Fix image degradation on merge fixes - [Experimental]
This change should effectively fix a couple of things.
- Fix image degradation on subsequent merges of the canvas layers.
- Fix the slight transparent border that is left behind when filling the bounding box with a color.
- Fix the left over line of color when filling a bounding box with color.
So far there are no side effects for this. If any, please report.
* Add local model filtering for Diffusers / Checkpoints
* Go to home on modal close for the Add Modal UI
* Styling Fixes
* Model Manager Diffusers Localization Update
* Add Safe Tensor scanning to Model Manager
* Fix model edit form dispatching string values instead of numbers.
* Resolve VAE handling / edge cases for supplied repos
* defer injecting tokens for textual inversions until they're used for the first time
* squash a console warning
* implement model migration check
* add_model() overwrites previous config rather than merges
* fix model config file attribute merging
* fix precision handling in textual inversion script
* allow ckpt conversion script to work with safetensors .ckpts
Applied patch here:
https://github.com/huggingface/diffusers/commit/beb932c5d111872c5e45387e7b1b2b3dd0524a47
* fix name "args" is not defined crash in textual_inversion_training
* fix a second NameError: name 'args' is not defined crash
* fix loading of the safety checker from the global cache dir
* add installation step to textual inversion frontend
- After a successful training run, the script will copy learned_embeds.bin
to a subfolder of the embeddings directory.
- User given the option to delete the logs and intermediate checkpoints
(which together use 7-8G of space)
- If textual inversion training fails, reports the error gracefully.
* don't crash out on incompatible embeddings
- put try: blocks around places where the system tries to load an embedding
which is incompatible with the currently loaded model
* add support for checkpoint resuming
* textual inversion preferences are saved and restored between sessions
- Preferences are stored in a file named text-inversion-training/preferences.conf
- Currently the resume-from-checkpoint option is not working correctly. Possible
bug in textual_inversion_training.py?
* copy learned_embeddings.bin into right location
* add front end for diffusers model merging
- Front end doesn't do anything yet!!!!
- Made change to model name parsing in CLI to support ability to have merged models
with the "+" character in their names.
* improve inpainting experience
- recommend ckpt version of inpainting-1.5 to user
- fix get_noise() bug in ckpt version of omnibus.py
* update environment*yml
* tweak instructions to install HuggingFace token
* bump version number
* enhance update scripts
- update scripts will now fetch new INITIAL_MODELS.yaml so that
configure_invokeai.py will know about the diffusers versions.
* enhance invoke.sh/invoke.bat launchers
- added configure_invokeai.py to menu
- menu defaults to browser-based invoke
* remove conda workflow (#2321)
* fix `token_ids has shape torch.Size([79]) - expected [77]`
* update CHANGELOG.md with 2.3.* info
- Add information on how formats have changed and the upgrade process.
- Add short bug list.
Co-authored-by: Damian Stewart <d@damianstewart.com>
Co-authored-by: Damian Stewart <null@damianstewart.com>
Co-authored-by: Lincoln Stein <lincoln.stein@gmail.com>
Co-authored-by: Wybartel-luxmc <37852506+Wybartel-luxmc@users.noreply.github.com>
Co-authored-by: mauwii <Mauwii@outlook.de>
Co-authored-by: mickr777 <115216705+mickr777@users.noreply.github.com>
Co-authored-by: blessedcoolant <54517381+blessedcoolant@users.noreply.github.com>
Co-authored-by: Eugene Brodsky <ebr@users.noreply.github.com>
Co-authored-by: Matthias Wild <40327258+mauwii@users.noreply.github.com>
2023-01-15 14:22:46 +00:00
|
|
|
|
2023-02-02 20:15:44 +00:00
|
|
|
return pipe
|
|
|
|
|
|
|
|
def convert_ckpt_to_diffuser(
|
|
|
|
checkpoint_path:Union[str,Path],
|
|
|
|
dump_path:Union[str,Path],
|
|
|
|
**kwargs,
|
|
|
|
):
|
|
|
|
'''
|
|
|
|
Takes all the arguments of load_pipeline_from_original_stable_diffusion_ckpt(),
|
|
|
|
and in addition a path-like object indicating the location of the desired diffusers
|
|
|
|
model to be written.
|
|
|
|
'''
|
|
|
|
pipe = load_pipeline_from_original_stable_diffusion_ckpt(
|
|
|
|
checkpoint_path,
|
|
|
|
**kwargs
|
|
|
|
)
|
2023-02-03 15:04:32 +00:00
|
|
|
|
use 🧨diffusers model (#1583)
* initial commit of DiffusionPipeline class
* spike: proof of concept using diffusers for txt2img
* doc: type hints for Generator
* refactor(model_cache): factor out load_ckpt
* model_cache: add ability to load a diffusers model pipeline
and update associated things in Generate & Generator to not instantly fail when that happens
* model_cache: fix model default image dimensions
* txt2img: support switching diffusers schedulers
* diffusers: let the scheduler do its scaling of the initial latents
Remove IPNDM scheduler; it is not behaving.
* web server: update image_progress callback for diffusers data
* diffusers: restore prompt weighting feature
* diffusers: fix set-sampler error following model switch
* diffusers: use InvokeAIDiffuserComponent for conditioning
* cross_attention_control: stub (no-op) implementations for diffusers
* model_cache: let offload_model work with DiffusionPipeline, sorta.
* models.yaml.example: add diffusers-format model, set as default
* test-invoke-conda: use diffusers-format model
test-invoke-conda: put huggingface-token where the library can use it
* environment-mac: upgrade to diffusers 0.7 (from 0.6)
this was already done for linux; mac must have been lost in the merge.
* preload_models: explicitly load diffusers models
In non-interactive mode too, as long as you're logged in.
* fix(model_cache): don't check `model.config` in diffusers format
clean-up from recent merge.
* diffusers integration: support img2img
* dev: upgrade to diffusers 0.8 (from 0.7.1)
We get to remove some code by using methods that were factored out in the base class.
* refactor: remove backported img2img.get_timesteps
now that we can use it directly from diffusers 0.8.1
* ci: use diffusers model
* dev: upgrade to diffusers 0.9 (from 0.8.1)
* lint: correct annotations for Python 3.9.
* lint: correct AttributeError.name reference for Python 3.9.
* CI: prefer diffusers-1.4 because it no longer requires a token
The RunwayML models still do.
* build: there's yet another place to update requirements?
* configure: try to download models even without token
Models in the CompVis and stabilityai repos no longer require them. (But runwayml still does.)
* configure: add troubleshooting info for config-not-found
* fix(configure): prepend root to config path
* fix(configure): remove second `default: true` from models example
* CI: simplify test-on-push logic now that we don't need secrets
The "test on push but only in forks" logic was only necessary when tests didn't work for PRs-from-forks.
* create an embedding_manager for diffusers
* internal: avoid importing diffusers DummyObject
see https://github.com/huggingface/diffusers/issues/1479
* fix "config attributes…not expected" diffusers warnings.
* fix deprecated scheduler construction
* work around an apparent MPS torch bug that causes conditioning to have no effect
* 🚧 post-rebase repair
* preliminary support for outpainting (no masking yet)
* monkey-patch diffusers.attention and use Invoke lowvram code
* add always_use_cpu arg to bypass MPS
* add cross-attention control support to diffusers (fails on MPS)
For unknown reasons MPS produces garbage output with .swap(). Use
--always_use_cpu arg to invoke.py for now to test this code on MPS.
* diffusers support for the inpainting model
* fix debug_image to not crash with non-RGB images.
* inpainting for the normal model [WIP]
This seems to be performing well until the LAST STEP, at which point it dissolves to confetti.
* fix off-by-one bug in cross-attention-control (#1774)
prompt token sequences begin with a "beginning-of-sequence" marker <bos> and end with a repeated "end-of-sequence" marker <eos> - to make a default prompt length of <bos> + 75 prompt tokens + <eos>. the .swap() code was failing to take the column for <bos> at index 0 into account. the changes here do that, and also add extra handling for a single <eos> (which may be redundant but which is included for completeness).
based on my understanding and some assumptions about how this all works, the reason .swap() nevertheless seemed to do the right thing, to some extent, is because over multiple steps the conditioning process in Stable Diffusion operates as a feedback loop. a change to token n-1 has flow-on effects to how the [1x4x64x64] latent tensor is modified by all the tokens after it, - and as the next step is processed, all the tokens before it as well. intuitively, a token's conditioning effects "echo" throughout the whole length of the prompt. so even though the token at n-1 was being edited when what the user actually wanted was to edit the token at n, it nevertheless still had some non-negligible effect, in roughly the right direction, often enough that it seemed like it was working properly.
* refactor common CrossAttention stuff into a mixin so that the old ldm code can still work if necessary
* inpainting for the normal model. I think it works this time.
* diffusers: reset num_vectors_per_token
sync with 44a00555718f1df173c60da0ed646cf700e29537
* diffusers: txt2img2img (hires_fix)
with so much slicing and dicing of pipeline methods to stitch them together
* refactor(diffusers): reduce some code duplication amongst the different tasks
* fixup! refactor(diffusers): reduce some code duplication amongst the different tasks
* diffusers: enable DPMSolver++ scheduler
* diffusers: upgrade to diffusers 0.10, add Heun scheduler
* diffusers(ModelCache): stopgap to make from_cpu compatible with diffusers
* CI: default to diffusers-1.5 now that runwayml token requirement is gone
* diffusers: update to 0.10 (and transformers to 4.25)
* diffusers: use xformers when available
diffusers no longer auto-enables this as of 0.10.2.
* diffusers: make masked img2img behave better with multi-step schedulers
re-randomizing the noise each step was confusing them.
* diffusers: work more better with more models.
fixed relative path problem with local models.
fixed models on hub not always having a `fp16` branch.
* diffusers: stopgap fix for attention_maps_callback crash after recent merge
* fixup import merge conflicts
correction for 061c5369a2247c6c92cd69606bcf54c4f1962a0b
* test: add tests/inpainting inputs for masked img2img
* diffusers(AddsMaskedGuidance): partial fix for k-schedulers
Prevents them from crashing, but results are still hot garbage.
* fix --safety_checker arg parsing
and add note to diffusers loader about where safety checker gets called
* generate: fix import error
* CI: don't try to read the old init location
* diffusers: support loading an alternate VAE
* CI: remove sh-syntax if-statement so it doesn't crash powershell
* CI: fold strings in yaml because backslash is not line-continuation in powershell
* attention maps callback stuff for diffusers
* build: fix syntax error in environment-mac
* diffusers: add INITIAL_MODELS with diffusers-compatible repos
* re-enable the embedding manager; closes #1778
* Squashed commit of the following:
commit e4a956abc37fcb5cf188388b76b617bc5c8fda7d
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:43:07 2022 +0100
import new load handling from EmbeddingManager and cleanup
commit c4abe91a5ba0d415b45bf734068385668b7a66e6
Merge: 032e856e 1efc6397
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:09:53 2022 +0100
Merge branch 'feature_textual_inversion_mgr' into dev/diffusers_with_textual_inversion_manager
commit 032e856eefb3bbc39534f5daafd25764bcfcef8b
Merge: 8b4f0fe9 bc515e24
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:08:01 2022 +0100
Merge remote-tracking branch 'upstream/dev/diffusers' into dev/diffusers_with_textual_inversion_manager
commit 1efc6397fc6e61c1aff4b0258b93089d61de5955
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:04:28 2022 +0100
cleanup and add performance notes
commit e400f804ac471a0ca2ba432fd658778b20c7bdab
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 14:45:07 2022 +0100
fix bug and update unit tests
commit deb9ae0ae1016750e93ce8275734061f7285a231
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 14:28:29 2022 +0100
textual inversion manager seems to work
commit 162e02505dec777e91a983c4d0fb52e950d25ff0
Merge: cbad4583 12769b3d
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:58:03 2022 +0100
Merge branch 'main' into feature_textual_inversion_mgr
commit cbad45836c6aace6871a90f2621a953f49433131
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:54:10 2022 +0100
use position embeddings
commit 070344c69b0e0db340a183857d0a787b348681d3
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:53:47 2022 +0100
Don't crash CLI on exceptions
commit b035ac8c6772dfd9ba41b8eeb9103181cda028f8
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:11:55 2022 +0100
add missing position_embeddings
commit 12769b3d3562ef71e0f54946b532ad077e10043c
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 13:33:25 2022 +0100
debugging why it don't work
commit bafb7215eabe1515ca5e8388fd3bb2f3ac5362cf
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 13:21:33 2022 +0100
debugging why it don't work
commit 664a6e9e146b42d96703f0cc8baf8f5efec04ee1
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 12:48:38 2022 +0100
use TextualInversionManager in place of embeddings (wip, doesn't work)
commit 8b4f0fe9d6e4e2643b36dfa27864294785d7ba4e
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 12:48:38 2022 +0100
use TextualInversionManager in place of embeddings (wip, doesn't work)
commit ffbe1ab11163ba712e353d89404e301d0e0c6cdf
Merge: 6e4dad60 023df37e
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:37:31 2022 +0100
Merge branch 'feature_textual_inversion_mgr' into dev/diffusers
commit 023df37efffa67434f77def7fc3c9dfb29f699fd
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:36:54 2022 +0100
cleanup
commit 05fac594eaf79d0058e3c48deee93df603f136c2
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:07:49 2022 +0100
tweak error checking
commit 009f32ed39a7280997c3ffab112adadee0b44279
Author: damian <null@damianstewart.com>
Date: Thu Dec 15 21:29:47 2022 +0100
unit tests passing for embeddings with vector length >1
commit beb1b08d9a98112ed2fe073580568e1a18698da3
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 13:39:09 2022 +0100
more explicit equality tests when overwriting
commit 44d8a5a7c85cdabc9ce3a54fd0769a10597b3ca9
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 13:30:13 2022 +0100
wip textual inversion manager (unit tests passing for 1v embedding overwriting)
commit 417c2b57d90924a839616bfb66804faab8039e4c
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 12:30:55 2022 +0100
wip textual inversion manager (unit tests passing for base stuff + padding)
commit 2e80872e3b6f7fd7d8eb8928822bd824b63cb2ff
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 10:57:57 2022 +0100
wip new TextualInversionManager
* stop using WeightedFrozenCLIPEmbedder
* store diffusion models locally
- configure_invokeai.py reconfigured to store diffusion models rather than
CompVis models
- hugging face caching model is used, but cache is set to ~/invokeai/models/repo_id
- models.yaml does **NOT** use path, just repo_id
- "repo_name" changed to "repo_id" to following hugging face conventions
- Models are loaded with full precision pending further work.
* allow non-local files during development
* path takes priority over repo_id
* MVP for model_cache and configure_invokeai
- Feature complete (almost)
- configure_invokeai.py downloads both .ckpt and diffuser models,
along with their VAEs. Both types of download are controlled by
a unified INITIAL_MODELS.yaml file.
- model_cache can load both type of model and switches back and forth
in CPU. No memory leaks detected
TO DO:
1. I have not yet turned on the LocalOnly flag for diffuser models, so
the code will check the Hugging Face repo for updates before using the
locally cached models. This will break firewalled systems. I am thinking
of putting in a global check for internet connectivity at startup time
and setting the LocalOnly flag based on this. It would be good to check
updates if there is connectivity.
2. I have not gone completely through INITIAL_MODELS.yaml to check which
models are available as diffusers and which are not. So models like
PaperCut and VoxelArt may not load properly. The runway and stability
models are checked, as well as the Trinart models.
3. Add stanzas for SD 2.0 and 2.1 in INITIAL_MODELS.yaml
REMAINING PROBLEMS NOT DIRECTLY RELATED TO MODEL_CACHE:
1. When loading a .ckpt file there are lots of messages like this:
Warning! ldm.modules.attention.CrossAttention is no longer being
maintained. Please use InvokeAICrossAttention instead.
I'm not sure how to address this.
2. The ckpt models ***don't actually run*** due to the lack of special-case
support for them in the generator objects. For example, here's the hard
crash you get when you run txt2img against the legacy waifu-diffusion-1.3
model:
```
>> An error occurred:
Traceback (most recent call last):
File "/data/lstein/InvokeAI/ldm/invoke/CLI.py", line 140, in main
main_loop(gen, opt)
File "/data/lstein/InvokeAI/ldm/invoke/CLI.py", line 371, in main_loop
gen.prompt2image(
File "/data/lstein/InvokeAI/ldm/generate.py", line 496, in prompt2image
results = generator.generate(
File "/data/lstein/InvokeAI/ldm/invoke/generator/base.py", line 108, in generate
image = make_image(x_T)
File "/data/lstein/InvokeAI/ldm/invoke/generator/txt2img.py", line 33, in make_image
pipeline_output = pipeline.image_from_embeddings(
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1265, in __getattr__
raise AttributeError("'{}' object has no attribute '{}'".format(
AttributeError: 'LatentDiffusion' object has no attribute 'image_from_embeddings'
```
3. The inpainting diffusion model isn't working. Here's the output of "banana
sushi" when inpainting-1.5 is loaded:
```
Traceback (most recent call last):
File "/data/lstein/InvokeAI/ldm/generate.py", line 496, in prompt2image
results = generator.generate(
File "/data/lstein/InvokeAI/ldm/invoke/generator/base.py", line 108, in generate
image = make_image(x_T)
File "/data/lstein/InvokeAI/ldm/invoke/generator/txt2img.py", line 33, in make_image
pipeline_output = pipeline.image_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 301, in image_from_embeddings
result_latents, result_attention_map_saver = self.latents_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 330, in latents_from_embeddings
result: PipelineIntermediateState = infer_latents_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 185, in __call__
for result in self.generator_method(*args, **kwargs):
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 367, in generate_latents_from_embeddings
step_output = self.step(batched_t, latents, guidance_scale,
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context
return func(*args, **kwargs)
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 409, in step
step_output = self.scheduler.step(noise_pred, timestep, latents, **extra_step_kwargs)
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/diffusers/schedulers/scheduling_lms_discrete.py", line 223, in step
pred_original_sample = sample - sigma * model_output
RuntimeError: The size of tensor a (9) must match the size of tensor b (4) at non-singleton dimension 1
```
* proper support for float32/float16
- configure script now correctly detects user's preference for
fp16/32 and downloads the correct diffuser version. If fp16
version not available, falls back to fp32 version.
- misc code cleanup and simplification in model_cache
* add on-the-fly conversion of .ckpt to diffusers models
1. On-the-fly conversion code can be found in the file ldm/invoke/ckpt_to_diffusers.py.
2. A new !optimize command has been added to the CLI. Should be ported to Web GUI.
User experience on the CLI is this:
```
invoke> !optimize /home/lstein/invokeai/models/ldm/stable-diffusion-v1/sd-v1-4.ckpt
INFO: Converting legacy weights file /home/lstein/invokeai/models/ldm/stable-diffusion-v1/sd-v1-4.ckpt to optimized diffuser model.
This operation will take 30-60s to complete.
Success. Optimized model is now located at /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
Writing new config file entry for sd-v1-4...
>> New configuration:
sd-v1-4:
description: Optimized version of sd-v1-4
format: diffusers
path: /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
OK to import [n]? y
>> Verifying that new model loads...
>> Current VRAM usage: 2.60G
>> Offloading stable-diffusion-2.1 to CPU
>> Loading diffusers model from /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
| Using faster float16 precision
You have disabled the safety checker for <class 'ldm.invoke.generator.diffusers_pipeline.StableDiffusionGeneratorPipeline'> by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion \
license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances,\
disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .
| training width x height = (512 x 512)
>> Model loaded in 3.48s
>> Max VRAM used to load the model: 2.17G
>> Current VRAM usage:2.17G
>> Textual inversions available:
>> Setting Sampler to k_lms (LMSDiscreteScheduler)
Keep model loaded? [y]
```
* add parallel set of generator files for ckpt legacy generation
* generation using legacy ckpt models now working
* diffusers: fix missing attention_maps_callback
fix for 23eb80b40421b2bb8f4b6d3dd30490d11c447b36
* associate legacy CrossAttention with .ckpt models
* enable autoconvert
New --autoconvert CLI option will scan a designated directory for
new .ckpt files, convert them into diffuser models, and import
them into models.yaml.
Works like this:
invoke.py --autoconvert /path/to/weights/directory
In ModelCache added two new methods:
autoconvert_weights(config_path, weights_directory_path, models_directory_path)
convert_and_import(ckpt_path, diffuser_path)
* diffusers: update to diffusers 0.11 (from 0.10.2)
* fix vae loading & width/height calculation
* refactor: encapsulate these conditioning data into one container
* diffusers: fix some noise-scaling issues by pushing the noise-mixing down to the common function
* add support for safetensors and accelerate
* set local_files_only when internet unreachable
* diffusers: fix error-handling path when model repo has no fp16 branch
* fix generatorinpaint error
Fixes :
"ModuleNotFoundError: No module named 'ldm.invoke.generatorinpaint'
https://github.com/invoke-ai/InvokeAI/pull/1583#issuecomment-1363634318
* quench diffuser safety-checker warning
* diffusers: support stochastic DDIM eta parameter
* fix conda env creation on macos
* fix cross-attention with diffusers 0.11
* diffusers: the VAE needs to be tiling as well as the U-Net
* diffusers: comment on subfolders
* diffusers: embiggen!
* diffusers: make model_cache.list_models serializable
* diffusers(inpaint): restore scaling functionality
* fix requirements clash between numba and numpy 1.24
* diffusers: allow inpainting model to do non-inpainting tasks
* start expanding model_cache functionality
* add import_ckpt_model() and import_diffuser_model() methods to model_manager
- in addition, model_cache.py is now renamed to model_manager.py
* allow "recommended" flag to be optional in INITIAL_MODELS.yaml
* configure_invokeai now downloads VAE diffusers in advance
* rename ModelCache to ModelManager
* remove support for `repo_name` in models.yaml
* check for and refuse to load embeddings trained on incompatible models
* models.yaml.example: s/repo_name/repo_id
and remove extra INITIAL_MODELS now that the main one has diffusers models in it.
* add MVP textual inversion script
* refactor(InvokeAIDiffuserComponent): factor out _combine()
* InvokeAIDiffuserComponent: implement threshold
* InvokeAIDiffuserComponent: diagnostic logs for threshold
...this does not look right
* add a curses-based frontend to textual inversion
- not quite working yet
- requires npyscreen installed
- on windows will also have the windows-curses requirement, but not added
to requirements yet
* add curses-based interface for textual inversion
* fix crash in convert_and_import()
- This corrects a "local variable referenced before assignment" error
in model_manager.convert_and_import()
* potential workaround for no 'state_dict' key error
- As reported in https://github.com/huggingface/diffusers/issues/1876
* create TI output dir if needed
* Update environment-lin-cuda.yml (#2159)
Fixing line 42 to be the proper order to define the transformers requirement: ~= instead of =~
* diffusers: update sampler-to-scheduler mapping
based on https://github.com/huggingface/diffusers/issues/277#issuecomment-1371428672
* improve user exp for ckt to diffusers conversion
- !optimize_models command now operates on an existing ckpt file entry in models.yaml
- replaces existing entry, rather than adding a new one
- offers to delete the ckpt file after conversion
* web: adapt progress callback to deal with old generator or new diffusers pipeline
* clean-up model_manager code
- add_model() verified to work for .ckpt local paths,
.ckpt remote URLs, diffusers local paths, and
diffusers repo_ids
- convert_and_import() verified to work for local and
remove .ckpt files
* handle edge cases for import_model() and convert_model()
* add support for safetensor .ckpt files
* fix name error
* code cleanup with pyflake
* improve model setting behavior
- If the user enters an invalid model name at startup time, will not
try to load it, warn, and use default model
- CLI UI enhancement: include currently active model in the command
line prompt.
* update test-invoke-pip.yml
- fix model cache path to point to runwayml/stable-diffusion-v1-5
- remove `skip-sd-weights` from configure_invokeai.py args
* exclude dev/diffusers from "fail for draft PRs"
* disable "fail on PR jobs"
* re-add `--skip-sd-weights` since no space
* update workflow environments
- include `INVOKE_MODEL_RECONFIGURE: '--yes'`
* clean up model load failure handling
- Allow CLI to run even when no model is defined or loadable.
- Inhibit stack trace when model load fails - only show last error
- Give user *option* to run configure_invokeai.py when no models
successfully load.
- Restart invokeai after reconfiguration.
* further edge-case handling
1) only one model in models.yaml file, and that model is broken
2) no models in models.yaml
3) models.yaml doesn't exist at all
* fix incorrect model status listing
- "cached" was not being returned from list_models()
- normalize handling of exceptions during model loading:
- Passing an invalid model name to generate.set_model() will return
a KeyError
- All other exceptions are returned as the appropriate Exception
* CI: do download weights (if not already cached)
* diffusers: fix scheduler loading in offline mode
* CI: fix model name (no longer has `diffusers-` prefix)
* Update txt2img2img.py (#2256)
* fixes to share models with HuggingFace cache system
- If HF_HOME environment variable is defined, then all huggingface models
are stored in that directory following the standard conventions.
- For seamless interoperability, set HF_HOME to ~/.cache/huggingface
- If HF_HOME not defined, then models are stored in ~/invokeai/models.
This is equivalent to setting HF_HOME to ~/invokeai/models
A future commit will add a migration mechanism so that this change doesn't
break previous installs.
* feat - make model storage compatible with hugging face caching system
This commit alters the InvokeAI model directory to be compatible with
hugging face, making it easier to share diffusers (and other models)
across different programs.
- If the HF_HOME environment variable is not set, then models are
cached in ~/invokeai/models in a format that is identical to the
HuggingFace cache.
- If HF_HOME is set, then models are cached wherever HF_HOME points.
- To enable sharing with other HuggingFace library clients, set
HF_HOME to ~/.cache/huggingface to set the default cache location
or to ~/invokeai/models to have huggingface cache inside InvokeAI.
* fixes to share models with HuggingFace cache system
- If HF_HOME environment variable is defined, then all huggingface models
are stored in that directory following the standard conventions.
- For seamless interoperability, set HF_HOME to ~/.cache/huggingface
- If HF_HOME not defined, then models are stored in ~/invokeai/models.
This is equivalent to setting HF_HOME to ~/invokeai/models
A future commit will add a migration mechanism so that this change doesn't
break previous installs.
* fix error "no attribute CkptInpaint"
* model_manager.list_models() returns entire model config stanza+status
* Initial Draft - Model Manager Diffusers
* added hash function to diffusers
* implement sha256 hashes on diffusers models
* Add Model Manager Support for Diffusers
* fix various problems with model manager
- in cli import functions, fix not enough values to unpack from
_get_name_and_desc()
- fix crash when using old-style vae: value with new-style diffuser
* rebuild frontend
* fix dictconfig-not-serializable issue
* fix NoneType' object is not subscriptable crash in model_manager
* fix "str has no attribute get" error in model_manager list_models()
* Add path and repo_id support for Diffusers Model Manager
Also fixes bugs
* Fix tooltip IT localization not working
* Add Version Number To WebUI
* Optimize Model Search
* Fix incorrect font on the Model Manager UI
* Fix image degradation on merge fixes - [Experimental]
This change should effectively fix a couple of things.
- Fix image degradation on subsequent merges of the canvas layers.
- Fix the slight transparent border that is left behind when filling the bounding box with a color.
- Fix the left over line of color when filling a bounding box with color.
So far there are no side effects for this. If any, please report.
* Add local model filtering for Diffusers / Checkpoints
* Go to home on modal close for the Add Modal UI
* Styling Fixes
* Model Manager Diffusers Localization Update
* Add Safe Tensor scanning to Model Manager
* Fix model edit form dispatching string values instead of numbers.
* Resolve VAE handling / edge cases for supplied repos
* defer injecting tokens for textual inversions until they're used for the first time
* squash a console warning
* implement model migration check
* add_model() overwrites previous config rather than merges
* fix model config file attribute merging
* fix precision handling in textual inversion script
* allow ckpt conversion script to work with safetensors .ckpts
Applied patch here:
https://github.com/huggingface/diffusers/commit/beb932c5d111872c5e45387e7b1b2b3dd0524a47
* fix name "args" is not defined crash in textual_inversion_training
* fix a second NameError: name 'args' is not defined crash
* fix loading of the safety checker from the global cache dir
* add installation step to textual inversion frontend
- After a successful training run, the script will copy learned_embeds.bin
to a subfolder of the embeddings directory.
- User given the option to delete the logs and intermediate checkpoints
(which together use 7-8G of space)
- If textual inversion training fails, reports the error gracefully.
* don't crash out on incompatible embeddings
- put try: blocks around places where the system tries to load an embedding
which is incompatible with the currently loaded model
* add support for checkpoint resuming
* textual inversion preferences are saved and restored between sessions
- Preferences are stored in a file named text-inversion-training/preferences.conf
- Currently the resume-from-checkpoint option is not working correctly. Possible
bug in textual_inversion_training.py?
* copy learned_embeddings.bin into right location
* add front end for diffusers model merging
- Front end doesn't do anything yet!!!!
- Made change to model name parsing in CLI to support ability to have merged models
with the "+" character in their names.
* improve inpainting experience
- recommend ckpt version of inpainting-1.5 to user
- fix get_noise() bug in ckpt version of omnibus.py
* update environment*yml
* tweak instructions to install HuggingFace token
* bump version number
* enhance update scripts
- update scripts will now fetch new INITIAL_MODELS.yaml so that
configure_invokeai.py will know about the diffusers versions.
* enhance invoke.sh/invoke.bat launchers
- added configure_invokeai.py to menu
- menu defaults to browser-based invoke
* remove conda workflow (#2321)
* fix `token_ids has shape torch.Size([79]) - expected [77]`
* update CHANGELOG.md with 2.3.* info
- Add information on how formats have changed and the upgrade process.
- Add short bug list.
Co-authored-by: Damian Stewart <d@damianstewart.com>
Co-authored-by: Damian Stewart <null@damianstewart.com>
Co-authored-by: Lincoln Stein <lincoln.stein@gmail.com>
Co-authored-by: Wybartel-luxmc <37852506+Wybartel-luxmc@users.noreply.github.com>
Co-authored-by: mauwii <Mauwii@outlook.de>
Co-authored-by: mickr777 <115216705+mickr777@users.noreply.github.com>
Co-authored-by: blessedcoolant <54517381+blessedcoolant@users.noreply.github.com>
Co-authored-by: Eugene Brodsky <ebr@users.noreply.github.com>
Co-authored-by: Matthias Wild <40327258+mauwii@users.noreply.github.com>
2023-01-15 14:22:46 +00:00
|
|
|
pipe.save_pretrained(
|
|
|
|
dump_path,
|
2023-02-02 20:15:44 +00:00
|
|
|
safe_serialization=is_safetensors_available(),
|
use 🧨diffusers model (#1583)
* initial commit of DiffusionPipeline class
* spike: proof of concept using diffusers for txt2img
* doc: type hints for Generator
* refactor(model_cache): factor out load_ckpt
* model_cache: add ability to load a diffusers model pipeline
and update associated things in Generate & Generator to not instantly fail when that happens
* model_cache: fix model default image dimensions
* txt2img: support switching diffusers schedulers
* diffusers: let the scheduler do its scaling of the initial latents
Remove IPNDM scheduler; it is not behaving.
* web server: update image_progress callback for diffusers data
* diffusers: restore prompt weighting feature
* diffusers: fix set-sampler error following model switch
* diffusers: use InvokeAIDiffuserComponent for conditioning
* cross_attention_control: stub (no-op) implementations for diffusers
* model_cache: let offload_model work with DiffusionPipeline, sorta.
* models.yaml.example: add diffusers-format model, set as default
* test-invoke-conda: use diffusers-format model
test-invoke-conda: put huggingface-token where the library can use it
* environment-mac: upgrade to diffusers 0.7 (from 0.6)
this was already done for linux; mac must have been lost in the merge.
* preload_models: explicitly load diffusers models
In non-interactive mode too, as long as you're logged in.
* fix(model_cache): don't check `model.config` in diffusers format
clean-up from recent merge.
* diffusers integration: support img2img
* dev: upgrade to diffusers 0.8 (from 0.7.1)
We get to remove some code by using methods that were factored out in the base class.
* refactor: remove backported img2img.get_timesteps
now that we can use it directly from diffusers 0.8.1
* ci: use diffusers model
* dev: upgrade to diffusers 0.9 (from 0.8.1)
* lint: correct annotations for Python 3.9.
* lint: correct AttributeError.name reference for Python 3.9.
* CI: prefer diffusers-1.4 because it no longer requires a token
The RunwayML models still do.
* build: there's yet another place to update requirements?
* configure: try to download models even without token
Models in the CompVis and stabilityai repos no longer require them. (But runwayml still does.)
* configure: add troubleshooting info for config-not-found
* fix(configure): prepend root to config path
* fix(configure): remove second `default: true` from models example
* CI: simplify test-on-push logic now that we don't need secrets
The "test on push but only in forks" logic was only necessary when tests didn't work for PRs-from-forks.
* create an embedding_manager for diffusers
* internal: avoid importing diffusers DummyObject
see https://github.com/huggingface/diffusers/issues/1479
* fix "config attributes…not expected" diffusers warnings.
* fix deprecated scheduler construction
* work around an apparent MPS torch bug that causes conditioning to have no effect
* 🚧 post-rebase repair
* preliminary support for outpainting (no masking yet)
* monkey-patch diffusers.attention and use Invoke lowvram code
* add always_use_cpu arg to bypass MPS
* add cross-attention control support to diffusers (fails on MPS)
For unknown reasons MPS produces garbage output with .swap(). Use
--always_use_cpu arg to invoke.py for now to test this code on MPS.
* diffusers support for the inpainting model
* fix debug_image to not crash with non-RGB images.
* inpainting for the normal model [WIP]
This seems to be performing well until the LAST STEP, at which point it dissolves to confetti.
* fix off-by-one bug in cross-attention-control (#1774)
prompt token sequences begin with a "beginning-of-sequence" marker <bos> and end with a repeated "end-of-sequence" marker <eos> - to make a default prompt length of <bos> + 75 prompt tokens + <eos>. the .swap() code was failing to take the column for <bos> at index 0 into account. the changes here do that, and also add extra handling for a single <eos> (which may be redundant but which is included for completeness).
based on my understanding and some assumptions about how this all works, the reason .swap() nevertheless seemed to do the right thing, to some extent, is because over multiple steps the conditioning process in Stable Diffusion operates as a feedback loop. a change to token n-1 has flow-on effects to how the [1x4x64x64] latent tensor is modified by all the tokens after it, - and as the next step is processed, all the tokens before it as well. intuitively, a token's conditioning effects "echo" throughout the whole length of the prompt. so even though the token at n-1 was being edited when what the user actually wanted was to edit the token at n, it nevertheless still had some non-negligible effect, in roughly the right direction, often enough that it seemed like it was working properly.
* refactor common CrossAttention stuff into a mixin so that the old ldm code can still work if necessary
* inpainting for the normal model. I think it works this time.
* diffusers: reset num_vectors_per_token
sync with 44a00555718f1df173c60da0ed646cf700e29537
* diffusers: txt2img2img (hires_fix)
with so much slicing and dicing of pipeline methods to stitch them together
* refactor(diffusers): reduce some code duplication amongst the different tasks
* fixup! refactor(diffusers): reduce some code duplication amongst the different tasks
* diffusers: enable DPMSolver++ scheduler
* diffusers: upgrade to diffusers 0.10, add Heun scheduler
* diffusers(ModelCache): stopgap to make from_cpu compatible with diffusers
* CI: default to diffusers-1.5 now that runwayml token requirement is gone
* diffusers: update to 0.10 (and transformers to 4.25)
* diffusers: use xformers when available
diffusers no longer auto-enables this as of 0.10.2.
* diffusers: make masked img2img behave better with multi-step schedulers
re-randomizing the noise each step was confusing them.
* diffusers: work more better with more models.
fixed relative path problem with local models.
fixed models on hub not always having a `fp16` branch.
* diffusers: stopgap fix for attention_maps_callback crash after recent merge
* fixup import merge conflicts
correction for 061c5369a2247c6c92cd69606bcf54c4f1962a0b
* test: add tests/inpainting inputs for masked img2img
* diffusers(AddsMaskedGuidance): partial fix for k-schedulers
Prevents them from crashing, but results are still hot garbage.
* fix --safety_checker arg parsing
and add note to diffusers loader about where safety checker gets called
* generate: fix import error
* CI: don't try to read the old init location
* diffusers: support loading an alternate VAE
* CI: remove sh-syntax if-statement so it doesn't crash powershell
* CI: fold strings in yaml because backslash is not line-continuation in powershell
* attention maps callback stuff for diffusers
* build: fix syntax error in environment-mac
* diffusers: add INITIAL_MODELS with diffusers-compatible repos
* re-enable the embedding manager; closes #1778
* Squashed commit of the following:
commit e4a956abc37fcb5cf188388b76b617bc5c8fda7d
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:43:07 2022 +0100
import new load handling from EmbeddingManager and cleanup
commit c4abe91a5ba0d415b45bf734068385668b7a66e6
Merge: 032e856e 1efc6397
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:09:53 2022 +0100
Merge branch 'feature_textual_inversion_mgr' into dev/diffusers_with_textual_inversion_manager
commit 032e856eefb3bbc39534f5daafd25764bcfcef8b
Merge: 8b4f0fe9 bc515e24
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:08:01 2022 +0100
Merge remote-tracking branch 'upstream/dev/diffusers' into dev/diffusers_with_textual_inversion_manager
commit 1efc6397fc6e61c1aff4b0258b93089d61de5955
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 15:04:28 2022 +0100
cleanup and add performance notes
commit e400f804ac471a0ca2ba432fd658778b20c7bdab
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 14:45:07 2022 +0100
fix bug and update unit tests
commit deb9ae0ae1016750e93ce8275734061f7285a231
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 14:28:29 2022 +0100
textual inversion manager seems to work
commit 162e02505dec777e91a983c4d0fb52e950d25ff0
Merge: cbad4583 12769b3d
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:58:03 2022 +0100
Merge branch 'main' into feature_textual_inversion_mgr
commit cbad45836c6aace6871a90f2621a953f49433131
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:54:10 2022 +0100
use position embeddings
commit 070344c69b0e0db340a183857d0a787b348681d3
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:53:47 2022 +0100
Don't crash CLI on exceptions
commit b035ac8c6772dfd9ba41b8eeb9103181cda028f8
Author: Damian Stewart <d@damianstewart.com>
Date: Sun Dec 18 11:11:55 2022 +0100
add missing position_embeddings
commit 12769b3d3562ef71e0f54946b532ad077e10043c
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 13:33:25 2022 +0100
debugging why it don't work
commit bafb7215eabe1515ca5e8388fd3bb2f3ac5362cf
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 13:21:33 2022 +0100
debugging why it don't work
commit 664a6e9e146b42d96703f0cc8baf8f5efec04ee1
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 12:48:38 2022 +0100
use TextualInversionManager in place of embeddings (wip, doesn't work)
commit 8b4f0fe9d6e4e2643b36dfa27864294785d7ba4e
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 12:48:38 2022 +0100
use TextualInversionManager in place of embeddings (wip, doesn't work)
commit ffbe1ab11163ba712e353d89404e301d0e0c6cdf
Merge: 6e4dad60 023df37e
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:37:31 2022 +0100
Merge branch 'feature_textual_inversion_mgr' into dev/diffusers
commit 023df37efffa67434f77def7fc3c9dfb29f699fd
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:36:54 2022 +0100
cleanup
commit 05fac594eaf79d0058e3c48deee93df603f136c2
Author: Damian Stewart <d@damianstewart.com>
Date: Fri Dec 16 02:07:49 2022 +0100
tweak error checking
commit 009f32ed39a7280997c3ffab112adadee0b44279
Author: damian <null@damianstewart.com>
Date: Thu Dec 15 21:29:47 2022 +0100
unit tests passing for embeddings with vector length >1
commit beb1b08d9a98112ed2fe073580568e1a18698da3
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 13:39:09 2022 +0100
more explicit equality tests when overwriting
commit 44d8a5a7c85cdabc9ce3a54fd0769a10597b3ca9
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 13:30:13 2022 +0100
wip textual inversion manager (unit tests passing for 1v embedding overwriting)
commit 417c2b57d90924a839616bfb66804faab8039e4c
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 12:30:55 2022 +0100
wip textual inversion manager (unit tests passing for base stuff + padding)
commit 2e80872e3b6f7fd7d8eb8928822bd824b63cb2ff
Author: Damian Stewart <d@damianstewart.com>
Date: Thu Dec 15 10:57:57 2022 +0100
wip new TextualInversionManager
* stop using WeightedFrozenCLIPEmbedder
* store diffusion models locally
- configure_invokeai.py reconfigured to store diffusion models rather than
CompVis models
- hugging face caching model is used, but cache is set to ~/invokeai/models/repo_id
- models.yaml does **NOT** use path, just repo_id
- "repo_name" changed to "repo_id" to following hugging face conventions
- Models are loaded with full precision pending further work.
* allow non-local files during development
* path takes priority over repo_id
* MVP for model_cache and configure_invokeai
- Feature complete (almost)
- configure_invokeai.py downloads both .ckpt and diffuser models,
along with their VAEs. Both types of download are controlled by
a unified INITIAL_MODELS.yaml file.
- model_cache can load both type of model and switches back and forth
in CPU. No memory leaks detected
TO DO:
1. I have not yet turned on the LocalOnly flag for diffuser models, so
the code will check the Hugging Face repo for updates before using the
locally cached models. This will break firewalled systems. I am thinking
of putting in a global check for internet connectivity at startup time
and setting the LocalOnly flag based on this. It would be good to check
updates if there is connectivity.
2. I have not gone completely through INITIAL_MODELS.yaml to check which
models are available as diffusers and which are not. So models like
PaperCut and VoxelArt may not load properly. The runway and stability
models are checked, as well as the Trinart models.
3. Add stanzas for SD 2.0 and 2.1 in INITIAL_MODELS.yaml
REMAINING PROBLEMS NOT DIRECTLY RELATED TO MODEL_CACHE:
1. When loading a .ckpt file there are lots of messages like this:
Warning! ldm.modules.attention.CrossAttention is no longer being
maintained. Please use InvokeAICrossAttention instead.
I'm not sure how to address this.
2. The ckpt models ***don't actually run*** due to the lack of special-case
support for them in the generator objects. For example, here's the hard
crash you get when you run txt2img against the legacy waifu-diffusion-1.3
model:
```
>> An error occurred:
Traceback (most recent call last):
File "/data/lstein/InvokeAI/ldm/invoke/CLI.py", line 140, in main
main_loop(gen, opt)
File "/data/lstein/InvokeAI/ldm/invoke/CLI.py", line 371, in main_loop
gen.prompt2image(
File "/data/lstein/InvokeAI/ldm/generate.py", line 496, in prompt2image
results = generator.generate(
File "/data/lstein/InvokeAI/ldm/invoke/generator/base.py", line 108, in generate
image = make_image(x_T)
File "/data/lstein/InvokeAI/ldm/invoke/generator/txt2img.py", line 33, in make_image
pipeline_output = pipeline.image_from_embeddings(
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1265, in __getattr__
raise AttributeError("'{}' object has no attribute '{}'".format(
AttributeError: 'LatentDiffusion' object has no attribute 'image_from_embeddings'
```
3. The inpainting diffusion model isn't working. Here's the output of "banana
sushi" when inpainting-1.5 is loaded:
```
Traceback (most recent call last):
File "/data/lstein/InvokeAI/ldm/generate.py", line 496, in prompt2image
results = generator.generate(
File "/data/lstein/InvokeAI/ldm/invoke/generator/base.py", line 108, in generate
image = make_image(x_T)
File "/data/lstein/InvokeAI/ldm/invoke/generator/txt2img.py", line 33, in make_image
pipeline_output = pipeline.image_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 301, in image_from_embeddings
result_latents, result_attention_map_saver = self.latents_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 330, in latents_from_embeddings
result: PipelineIntermediateState = infer_latents_from_embeddings(
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 185, in __call__
for result in self.generator_method(*args, **kwargs):
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 367, in generate_latents_from_embeddings
step_output = self.step(batched_t, latents, guidance_scale,
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context
return func(*args, **kwargs)
File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 409, in step
step_output = self.scheduler.step(noise_pred, timestep, latents, **extra_step_kwargs)
File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/diffusers/schedulers/scheduling_lms_discrete.py", line 223, in step
pred_original_sample = sample - sigma * model_output
RuntimeError: The size of tensor a (9) must match the size of tensor b (4) at non-singleton dimension 1
```
* proper support for float32/float16
- configure script now correctly detects user's preference for
fp16/32 and downloads the correct diffuser version. If fp16
version not available, falls back to fp32 version.
- misc code cleanup and simplification in model_cache
* add on-the-fly conversion of .ckpt to diffusers models
1. On-the-fly conversion code can be found in the file ldm/invoke/ckpt_to_diffusers.py.
2. A new !optimize command has been added to the CLI. Should be ported to Web GUI.
User experience on the CLI is this:
```
invoke> !optimize /home/lstein/invokeai/models/ldm/stable-diffusion-v1/sd-v1-4.ckpt
INFO: Converting legacy weights file /home/lstein/invokeai/models/ldm/stable-diffusion-v1/sd-v1-4.ckpt to optimized diffuser model.
This operation will take 30-60s to complete.
Success. Optimized model is now located at /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
Writing new config file entry for sd-v1-4...
>> New configuration:
sd-v1-4:
description: Optimized version of sd-v1-4
format: diffusers
path: /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
OK to import [n]? y
>> Verifying that new model loads...
>> Current VRAM usage: 2.60G
>> Offloading stable-diffusion-2.1 to CPU
>> Loading diffusers model from /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
| Using faster float16 precision
You have disabled the safety checker for <class 'ldm.invoke.generator.diffusers_pipeline.StableDiffusionGeneratorPipeline'> by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion \
license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances,\
disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .
| training width x height = (512 x 512)
>> Model loaded in 3.48s
>> Max VRAM used to load the model: 2.17G
>> Current VRAM usage:2.17G
>> Textual inversions available:
>> Setting Sampler to k_lms (LMSDiscreteScheduler)
Keep model loaded? [y]
```
* add parallel set of generator files for ckpt legacy generation
* generation using legacy ckpt models now working
* diffusers: fix missing attention_maps_callback
fix for 23eb80b40421b2bb8f4b6d3dd30490d11c447b36
* associate legacy CrossAttention with .ckpt models
* enable autoconvert
New --autoconvert CLI option will scan a designated directory for
new .ckpt files, convert them into diffuser models, and import
them into models.yaml.
Works like this:
invoke.py --autoconvert /path/to/weights/directory
In ModelCache added two new methods:
autoconvert_weights(config_path, weights_directory_path, models_directory_path)
convert_and_import(ckpt_path, diffuser_path)
* diffusers: update to diffusers 0.11 (from 0.10.2)
* fix vae loading & width/height calculation
* refactor: encapsulate these conditioning data into one container
* diffusers: fix some noise-scaling issues by pushing the noise-mixing down to the common function
* add support for safetensors and accelerate
* set local_files_only when internet unreachable
* diffusers: fix error-handling path when model repo has no fp16 branch
* fix generatorinpaint error
Fixes :
"ModuleNotFoundError: No module named 'ldm.invoke.generatorinpaint'
https://github.com/invoke-ai/InvokeAI/pull/1583#issuecomment-1363634318
* quench diffuser safety-checker warning
* diffusers: support stochastic DDIM eta parameter
* fix conda env creation on macos
* fix cross-attention with diffusers 0.11
* diffusers: the VAE needs to be tiling as well as the U-Net
* diffusers: comment on subfolders
* diffusers: embiggen!
* diffusers: make model_cache.list_models serializable
* diffusers(inpaint): restore scaling functionality
* fix requirements clash between numba and numpy 1.24
* diffusers: allow inpainting model to do non-inpainting tasks
* start expanding model_cache functionality
* add import_ckpt_model() and import_diffuser_model() methods to model_manager
- in addition, model_cache.py is now renamed to model_manager.py
* allow "recommended" flag to be optional in INITIAL_MODELS.yaml
* configure_invokeai now downloads VAE diffusers in advance
* rename ModelCache to ModelManager
* remove support for `repo_name` in models.yaml
* check for and refuse to load embeddings trained on incompatible models
* models.yaml.example: s/repo_name/repo_id
and remove extra INITIAL_MODELS now that the main one has diffusers models in it.
* add MVP textual inversion script
* refactor(InvokeAIDiffuserComponent): factor out _combine()
* InvokeAIDiffuserComponent: implement threshold
* InvokeAIDiffuserComponent: diagnostic logs for threshold
...this does not look right
* add a curses-based frontend to textual inversion
- not quite working yet
- requires npyscreen installed
- on windows will also have the windows-curses requirement, but not added
to requirements yet
* add curses-based interface for textual inversion
* fix crash in convert_and_import()
- This corrects a "local variable referenced before assignment" error
in model_manager.convert_and_import()
* potential workaround for no 'state_dict' key error
- As reported in https://github.com/huggingface/diffusers/issues/1876
* create TI output dir if needed
* Update environment-lin-cuda.yml (#2159)
Fixing line 42 to be the proper order to define the transformers requirement: ~= instead of =~
* diffusers: update sampler-to-scheduler mapping
based on https://github.com/huggingface/diffusers/issues/277#issuecomment-1371428672
* improve user exp for ckt to diffusers conversion
- !optimize_models command now operates on an existing ckpt file entry in models.yaml
- replaces existing entry, rather than adding a new one
- offers to delete the ckpt file after conversion
* web: adapt progress callback to deal with old generator or new diffusers pipeline
* clean-up model_manager code
- add_model() verified to work for .ckpt local paths,
.ckpt remote URLs, diffusers local paths, and
diffusers repo_ids
- convert_and_import() verified to work for local and
remove .ckpt files
* handle edge cases for import_model() and convert_model()
* add support for safetensor .ckpt files
* fix name error
* code cleanup with pyflake
* improve model setting behavior
- If the user enters an invalid model name at startup time, will not
try to load it, warn, and use default model
- CLI UI enhancement: include currently active model in the command
line prompt.
* update test-invoke-pip.yml
- fix model cache path to point to runwayml/stable-diffusion-v1-5
- remove `skip-sd-weights` from configure_invokeai.py args
* exclude dev/diffusers from "fail for draft PRs"
* disable "fail on PR jobs"
* re-add `--skip-sd-weights` since no space
* update workflow environments
- include `INVOKE_MODEL_RECONFIGURE: '--yes'`
* clean up model load failure handling
- Allow CLI to run even when no model is defined or loadable.
- Inhibit stack trace when model load fails - only show last error
- Give user *option* to run configure_invokeai.py when no models
successfully load.
- Restart invokeai after reconfiguration.
* further edge-case handling
1) only one model in models.yaml file, and that model is broken
2) no models in models.yaml
3) models.yaml doesn't exist at all
* fix incorrect model status listing
- "cached" was not being returned from list_models()
- normalize handling of exceptions during model loading:
- Passing an invalid model name to generate.set_model() will return
a KeyError
- All other exceptions are returned as the appropriate Exception
* CI: do download weights (if not already cached)
* diffusers: fix scheduler loading in offline mode
* CI: fix model name (no longer has `diffusers-` prefix)
* Update txt2img2img.py (#2256)
* fixes to share models with HuggingFace cache system
- If HF_HOME environment variable is defined, then all huggingface models
are stored in that directory following the standard conventions.
- For seamless interoperability, set HF_HOME to ~/.cache/huggingface
- If HF_HOME not defined, then models are stored in ~/invokeai/models.
This is equivalent to setting HF_HOME to ~/invokeai/models
A future commit will add a migration mechanism so that this change doesn't
break previous installs.
* feat - make model storage compatible with hugging face caching system
This commit alters the InvokeAI model directory to be compatible with
hugging face, making it easier to share diffusers (and other models)
across different programs.
- If the HF_HOME environment variable is not set, then models are
cached in ~/invokeai/models in a format that is identical to the
HuggingFace cache.
- If HF_HOME is set, then models are cached wherever HF_HOME points.
- To enable sharing with other HuggingFace library clients, set
HF_HOME to ~/.cache/huggingface to set the default cache location
or to ~/invokeai/models to have huggingface cache inside InvokeAI.
* fixes to share models with HuggingFace cache system
- If HF_HOME environment variable is defined, then all huggingface models
are stored in that directory following the standard conventions.
- For seamless interoperability, set HF_HOME to ~/.cache/huggingface
- If HF_HOME not defined, then models are stored in ~/invokeai/models.
This is equivalent to setting HF_HOME to ~/invokeai/models
A future commit will add a migration mechanism so that this change doesn't
break previous installs.
* fix error "no attribute CkptInpaint"
* model_manager.list_models() returns entire model config stanza+status
* Initial Draft - Model Manager Diffusers
* added hash function to diffusers
* implement sha256 hashes on diffusers models
* Add Model Manager Support for Diffusers
* fix various problems with model manager
- in cli import functions, fix not enough values to unpack from
_get_name_and_desc()
- fix crash when using old-style vae: value with new-style diffuser
* rebuild frontend
* fix dictconfig-not-serializable issue
* fix NoneType' object is not subscriptable crash in model_manager
* fix "str has no attribute get" error in model_manager list_models()
* Add path and repo_id support for Diffusers Model Manager
Also fixes bugs
* Fix tooltip IT localization not working
* Add Version Number To WebUI
* Optimize Model Search
* Fix incorrect font on the Model Manager UI
* Fix image degradation on merge fixes - [Experimental]
This change should effectively fix a couple of things.
- Fix image degradation on subsequent merges of the canvas layers.
- Fix the slight transparent border that is left behind when filling the bounding box with a color.
- Fix the left over line of color when filling a bounding box with color.
So far there are no side effects for this. If any, please report.
* Add local model filtering for Diffusers / Checkpoints
* Go to home on modal close for the Add Modal UI
* Styling Fixes
* Model Manager Diffusers Localization Update
* Add Safe Tensor scanning to Model Manager
* Fix model edit form dispatching string values instead of numbers.
* Resolve VAE handling / edge cases for supplied repos
* defer injecting tokens for textual inversions until they're used for the first time
* squash a console warning
* implement model migration check
* add_model() overwrites previous config rather than merges
* fix model config file attribute merging
* fix precision handling in textual inversion script
* allow ckpt conversion script to work with safetensors .ckpts
Applied patch here:
https://github.com/huggingface/diffusers/commit/beb932c5d111872c5e45387e7b1b2b3dd0524a47
* fix name "args" is not defined crash in textual_inversion_training
* fix a second NameError: name 'args' is not defined crash
* fix loading of the safety checker from the global cache dir
* add installation step to textual inversion frontend
- After a successful training run, the script will copy learned_embeds.bin
to a subfolder of the embeddings directory.
- User given the option to delete the logs and intermediate checkpoints
(which together use 7-8G of space)
- If textual inversion training fails, reports the error gracefully.
* don't crash out on incompatible embeddings
- put try: blocks around places where the system tries to load an embedding
which is incompatible with the currently loaded model
* add support for checkpoint resuming
* textual inversion preferences are saved and restored between sessions
- Preferences are stored in a file named text-inversion-training/preferences.conf
- Currently the resume-from-checkpoint option is not working correctly. Possible
bug in textual_inversion_training.py?
* copy learned_embeddings.bin into right location
* add front end for diffusers model merging
- Front end doesn't do anything yet!!!!
- Made change to model name parsing in CLI to support ability to have merged models
with the "+" character in their names.
* improve inpainting experience
- recommend ckpt version of inpainting-1.5 to user
- fix get_noise() bug in ckpt version of omnibus.py
* update environment*yml
* tweak instructions to install HuggingFace token
* bump version number
* enhance update scripts
- update scripts will now fetch new INITIAL_MODELS.yaml so that
configure_invokeai.py will know about the diffusers versions.
* enhance invoke.sh/invoke.bat launchers
- added configure_invokeai.py to menu
- menu defaults to browser-based invoke
* remove conda workflow (#2321)
* fix `token_ids has shape torch.Size([79]) - expected [77]`
* update CHANGELOG.md with 2.3.* info
- Add information on how formats have changed and the upgrade process.
- Add short bug list.
Co-authored-by: Damian Stewart <d@damianstewart.com>
Co-authored-by: Damian Stewart <null@damianstewart.com>
Co-authored-by: Lincoln Stein <lincoln.stein@gmail.com>
Co-authored-by: Wybartel-luxmc <37852506+Wybartel-luxmc@users.noreply.github.com>
Co-authored-by: mauwii <Mauwii@outlook.de>
Co-authored-by: mickr777 <115216705+mickr777@users.noreply.github.com>
Co-authored-by: blessedcoolant <54517381+blessedcoolant@users.noreply.github.com>
Co-authored-by: Eugene Brodsky <ebr@users.noreply.github.com>
Co-authored-by: Matthias Wild <40327258+mauwii@users.noreply.github.com>
2023-01-15 14:22:46 +00:00
|
|
|
)
|