mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
first phase of source tree restructure
This is the first phase of a big shifting of files and directories in the source tree. You will need to run `pip install -e .` before the code will work again! Here's what's in the current commit: 1) Remove a lot of dead code that dealt with checkpoint and safetensor loading. 2) Entire ckpt_generator hierarchy is now gone! 3) ldm.invoke.generator.* => invokeai.generator.* 4) ldm.model.* => invokeai.model.* 5) ldm.invoke.model_manager => invokeai.model.model_manager 6) In addition, a number of frequently-accessed classes can be imported from the invokeai.model and invokeai.generator modules: from invokeai.generator import ( Generator, PipelineIntermediateState, StableDiffusionGeneratorPipeline, infill_methods) from invokeai.models import ( ModelManager, SDLegacyType InvokeAIDiffuserComponent, AttentionMapSaver, DDIMSampler, KSampler, PLMSSampler, PostprocessingSettings )
This commit is contained in:
parent
b7d5a3e0b5
commit
8c9764476c
@ -3,3 +3,4 @@ Initialization file for invokeai.backend
|
||||
'''
|
||||
from .invoke_ai_web_server import InvokeAIWebServer
|
||||
|
||||
|
||||
|
@ -27,10 +27,10 @@ from invokeai.backend.modules.parameters import parameters_to_command
|
||||
from ldm.generate import Generate
|
||||
from ldm.invoke.args import Args, APP_ID, APP_VERSION, calculate_init_img_hash
|
||||
from ldm.invoke.conditioning import get_tokens_for_prompt_object, get_prompt_structure, get_tokenizer
|
||||
from ldm.invoke.generator.diffusers_pipeline import PipelineIntermediateState
|
||||
from ldm.invoke.generator.inpaint import infill_methods
|
||||
from ldm.invoke.globals import Globals, global_converted_ckpts_dir
|
||||
from ldm.invoke.globals import global_models_dir
|
||||
from ..generator import infill_methods, PipelineIntermediateState
|
||||
from ldm.invoke.globals import ( Globals, global_converted_ckpts_dir,
|
||||
global_models_dir
|
||||
)
|
||||
from ldm.invoke.merge_diffusers import merge_diffusion_models
|
||||
from ldm.invoke.pngwriter import PngWriter, retrieve_metadata
|
||||
|
||||
|
@ -1,6 +1,6 @@
|
||||
model:
|
||||
base_learning_rate: 5.0e-03
|
||||
target: ldm.models.diffusion.ddpm.LatentDiffusion
|
||||
target: invokeai.models.diffusion.ddpm.LatentDiffusion
|
||||
params:
|
||||
linear_start: 0.00085
|
||||
linear_end: 0.0120
|
||||
@ -45,7 +45,7 @@ model:
|
||||
legacy: False
|
||||
|
||||
first_stage_config:
|
||||
target: ldm.models.autoencoder.AutoencoderKL
|
||||
target: invokeai.models.autoencoder.AutoencoderKL
|
||||
params:
|
||||
embed_dim: 4
|
||||
monitor: val/rec_loss
|
||||
|
@ -1,6 +1,6 @@
|
||||
model:
|
||||
base_learning_rate: 5.0e-03
|
||||
target: ldm.models.diffusion.ddpm.LatentDiffusion
|
||||
target: invokeai.models.diffusion.ddpm.LatentDiffusion
|
||||
params:
|
||||
linear_start: 0.00085
|
||||
linear_end: 0.0120
|
||||
@ -44,7 +44,7 @@ model:
|
||||
legacy: False
|
||||
|
||||
first_stage_config:
|
||||
target: ldm.models.autoencoder.AutoencoderKL
|
||||
target: invokeai.models.autoencoder.AutoencoderKL
|
||||
params:
|
||||
embed_dim: 4
|
||||
monitor: val/rec_loss
|
||||
|
@ -1,6 +1,6 @@
|
||||
model:
|
||||
base_learning_rate: 1.0e-04
|
||||
target: ldm.models.diffusion.ddpm.LatentDiffusion
|
||||
target: invokeai.models.diffusion.ddpm.LatentDiffusion
|
||||
params:
|
||||
linear_start: 0.00085
|
||||
linear_end: 0.0120
|
||||
@ -53,7 +53,7 @@ model:
|
||||
legacy: False
|
||||
|
||||
first_stage_config:
|
||||
target: ldm.models.autoencoder.AutoencoderKL
|
||||
target: invokeai.models.autoencoder.AutoencoderKL
|
||||
params:
|
||||
embed_dim: 4
|
||||
monitor: val/rec_loss
|
||||
|
@ -1,6 +1,6 @@
|
||||
model:
|
||||
base_learning_rate: 7.5e-05
|
||||
target: ldm.models.diffusion.ddpm.LatentInpaintDiffusion
|
||||
target: invokeai.models.diffusion.ddpm.LatentInpaintDiffusion
|
||||
params:
|
||||
linear_start: 0.00085
|
||||
linear_end: 0.0120
|
||||
@ -53,7 +53,7 @@ model:
|
||||
legacy: False
|
||||
|
||||
first_stage_config:
|
||||
target: ldm.models.autoencoder.AutoencoderKL
|
||||
target: invokeai.models.autoencoder.AutoencoderKL
|
||||
params:
|
||||
embed_dim: 4
|
||||
monitor: val/rec_loss
|
||||
|
@ -1,6 +1,6 @@
|
||||
model:
|
||||
base_learning_rate: 5.0e-03
|
||||
target: ldm.models.diffusion.ddpm.LatentDiffusion
|
||||
target: invokeai.models.diffusion.ddpm.LatentDiffusion
|
||||
params:
|
||||
linear_start: 0.00085
|
||||
linear_end: 0.0120
|
||||
@ -45,7 +45,7 @@ model:
|
||||
legacy: False
|
||||
|
||||
first_stage_config:
|
||||
target: ldm.models.autoencoder.AutoencoderKL
|
||||
target: invokeai.models.autoencoder.AutoencoderKL
|
||||
params:
|
||||
embed_dim: 4
|
||||
monitor: val/rec_loss
|
||||
|
@ -1,6 +1,6 @@
|
||||
model:
|
||||
base_learning_rate: 1.0e-4
|
||||
target: ldm.models.diffusion.ddpm.LatentDiffusion
|
||||
target: invokeai.models.diffusion.ddpm.LatentDiffusion
|
||||
params:
|
||||
parameterization: "v"
|
||||
linear_start: 0.00085
|
||||
@ -38,7 +38,7 @@ model:
|
||||
legacy: False
|
||||
|
||||
first_stage_config:
|
||||
target: ldm.models.autoencoder.AutoencoderKL
|
||||
target: invokeai.models.autoencoder.AutoencoderKL
|
||||
params:
|
||||
embed_dim: 4
|
||||
monitor: val/rec_loss
|
||||
|
@ -26,21 +26,19 @@ from PIL import Image, ImageOps
|
||||
from pytorch_lightning import logging, seed_everything
|
||||
|
||||
import ldm.invoke.conditioning
|
||||
|
||||
from invokeai.models import ModelManager
|
||||
from invokeai.generator import infill_methods
|
||||
from invokeai.models import (DDIMSampler, KSampler, PLMSSampler )
|
||||
from ldm.invoke.args import metadata_from_png
|
||||
from ldm.invoke.concepts_lib import HuggingFaceConceptsLibrary
|
||||
from ldm.invoke.conditioning import get_uc_and_c_and_ec
|
||||
from ldm.invoke.devices import choose_precision, choose_torch_device
|
||||
from ldm.invoke.generator.inpaint import infill_methods
|
||||
from ldm.invoke.globals import Globals, global_cache_dir
|
||||
from ldm.invoke.image_util import InitImageResizer
|
||||
from ldm.invoke.model_manager import ModelManager
|
||||
from ldm.invoke.pngwriter import PngWriter
|
||||
from ldm.invoke.seamless import configure_model_padding
|
||||
from ldm.invoke.txt2mask import Txt2Mask
|
||||
from ldm.models.diffusion.ddim import DDIMSampler
|
||||
from ldm.models.diffusion.ksampler import KSampler
|
||||
from ldm.models.diffusion.plms import PLMSSampler
|
||||
|
||||
|
||||
def fix_func(orig):
|
||||
if hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
|
||||
@ -816,7 +814,6 @@ class Generate:
|
||||
hires_fix: bool = False,
|
||||
force_outpaint: bool = False,
|
||||
):
|
||||
inpainting_model_in_use = self.sampler.uses_inpainting_model()
|
||||
|
||||
if hires_fix:
|
||||
return self._make_txt2img2img()
|
||||
@ -824,9 +821,6 @@ class Generate:
|
||||
if embiggen is not None:
|
||||
return self._make_embiggen()
|
||||
|
||||
if inpainting_model_in_use:
|
||||
return self._make_omnibus()
|
||||
|
||||
if ((init_image is not None) and (mask_image is not None)) or force_outpaint:
|
||||
return self._make_inpaint()
|
||||
|
||||
@ -903,16 +897,9 @@ class Generate:
|
||||
def _make_inpaint(self):
|
||||
return self._load_generator(".inpaint", "Inpaint")
|
||||
|
||||
def _make_omnibus(self):
|
||||
return self._load_generator(".omnibus", "Omnibus")
|
||||
|
||||
def _load_generator(self, module, class_name):
|
||||
if self.is_legacy_model(self.model_name):
|
||||
mn = f"ldm.invoke.ckpt_generator{module}"
|
||||
cn = f"Ckpt{class_name}"
|
||||
else:
|
||||
mn = f"ldm.invoke.generator{module}"
|
||||
cn = class_name
|
||||
mn = f"invokeai.generator{module}"
|
||||
cn = class_name
|
||||
module = importlib.import_module(mn)
|
||||
constructor = getattr(module, cn)
|
||||
return constructor(self.model, self.precision)
|
||||
|
@ -21,11 +21,11 @@ import ldm.invoke
|
||||
from ..generate import Generate
|
||||
from .args import (Args, dream_cmd_from_png, metadata_dumps,
|
||||
metadata_from_png)
|
||||
from .generator.diffusers_pipeline import PipelineIntermediateState
|
||||
from invokeai.generator import PipelineIntermediateState
|
||||
from .globals import Globals
|
||||
from .image_util import make_grid
|
||||
from .log import write_log
|
||||
from .model_manager import ModelManager
|
||||
from invokeai.models import ModelManager
|
||||
from .pngwriter import PngWriter, retrieve_metadata, write_metadata
|
||||
from .readline import Completer, get_completer
|
||||
from ..util import url_attachment_name
|
||||
@ -64,7 +64,7 @@ def main():
|
||||
Globals.internet_available = args.internet_available and check_internet()
|
||||
Globals.disable_xformers = not args.xformers
|
||||
Globals.sequential_guidance = args.sequential_guidance
|
||||
Globals.ckpt_convert = args.ckpt_convert
|
||||
Globals.ckpt_convert = True # always true now
|
||||
|
||||
print(f">> Internet connectivity is {Globals.internet_available}")
|
||||
|
||||
|
@ -1 +1 @@
|
||||
__version__='2.3.1'
|
||||
__version__='3.0.0+a0'
|
||||
|
@ -3,7 +3,7 @@ import os
|
||||
import sys
|
||||
import traceback
|
||||
|
||||
from ...model_manager import ModelManager
|
||||
from invokeai.models import ModelManager
|
||||
|
||||
from ...globals import Globals
|
||||
from ....generate import Generate
|
||||
|
@ -434,6 +434,14 @@ class Args(object):
|
||||
|
||||
deprecated_group.add_argument('--laion400m')
|
||||
deprecated_group.add_argument('--weights') # deprecated
|
||||
deprecated_group.add_argument(
|
||||
'--ckpt_convert',
|
||||
action=argparse.BooleanOptionalAction,
|
||||
dest='ckpt_convert',
|
||||
default=True,
|
||||
help='Load legacy ckpt files as diffusers (deprecated; always true now).',
|
||||
)
|
||||
|
||||
general_group.add_argument(
|
||||
'--version','-V',
|
||||
action='store_true',
|
||||
@ -518,13 +526,6 @@ class Args(object):
|
||||
help=f'Set model precision. Defaults to auto selected based on device. Options: {", ".join(PRECISION_CHOICES)}',
|
||||
default='auto',
|
||||
)
|
||||
model_group.add_argument(
|
||||
'--ckpt_convert',
|
||||
action=argparse.BooleanOptionalAction,
|
||||
dest='ckpt_convert',
|
||||
default=False,
|
||||
help='Load legacy ckpt files as diffusers. Pass --no-ckpt-convert to inhibit this behavior',
|
||||
)
|
||||
model_group.add_argument(
|
||||
'--internet',
|
||||
action=argparse.BooleanOptionalAction,
|
||||
|
@ -1,4 +0,0 @@
|
||||
'''
|
||||
Initialization file for the ldm.invoke.generator package
|
||||
'''
|
||||
from .base import CkptGenerator
|
@ -1,335 +0,0 @@
|
||||
'''
|
||||
Base class for ldm.invoke.ckpt_generator.*
|
||||
including img2img, txt2img, and inpaint
|
||||
|
||||
THESE MODULES ARE TRANSITIONAL AND WILL BE REMOVED AT A FUTURE DATE
|
||||
WHEN LEGACY CKPT MODEL SUPPORT IS DISCONTINUED.
|
||||
'''
|
||||
import torch
|
||||
import numpy as np
|
||||
import random
|
||||
import os
|
||||
import os.path as osp
|
||||
import traceback
|
||||
from tqdm import tqdm, trange
|
||||
from PIL import Image, ImageFilter, ImageChops
|
||||
import cv2 as cv
|
||||
from einops import rearrange, repeat
|
||||
from pathlib import Path
|
||||
from pytorch_lightning import seed_everything
|
||||
import invokeai.assets.web as web_assets
|
||||
from ldm.invoke.devices import choose_autocast
|
||||
from ldm.models.diffusion.cross_attention_map_saving import AttentionMapSaver
|
||||
from ldm.util import rand_perlin_2d
|
||||
|
||||
downsampling = 8
|
||||
CAUTION_IMG = 'caution.png'
|
||||
|
||||
class CkptGenerator():
|
||||
def __init__(self, model, precision):
|
||||
self.model = model
|
||||
self.precision = precision
|
||||
self.seed = None
|
||||
self.latent_channels = model.channels
|
||||
self.downsampling_factor = downsampling # BUG: should come from model or config
|
||||
self.safety_checker = None
|
||||
self.perlin = 0.0
|
||||
self.threshold = 0
|
||||
self.variation_amount = 0
|
||||
self.with_variations = []
|
||||
self.use_mps_noise = False
|
||||
self.free_gpu_mem = None
|
||||
self.caution_img = None
|
||||
|
||||
# this is going to be overridden in img2img.py, txt2img.py and inpaint.py
|
||||
def get_make_image(self,prompt,**kwargs):
|
||||
"""
|
||||
Returns a function returning an image derived from the prompt and the initial image
|
||||
Return value depends on the seed at the time you call it
|
||||
"""
|
||||
raise NotImplementedError("image_iterator() must be implemented in a descendent class")
|
||||
|
||||
def set_variation(self, seed, variation_amount, with_variations):
|
||||
self.seed = seed
|
||||
self.variation_amount = variation_amount
|
||||
self.with_variations = with_variations
|
||||
|
||||
def generate(self,prompt,init_image,width,height,sampler, iterations=1,seed=None,
|
||||
image_callback=None, step_callback=None, threshold=0.0, perlin=0.0,
|
||||
safety_checker:dict=None,
|
||||
attention_maps_callback = None,
|
||||
free_gpu_mem: bool=False,
|
||||
**kwargs):
|
||||
scope = choose_autocast(self.precision)
|
||||
self.safety_checker = safety_checker
|
||||
self.free_gpu_mem = free_gpu_mem
|
||||
attention_maps_images = []
|
||||
attention_maps_callback = lambda saver: attention_maps_images.append(saver.get_stacked_maps_image())
|
||||
make_image = self.get_make_image(
|
||||
prompt,
|
||||
sampler = sampler,
|
||||
init_image = init_image,
|
||||
width = width,
|
||||
height = height,
|
||||
step_callback = step_callback,
|
||||
threshold = threshold,
|
||||
perlin = perlin,
|
||||
attention_maps_callback = attention_maps_callback,
|
||||
**kwargs
|
||||
)
|
||||
results = []
|
||||
seed = seed if seed is not None and seed >= 0 else self.new_seed()
|
||||
first_seed = seed
|
||||
seed, initial_noise = self.generate_initial_noise(seed, width, height)
|
||||
|
||||
# There used to be an additional self.model.ema_scope() here, but it breaks
|
||||
# the inpaint-1.5 model. Not sure what it did.... ?
|
||||
with scope(self.model.device.type):
|
||||
for n in trange(iterations, desc='Generating'):
|
||||
x_T = None
|
||||
if self.variation_amount > 0:
|
||||
seed_everything(seed)
|
||||
target_noise = self.get_noise(width,height)
|
||||
x_T = self.slerp(self.variation_amount, initial_noise, target_noise)
|
||||
elif initial_noise is not None:
|
||||
# i.e. we specified particular variations
|
||||
x_T = initial_noise
|
||||
else:
|
||||
seed_everything(seed)
|
||||
try:
|
||||
x_T = self.get_noise(width,height)
|
||||
except:
|
||||
print('** An error occurred while getting initial noise **')
|
||||
print(traceback.format_exc())
|
||||
|
||||
image = make_image(x_T)
|
||||
|
||||
if self.safety_checker is not None:
|
||||
image = self.safety_check(image)
|
||||
|
||||
results.append([image, seed])
|
||||
|
||||
if image_callback is not None:
|
||||
attention_maps_image = None if len(attention_maps_images)==0 else attention_maps_images[-1]
|
||||
image_callback(image, seed, first_seed=first_seed, attention_maps_image=attention_maps_image)
|
||||
|
||||
seed = self.new_seed()
|
||||
|
||||
return results
|
||||
|
||||
def sample_to_image(self,samples)->Image.Image:
|
||||
"""
|
||||
Given samples returned from a sampler, converts
|
||||
it into a PIL Image
|
||||
"""
|
||||
x_samples = self.model.decode_first_stage(samples)
|
||||
x_samples = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0)
|
||||
if len(x_samples) != 1:
|
||||
raise Exception(
|
||||
f'>> expected to get a single image, but got {len(x_samples)}')
|
||||
x_sample = 255.0 * rearrange(
|
||||
x_samples[0].cpu().numpy(), 'c h w -> h w c'
|
||||
)
|
||||
return Image.fromarray(x_sample.astype(np.uint8))
|
||||
|
||||
# write an approximate RGB image from latent samples for a single step to PNG
|
||||
|
||||
def repaste_and_color_correct(self, result: Image.Image, init_image: Image.Image, init_mask: Image.Image, mask_blur_radius: int = 8) -> Image.Image:
|
||||
if init_image is None or init_mask is None:
|
||||
return result
|
||||
|
||||
# Get the original alpha channel of the mask if there is one.
|
||||
# Otherwise it is some other black/white image format ('1', 'L' or 'RGB')
|
||||
pil_init_mask = init_mask.getchannel('A') if init_mask.mode == 'RGBA' else init_mask.convert('L')
|
||||
pil_init_image = init_image.convert('RGBA') # Add an alpha channel if one doesn't exist
|
||||
|
||||
# Build an image with only visible pixels from source to use as reference for color-matching.
|
||||
init_rgb_pixels = np.asarray(init_image.convert('RGB'), dtype=np.uint8)
|
||||
init_a_pixels = np.asarray(pil_init_image.getchannel('A'), dtype=np.uint8)
|
||||
init_mask_pixels = np.asarray(pil_init_mask, dtype=np.uint8)
|
||||
|
||||
# Get numpy version of result
|
||||
np_image = np.asarray(result, dtype=np.uint8)
|
||||
|
||||
# Mask and calculate mean and standard deviation
|
||||
mask_pixels = init_a_pixels * init_mask_pixels > 0
|
||||
np_init_rgb_pixels_masked = init_rgb_pixels[mask_pixels, :]
|
||||
np_image_masked = np_image[mask_pixels, :]
|
||||
|
||||
if np_init_rgb_pixels_masked.size > 0:
|
||||
init_means = np_init_rgb_pixels_masked.mean(axis=0)
|
||||
init_std = np_init_rgb_pixels_masked.std(axis=0)
|
||||
gen_means = np_image_masked.mean(axis=0)
|
||||
gen_std = np_image_masked.std(axis=0)
|
||||
|
||||
# Color correct
|
||||
np_matched_result = np_image.copy()
|
||||
np_matched_result[:,:,:] = (((np_matched_result[:,:,:].astype(np.float32) - gen_means[None,None,:]) / gen_std[None,None,:]) * init_std[None,None,:] + init_means[None,None,:]).clip(0, 255).astype(np.uint8)
|
||||
matched_result = Image.fromarray(np_matched_result, mode='RGB')
|
||||
else:
|
||||
matched_result = Image.fromarray(np_image, mode='RGB')
|
||||
|
||||
# Blur the mask out (into init image) by specified amount
|
||||
if mask_blur_radius > 0:
|
||||
nm = np.asarray(pil_init_mask, dtype=np.uint8)
|
||||
nmd = cv.erode(nm, kernel=np.ones((3,3), dtype=np.uint8), iterations=int(mask_blur_radius / 2))
|
||||
pmd = Image.fromarray(nmd, mode='L')
|
||||
blurred_init_mask = pmd.filter(ImageFilter.BoxBlur(mask_blur_radius))
|
||||
else:
|
||||
blurred_init_mask = pil_init_mask
|
||||
|
||||
multiplied_blurred_init_mask = ImageChops.multiply(blurred_init_mask, self.pil_image.split()[-1])
|
||||
|
||||
# Paste original on color-corrected generation (using blurred mask)
|
||||
matched_result.paste(init_image, (0,0), mask = multiplied_blurred_init_mask)
|
||||
return matched_result
|
||||
|
||||
|
||||
|
||||
def sample_to_lowres_estimated_image(self,samples):
|
||||
# origingally adapted from code by @erucipe and @keturn here:
|
||||
# https://discuss.huggingface.co/t/decoding-latents-to-rgb-without-upscaling/23204/7
|
||||
|
||||
# these updated numbers for v1.5 are from @torridgristle
|
||||
v1_5_latent_rgb_factors = torch.tensor([
|
||||
# R G B
|
||||
[ 0.3444, 0.1385, 0.0670], # L1
|
||||
[ 0.1247, 0.4027, 0.1494], # L2
|
||||
[-0.3192, 0.2513, 0.2103], # L3
|
||||
[-0.1307, -0.1874, -0.7445] # L4
|
||||
], dtype=samples.dtype, device=samples.device)
|
||||
|
||||
latent_image = samples[0].permute(1, 2, 0) @ v1_5_latent_rgb_factors
|
||||
latents_ubyte = (((latent_image + 1) / 2)
|
||||
.clamp(0, 1) # change scale from -1..1 to 0..1
|
||||
.mul(0xFF) # to 0..255
|
||||
.byte()).cpu()
|
||||
|
||||
return Image.fromarray(latents_ubyte.numpy())
|
||||
|
||||
def generate_initial_noise(self, seed, width, height):
|
||||
initial_noise = None
|
||||
if self.variation_amount > 0 or len(self.with_variations) > 0:
|
||||
# use fixed initial noise plus random noise per iteration
|
||||
seed_everything(seed)
|
||||
initial_noise = self.get_noise(width,height)
|
||||
for v_seed, v_weight in self.with_variations:
|
||||
seed = v_seed
|
||||
seed_everything(seed)
|
||||
next_noise = self.get_noise(width,height)
|
||||
initial_noise = self.slerp(v_weight, initial_noise, next_noise)
|
||||
if self.variation_amount > 0:
|
||||
random.seed() # reset RNG to an actually random state, so we can get a random seed for variations
|
||||
seed = random.randrange(0,np.iinfo(np.uint32).max)
|
||||
return (seed, initial_noise)
|
||||
else:
|
||||
return (seed, None)
|
||||
|
||||
# returns a tensor filled with random numbers from a normal distribution
|
||||
def get_noise(self,width,height):
|
||||
"""
|
||||
Returns a tensor filled with random numbers, either form a normal distribution
|
||||
(txt2img) or from the latent image (img2img, inpaint)
|
||||
"""
|
||||
raise NotImplementedError("get_noise() must be implemented in a descendent class")
|
||||
|
||||
def get_perlin_noise(self,width,height):
|
||||
fixdevice = 'cpu' if (self.model.device.type == 'mps') else self.model.device
|
||||
return torch.stack([rand_perlin_2d((height, width), (8, 8), device = self.model.device).to(fixdevice) for _ in range(self.latent_channels)], dim=0).to(self.model.device)
|
||||
|
||||
def new_seed(self):
|
||||
self.seed = random.randrange(0, np.iinfo(np.uint32).max)
|
||||
return self.seed
|
||||
|
||||
def slerp(self, t, v0, v1, DOT_THRESHOLD=0.9995):
|
||||
'''
|
||||
Spherical linear interpolation
|
||||
Args:
|
||||
t (float/np.ndarray): Float value between 0.0 and 1.0
|
||||
v0 (np.ndarray): Starting vector
|
||||
v1 (np.ndarray): Final vector
|
||||
DOT_THRESHOLD (float): Threshold for considering the two vectors as
|
||||
colineal. Not recommended to alter this.
|
||||
Returns:
|
||||
v2 (np.ndarray): Interpolation vector between v0 and v1
|
||||
'''
|
||||
inputs_are_torch = False
|
||||
if not isinstance(v0, np.ndarray):
|
||||
inputs_are_torch = True
|
||||
v0 = v0.detach().cpu().numpy()
|
||||
if not isinstance(v1, np.ndarray):
|
||||
inputs_are_torch = True
|
||||
v1 = v1.detach().cpu().numpy()
|
||||
|
||||
dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1)))
|
||||
if np.abs(dot) > DOT_THRESHOLD:
|
||||
v2 = (1 - t) * v0 + t * v1
|
||||
else:
|
||||
theta_0 = np.arccos(dot)
|
||||
sin_theta_0 = np.sin(theta_0)
|
||||
theta_t = theta_0 * t
|
||||
sin_theta_t = np.sin(theta_t)
|
||||
s0 = np.sin(theta_0 - theta_t) / sin_theta_0
|
||||
s1 = sin_theta_t / sin_theta_0
|
||||
v2 = s0 * v0 + s1 * v1
|
||||
|
||||
if inputs_are_torch:
|
||||
v2 = torch.from_numpy(v2).to(self.model.device)
|
||||
|
||||
return v2
|
||||
|
||||
def safety_check(self,image:Image.Image):
|
||||
'''
|
||||
If the CompViz safety checker flags an NSFW image, we
|
||||
blur it out.
|
||||
'''
|
||||
import diffusers
|
||||
|
||||
checker = self.safety_checker['checker']
|
||||
extractor = self.safety_checker['extractor']
|
||||
features = extractor([image], return_tensors="pt")
|
||||
features.to(self.model.device)
|
||||
|
||||
# unfortunately checker requires the numpy version, so we have to convert back
|
||||
x_image = np.array(image).astype(np.float32) / 255.0
|
||||
x_image = x_image[None].transpose(0, 3, 1, 2)
|
||||
|
||||
diffusers.logging.set_verbosity_error()
|
||||
checked_image, has_nsfw_concept = checker(images=x_image, clip_input=features.pixel_values)
|
||||
if has_nsfw_concept[0]:
|
||||
print('** An image with potential non-safe content has been detected. A blurred image will be returned. **')
|
||||
return self.blur(image)
|
||||
else:
|
||||
return image
|
||||
|
||||
def blur(self,input):
|
||||
blurry = input.filter(filter=ImageFilter.GaussianBlur(radius=32))
|
||||
try:
|
||||
caution = self.get_caution_img()
|
||||
if caution:
|
||||
blurry.paste(caution,(0,0),caution)
|
||||
except FileNotFoundError:
|
||||
pass
|
||||
return blurry
|
||||
|
||||
def get_caution_img(self):
|
||||
path = None
|
||||
if self.caution_img:
|
||||
return self.caution_img
|
||||
path = Path(web_assets.__path__[0]) / CAUTION_IMG
|
||||
caution = Image.open(path)
|
||||
self.caution_img = caution.resize((caution.width // 2, caution.height //2))
|
||||
return self.caution_img
|
||||
|
||||
# this is a handy routine for debugging use. Given a generated sample,
|
||||
# convert it into a PNG image and store it at the indicated path
|
||||
def save_sample(self, sample, filepath):
|
||||
image = self.sample_to_image(sample)
|
||||
dirname = os.path.dirname(filepath) or '.'
|
||||
if not os.path.exists(dirname):
|
||||
print(f'** creating directory {dirname}')
|
||||
os.makedirs(dirname, exist_ok=True)
|
||||
image.save(filepath,'PNG')
|
||||
|
||||
def torch_dtype(self)->torch.dtype:
|
||||
return torch.float16 if self.precision == 'float16' else torch.float32
|
@ -1,501 +0,0 @@
|
||||
'''
|
||||
ldm.invoke.ckpt_generator.embiggen descends from ldm.invoke.ckpt_generator
|
||||
and generates with ldm.invoke.ckpt_generator.img2img
|
||||
'''
|
||||
|
||||
import torch
|
||||
import numpy as np
|
||||
from tqdm import trange
|
||||
from PIL import Image
|
||||
from ldm.invoke.ckpt_generator.base import CkptGenerator
|
||||
from ldm.invoke.ckpt_generator.img2img import CkptImg2Img
|
||||
from ldm.invoke.devices import choose_autocast
|
||||
from ldm.models.diffusion.ddim import DDIMSampler
|
||||
|
||||
class CkptEmbiggen(CkptGenerator):
|
||||
def __init__(self, model, precision):
|
||||
super().__init__(model, precision)
|
||||
self.init_latent = None
|
||||
|
||||
# Replace generate because Embiggen doesn't need/use most of what it does normallly
|
||||
def generate(self,prompt,iterations=1,seed=None,
|
||||
image_callback=None, step_callback=None,
|
||||
**kwargs):
|
||||
|
||||
scope = choose_autocast(self.precision)
|
||||
make_image = self.get_make_image(
|
||||
prompt,
|
||||
step_callback = step_callback,
|
||||
**kwargs
|
||||
)
|
||||
results = []
|
||||
seed = seed if seed else self.new_seed()
|
||||
|
||||
# Noise will be generated by the Img2Img generator when called
|
||||
with scope(self.model.device.type), self.model.ema_scope():
|
||||
for n in trange(iterations, desc='Generating'):
|
||||
# make_image will call Img2Img which will do the equivalent of get_noise itself
|
||||
image = make_image()
|
||||
results.append([image, seed])
|
||||
if image_callback is not None:
|
||||
image_callback(image, seed, prompt_in=prompt)
|
||||
seed = self.new_seed()
|
||||
return results
|
||||
|
||||
@torch.no_grad()
|
||||
def get_make_image(
|
||||
self,
|
||||
prompt,
|
||||
sampler,
|
||||
steps,
|
||||
cfg_scale,
|
||||
ddim_eta,
|
||||
conditioning,
|
||||
init_img,
|
||||
strength,
|
||||
width,
|
||||
height,
|
||||
embiggen,
|
||||
embiggen_tiles,
|
||||
step_callback=None,
|
||||
**kwargs
|
||||
):
|
||||
"""
|
||||
Returns a function returning an image derived from the prompt and multi-stage twice-baked potato layering over the img2img on the initial image
|
||||
Return value depends on the seed at the time you call it
|
||||
"""
|
||||
assert not sampler.uses_inpainting_model(), "--embiggen is not supported by inpainting models"
|
||||
|
||||
# Construct embiggen arg array, and sanity check arguments
|
||||
if embiggen == None: # embiggen can also be called with just embiggen_tiles
|
||||
embiggen = [1.0] # If not specified, assume no scaling
|
||||
elif embiggen[0] < 0:
|
||||
embiggen[0] = 1.0
|
||||
print(
|
||||
'>> Embiggen scaling factor cannot be negative, fell back to the default of 1.0 !')
|
||||
if len(embiggen) < 2:
|
||||
embiggen.append(0.75)
|
||||
elif embiggen[1] > 1.0 or embiggen[1] < 0:
|
||||
embiggen[1] = 0.75
|
||||
print('>> Embiggen upscaling strength for ESRGAN must be between 0 and 1, fell back to the default of 0.75 !')
|
||||
if len(embiggen) < 3:
|
||||
embiggen.append(0.25)
|
||||
elif embiggen[2] < 0:
|
||||
embiggen[2] = 0.25
|
||||
print('>> Overlap size for Embiggen must be a positive ratio between 0 and 1 OR a number of pixels, fell back to the default of 0.25 !')
|
||||
|
||||
# Convert tiles from their user-freindly count-from-one to count-from-zero, because we need to do modulo math
|
||||
# and then sort them, because... people.
|
||||
if embiggen_tiles:
|
||||
embiggen_tiles = list(map(lambda n: n-1, embiggen_tiles))
|
||||
embiggen_tiles.sort()
|
||||
|
||||
if strength >= 0.5:
|
||||
print(f'* WARNING: Embiggen may produce mirror motifs if the strength (-f) is too high (currently {strength}). Try values between 0.35-0.45.')
|
||||
|
||||
# Prep img2img generator, since we wrap over it
|
||||
gen_img2img = CkptImg2Img(self.model,self.precision)
|
||||
|
||||
# Open original init image (not a tensor) to manipulate
|
||||
initsuperimage = Image.open(init_img)
|
||||
|
||||
with Image.open(init_img) as img:
|
||||
initsuperimage = img.convert('RGB')
|
||||
|
||||
# Size of the target super init image in pixels
|
||||
initsuperwidth, initsuperheight = initsuperimage.size
|
||||
|
||||
# Increase by scaling factor if not already resized, using ESRGAN as able
|
||||
if embiggen[0] != 1.0:
|
||||
initsuperwidth = round(initsuperwidth*embiggen[0])
|
||||
initsuperheight = round(initsuperheight*embiggen[0])
|
||||
if embiggen[1] > 0: # No point in ESRGAN upscaling if strength is set zero
|
||||
from ldm.invoke.restoration.realesrgan import ESRGAN
|
||||
esrgan = ESRGAN()
|
||||
print(
|
||||
f'>> ESRGAN upscaling init image prior to cutting with Embiggen with strength {embiggen[1]}')
|
||||
if embiggen[0] > 2:
|
||||
initsuperimage = esrgan.process(
|
||||
initsuperimage,
|
||||
embiggen[1], # upscale strength
|
||||
self.seed,
|
||||
4, # upscale scale
|
||||
)
|
||||
else:
|
||||
initsuperimage = esrgan.process(
|
||||
initsuperimage,
|
||||
embiggen[1], # upscale strength
|
||||
self.seed,
|
||||
2, # upscale scale
|
||||
)
|
||||
# We could keep recursively re-running ESRGAN for a requested embiggen[0] larger than 4x
|
||||
# but from personal experiance it doesn't greatly improve anything after 4x
|
||||
# Resize to target scaling factor resolution
|
||||
initsuperimage = initsuperimage.resize(
|
||||
(initsuperwidth, initsuperheight), Image.Resampling.LANCZOS)
|
||||
|
||||
# Use width and height as tile widths and height
|
||||
# Determine buffer size in pixels
|
||||
if embiggen[2] < 1:
|
||||
if embiggen[2] < 0:
|
||||
embiggen[2] = 0
|
||||
overlap_size_x = round(embiggen[2] * width)
|
||||
overlap_size_y = round(embiggen[2] * height)
|
||||
else:
|
||||
overlap_size_x = round(embiggen[2])
|
||||
overlap_size_y = round(embiggen[2])
|
||||
|
||||
# With overall image width and height known, determine how many tiles we need
|
||||
def ceildiv(a, b):
|
||||
return -1 * (-a // b)
|
||||
|
||||
# X and Y needs to be determined independantly (we may have savings on one based on the buffer pixel count)
|
||||
# (initsuperwidth - width) is the area remaining to the right that we need to layers tiles to fill
|
||||
# (width - overlap_size_x) is how much new we can fill with a single tile
|
||||
emb_tiles_x = 1
|
||||
emb_tiles_y = 1
|
||||
if (initsuperwidth - width) > 0:
|
||||
emb_tiles_x = ceildiv(initsuperwidth - width,
|
||||
width - overlap_size_x) + 1
|
||||
if (initsuperheight - height) > 0:
|
||||
emb_tiles_y = ceildiv(initsuperheight - height,
|
||||
height - overlap_size_y) + 1
|
||||
# Sanity
|
||||
assert emb_tiles_x > 1 or emb_tiles_y > 1, f'ERROR: Based on the requested dimensions of {initsuperwidth}x{initsuperheight} and tiles of {width}x{height} you don\'t need to Embiggen! Check your arguments.'
|
||||
|
||||
# Prep alpha layers --------------
|
||||
# https://stackoverflow.com/questions/69321734/how-to-create-different-transparency-like-gradient-with-python-pil
|
||||
# agradientL is Left-side transparent
|
||||
agradientL = Image.linear_gradient('L').rotate(
|
||||
90).resize((overlap_size_x, height))
|
||||
# agradientT is Top-side transparent
|
||||
agradientT = Image.linear_gradient('L').resize((width, overlap_size_y))
|
||||
# radial corner is the left-top corner, made full circle then cut to just the left-top quadrant
|
||||
agradientC = Image.new('L', (256, 256))
|
||||
for y in range(256):
|
||||
for x in range(256):
|
||||
# Find distance to lower right corner (numpy takes arrays)
|
||||
distanceToLR = np.sqrt([(255 - x) ** 2 + (255 - y) ** 2])[0]
|
||||
# Clamp values to max 255
|
||||
if distanceToLR > 255:
|
||||
distanceToLR = 255
|
||||
#Place the pixel as invert of distance
|
||||
agradientC.putpixel((x, y), round(255 - distanceToLR))
|
||||
|
||||
# Create alternative asymmetric diagonal corner to use on "tailing" intersections to prevent hard edges
|
||||
# Fits for a left-fading gradient on the bottom side and full opacity on the right side.
|
||||
agradientAsymC = Image.new('L', (256, 256))
|
||||
for y in range(256):
|
||||
for x in range(256):
|
||||
value = round(max(0, x-(255-y)) * (255 / max(1,y)))
|
||||
#Clamp values
|
||||
value = max(0, value)
|
||||
value = min(255, value)
|
||||
agradientAsymC.putpixel((x, y), value)
|
||||
|
||||
# Create alpha layers default fully white
|
||||
alphaLayerL = Image.new("L", (width, height), 255)
|
||||
alphaLayerT = Image.new("L", (width, height), 255)
|
||||
alphaLayerLTC = Image.new("L", (width, height), 255)
|
||||
# Paste gradients into alpha layers
|
||||
alphaLayerL.paste(agradientL, (0, 0))
|
||||
alphaLayerT.paste(agradientT, (0, 0))
|
||||
alphaLayerLTC.paste(agradientL, (0, 0))
|
||||
alphaLayerLTC.paste(agradientT, (0, 0))
|
||||
alphaLayerLTC.paste(agradientC.resize((overlap_size_x, overlap_size_y)), (0, 0))
|
||||
# make masks with an asymmetric upper-right corner so when the curved transparent corner of the next tile
|
||||
# to its right is placed it doesn't reveal a hard trailing semi-transparent edge in the overlapping space
|
||||
alphaLayerTaC = alphaLayerT.copy()
|
||||
alphaLayerTaC.paste(agradientAsymC.rotate(270).resize((overlap_size_x, overlap_size_y)), (width - overlap_size_x, 0))
|
||||
alphaLayerLTaC = alphaLayerLTC.copy()
|
||||
alphaLayerLTaC.paste(agradientAsymC.rotate(270).resize((overlap_size_x, overlap_size_y)), (width - overlap_size_x, 0))
|
||||
|
||||
if embiggen_tiles:
|
||||
# Individual unconnected sides
|
||||
alphaLayerR = Image.new("L", (width, height), 255)
|
||||
alphaLayerR.paste(agradientL.rotate(
|
||||
180), (width - overlap_size_x, 0))
|
||||
alphaLayerB = Image.new("L", (width, height), 255)
|
||||
alphaLayerB.paste(agradientT.rotate(
|
||||
180), (0, height - overlap_size_y))
|
||||
alphaLayerTB = Image.new("L", (width, height), 255)
|
||||
alphaLayerTB.paste(agradientT, (0, 0))
|
||||
alphaLayerTB.paste(agradientT.rotate(
|
||||
180), (0, height - overlap_size_y))
|
||||
alphaLayerLR = Image.new("L", (width, height), 255)
|
||||
alphaLayerLR.paste(agradientL, (0, 0))
|
||||
alphaLayerLR.paste(agradientL.rotate(
|
||||
180), (width - overlap_size_x, 0))
|
||||
|
||||
# Sides and corner Layers
|
||||
alphaLayerRBC = Image.new("L", (width, height), 255)
|
||||
alphaLayerRBC.paste(agradientL.rotate(
|
||||
180), (width - overlap_size_x, 0))
|
||||
alphaLayerRBC.paste(agradientT.rotate(
|
||||
180), (0, height - overlap_size_y))
|
||||
alphaLayerRBC.paste(agradientC.rotate(180).resize(
|
||||
(overlap_size_x, overlap_size_y)), (width - overlap_size_x, height - overlap_size_y))
|
||||
alphaLayerLBC = Image.new("L", (width, height), 255)
|
||||
alphaLayerLBC.paste(agradientL, (0, 0))
|
||||
alphaLayerLBC.paste(agradientT.rotate(
|
||||
180), (0, height - overlap_size_y))
|
||||
alphaLayerLBC.paste(agradientC.rotate(90).resize(
|
||||
(overlap_size_x, overlap_size_y)), (0, height - overlap_size_y))
|
||||
alphaLayerRTC = Image.new("L", (width, height), 255)
|
||||
alphaLayerRTC.paste(agradientL.rotate(
|
||||
180), (width - overlap_size_x, 0))
|
||||
alphaLayerRTC.paste(agradientT, (0, 0))
|
||||
alphaLayerRTC.paste(agradientC.rotate(270).resize(
|
||||
(overlap_size_x, overlap_size_y)), (width - overlap_size_x, 0))
|
||||
|
||||
# All but X layers
|
||||
alphaLayerABT = Image.new("L", (width, height), 255)
|
||||
alphaLayerABT.paste(alphaLayerLBC, (0, 0))
|
||||
alphaLayerABT.paste(agradientL.rotate(
|
||||
180), (width - overlap_size_x, 0))
|
||||
alphaLayerABT.paste(agradientC.rotate(180).resize(
|
||||
(overlap_size_x, overlap_size_y)), (width - overlap_size_x, height - overlap_size_y))
|
||||
alphaLayerABL = Image.new("L", (width, height), 255)
|
||||
alphaLayerABL.paste(alphaLayerRTC, (0, 0))
|
||||
alphaLayerABL.paste(agradientT.rotate(
|
||||
180), (0, height - overlap_size_y))
|
||||
alphaLayerABL.paste(agradientC.rotate(180).resize(
|
||||
(overlap_size_x, overlap_size_y)), (width - overlap_size_x, height - overlap_size_y))
|
||||
alphaLayerABR = Image.new("L", (width, height), 255)
|
||||
alphaLayerABR.paste(alphaLayerLBC, (0, 0))
|
||||
alphaLayerABR.paste(agradientT, (0, 0))
|
||||
alphaLayerABR.paste(agradientC.resize(
|
||||
(overlap_size_x, overlap_size_y)), (0, 0))
|
||||
alphaLayerABB = Image.new("L", (width, height), 255)
|
||||
alphaLayerABB.paste(alphaLayerRTC, (0, 0))
|
||||
alphaLayerABB.paste(agradientL, (0, 0))
|
||||
alphaLayerABB.paste(agradientC.resize(
|
||||
(overlap_size_x, overlap_size_y)), (0, 0))
|
||||
|
||||
# All-around layer
|
||||
alphaLayerAA = Image.new("L", (width, height), 255)
|
||||
alphaLayerAA.paste(alphaLayerABT, (0, 0))
|
||||
alphaLayerAA.paste(agradientT, (0, 0))
|
||||
alphaLayerAA.paste(agradientC.resize(
|
||||
(overlap_size_x, overlap_size_y)), (0, 0))
|
||||
alphaLayerAA.paste(agradientC.rotate(270).resize(
|
||||
(overlap_size_x, overlap_size_y)), (width - overlap_size_x, 0))
|
||||
|
||||
# Clean up temporary gradients
|
||||
del agradientL
|
||||
del agradientT
|
||||
del agradientC
|
||||
|
||||
def make_image():
|
||||
# Make main tiles -------------------------------------------------
|
||||
if embiggen_tiles:
|
||||
print(f'>> Making {len(embiggen_tiles)} Embiggen tiles...')
|
||||
else:
|
||||
print(
|
||||
f'>> Making {(emb_tiles_x * emb_tiles_y)} Embiggen tiles ({emb_tiles_x}x{emb_tiles_y})...')
|
||||
|
||||
emb_tile_store = []
|
||||
# Although we could use the same seed for every tile for determinism, at higher strengths this may
|
||||
# produce duplicated structures for each tile and make the tiling effect more obvious
|
||||
# instead track and iterate a local seed we pass to Img2Img
|
||||
seed = self.seed
|
||||
seedintlimit = np.iinfo(np.uint32).max - 1 # only retreive this one from numpy
|
||||
|
||||
for tile in range(emb_tiles_x * emb_tiles_y):
|
||||
# Don't iterate on first tile
|
||||
if tile != 0:
|
||||
if seed < seedintlimit:
|
||||
seed += 1
|
||||
else:
|
||||
seed = 0
|
||||
|
||||
# Determine if this is a re-run and replace
|
||||
if embiggen_tiles and not tile in embiggen_tiles:
|
||||
continue
|
||||
# Get row and column entries
|
||||
emb_row_i = tile // emb_tiles_x
|
||||
emb_column_i = tile % emb_tiles_x
|
||||
# Determine bounds to cut up the init image
|
||||
# Determine upper-left point
|
||||
if emb_column_i + 1 == emb_tiles_x:
|
||||
left = initsuperwidth - width
|
||||
else:
|
||||
left = round(emb_column_i * (width - overlap_size_x))
|
||||
if emb_row_i + 1 == emb_tiles_y:
|
||||
top = initsuperheight - height
|
||||
else:
|
||||
top = round(emb_row_i * (height - overlap_size_y))
|
||||
right = left + width
|
||||
bottom = top + height
|
||||
|
||||
# Cropped image of above dimension (does not modify the original)
|
||||
newinitimage = initsuperimage.crop((left, top, right, bottom))
|
||||
# DEBUG:
|
||||
# newinitimagepath = init_img[0:-4] + f'_emb_Ti{tile}.png'
|
||||
# newinitimage.save(newinitimagepath)
|
||||
|
||||
if embiggen_tiles:
|
||||
print(
|
||||
f'Making tile #{tile + 1} ({embiggen_tiles.index(tile) + 1} of {len(embiggen_tiles)} requested)')
|
||||
else:
|
||||
print(
|
||||
f'Starting {tile + 1} of {(emb_tiles_x * emb_tiles_y)} tiles')
|
||||
|
||||
# create a torch tensor from an Image
|
||||
newinitimage = np.array(
|
||||
newinitimage).astype(np.float32) / 255.0
|
||||
newinitimage = newinitimage[None].transpose(0, 3, 1, 2)
|
||||
newinitimage = torch.from_numpy(newinitimage)
|
||||
newinitimage = 2.0 * newinitimage - 1.0
|
||||
newinitimage = newinitimage.to(self.model.device)
|
||||
|
||||
tile_results = gen_img2img.generate(
|
||||
prompt,
|
||||
iterations = 1,
|
||||
seed = seed,
|
||||
sampler = DDIMSampler(self.model, device=self.model.device),
|
||||
steps = steps,
|
||||
cfg_scale = cfg_scale,
|
||||
conditioning = conditioning,
|
||||
ddim_eta = ddim_eta,
|
||||
image_callback = None, # called only after the final image is generated
|
||||
step_callback = step_callback, # called after each intermediate image is generated
|
||||
width = width,
|
||||
height = height,
|
||||
init_image = newinitimage, # notice that init_image is different from init_img
|
||||
mask_image = None,
|
||||
strength = strength,
|
||||
)
|
||||
|
||||
emb_tile_store.append(tile_results[0][0])
|
||||
# DEBUG (but, also has other uses), worth saving if you want tiles without a transparency overlap to manually composite
|
||||
# emb_tile_store[-1].save(init_img[0:-4] + f'_emb_To{tile}.png')
|
||||
del newinitimage
|
||||
|
||||
# Sanity check we have them all
|
||||
if len(emb_tile_store) == (emb_tiles_x * emb_tiles_y) or (embiggen_tiles != [] and len(emb_tile_store) == len(embiggen_tiles)):
|
||||
outputsuperimage = Image.new(
|
||||
"RGBA", (initsuperwidth, initsuperheight))
|
||||
if embiggen_tiles:
|
||||
outputsuperimage.alpha_composite(
|
||||
initsuperimage.convert('RGBA'), (0, 0))
|
||||
for tile in range(emb_tiles_x * emb_tiles_y):
|
||||
if embiggen_tiles:
|
||||
if tile in embiggen_tiles:
|
||||
intileimage = emb_tile_store.pop(0)
|
||||
else:
|
||||
continue
|
||||
else:
|
||||
intileimage = emb_tile_store[tile]
|
||||
intileimage = intileimage.convert('RGBA')
|
||||
# Get row and column entries
|
||||
emb_row_i = tile // emb_tiles_x
|
||||
emb_column_i = tile % emb_tiles_x
|
||||
if emb_row_i == 0 and emb_column_i == 0 and not embiggen_tiles:
|
||||
left = 0
|
||||
top = 0
|
||||
else:
|
||||
# Determine upper-left point
|
||||
if emb_column_i + 1 == emb_tiles_x:
|
||||
left = initsuperwidth - width
|
||||
else:
|
||||
left = round(emb_column_i *
|
||||
(width - overlap_size_x))
|
||||
if emb_row_i + 1 == emb_tiles_y:
|
||||
top = initsuperheight - height
|
||||
else:
|
||||
top = round(emb_row_i * (height - overlap_size_y))
|
||||
# Handle gradients for various conditions
|
||||
# Handle emb_rerun case
|
||||
if embiggen_tiles:
|
||||
# top of image
|
||||
if emb_row_i == 0:
|
||||
if emb_column_i == 0:
|
||||
if (tile+1) in embiggen_tiles: # Look-ahead right
|
||||
if (tile+emb_tiles_x) not in embiggen_tiles: # Look-ahead down
|
||||
intileimage.putalpha(alphaLayerB)
|
||||
# Otherwise do nothing on this tile
|
||||
elif (tile+emb_tiles_x) in embiggen_tiles: # Look-ahead down only
|
||||
intileimage.putalpha(alphaLayerR)
|
||||
else:
|
||||
intileimage.putalpha(alphaLayerRBC)
|
||||
elif emb_column_i == emb_tiles_x - 1:
|
||||
if (tile+emb_tiles_x) in embiggen_tiles: # Look-ahead down
|
||||
intileimage.putalpha(alphaLayerL)
|
||||
else:
|
||||
intileimage.putalpha(alphaLayerLBC)
|
||||
else:
|
||||
if (tile+1) in embiggen_tiles: # Look-ahead right
|
||||
if (tile+emb_tiles_x) in embiggen_tiles: # Look-ahead down
|
||||
intileimage.putalpha(alphaLayerL)
|
||||
else:
|
||||
intileimage.putalpha(alphaLayerLBC)
|
||||
elif (tile+emb_tiles_x) in embiggen_tiles: # Look-ahead down only
|
||||
intileimage.putalpha(alphaLayerLR)
|
||||
else:
|
||||
intileimage.putalpha(alphaLayerABT)
|
||||
# bottom of image
|
||||
elif emb_row_i == emb_tiles_y - 1:
|
||||
if emb_column_i == 0:
|
||||
if (tile+1) in embiggen_tiles: # Look-ahead right
|
||||
intileimage.putalpha(alphaLayerTaC)
|
||||
else:
|
||||
intileimage.putalpha(alphaLayerRTC)
|
||||
elif emb_column_i == emb_tiles_x - 1:
|
||||
# No tiles to look ahead to
|
||||
intileimage.putalpha(alphaLayerLTC)
|
||||
else:
|
||||
if (tile+1) in embiggen_tiles: # Look-ahead right
|
||||
intileimage.putalpha(alphaLayerLTaC)
|
||||
else:
|
||||
intileimage.putalpha(alphaLayerABB)
|
||||
# vertical middle of image
|
||||
else:
|
||||
if emb_column_i == 0:
|
||||
if (tile+1) in embiggen_tiles: # Look-ahead right
|
||||
if (tile+emb_tiles_x) in embiggen_tiles: # Look-ahead down
|
||||
intileimage.putalpha(alphaLayerTaC)
|
||||
else:
|
||||
intileimage.putalpha(alphaLayerTB)
|
||||
elif (tile+emb_tiles_x) in embiggen_tiles: # Look-ahead down only
|
||||
intileimage.putalpha(alphaLayerRTC)
|
||||
else:
|
||||
intileimage.putalpha(alphaLayerABL)
|
||||
elif emb_column_i == emb_tiles_x - 1:
|
||||
if (tile+emb_tiles_x) in embiggen_tiles: # Look-ahead down
|
||||
intileimage.putalpha(alphaLayerLTC)
|
||||
else:
|
||||
intileimage.putalpha(alphaLayerABR)
|
||||
else:
|
||||
if (tile+1) in embiggen_tiles: # Look-ahead right
|
||||
if (tile+emb_tiles_x) in embiggen_tiles: # Look-ahead down
|
||||
intileimage.putalpha(alphaLayerLTaC)
|
||||
else:
|
||||
intileimage.putalpha(alphaLayerABR)
|
||||
elif (tile+emb_tiles_x) in embiggen_tiles: # Look-ahead down only
|
||||
intileimage.putalpha(alphaLayerABB)
|
||||
else:
|
||||
intileimage.putalpha(alphaLayerAA)
|
||||
# Handle normal tiling case (much simpler - since we tile left to right, top to bottom)
|
||||
else:
|
||||
if emb_row_i == 0 and emb_column_i >= 1:
|
||||
intileimage.putalpha(alphaLayerL)
|
||||
elif emb_row_i >= 1 and emb_column_i == 0:
|
||||
if emb_column_i + 1 == emb_tiles_x: # If we don't have anything that can be placed to the right
|
||||
intileimage.putalpha(alphaLayerT)
|
||||
else:
|
||||
intileimage.putalpha(alphaLayerTaC)
|
||||
else:
|
||||
if emb_column_i + 1 == emb_tiles_x: # If we don't have anything that can be placed to the right
|
||||
intileimage.putalpha(alphaLayerLTC)
|
||||
else:
|
||||
intileimage.putalpha(alphaLayerLTaC)
|
||||
# Layer tile onto final image
|
||||
outputsuperimage.alpha_composite(intileimage, (left, top))
|
||||
else:
|
||||
print(f'Error: could not find all Embiggen output tiles in memory? Something must have gone wrong with img2img generation.')
|
||||
|
||||
# after internal loops and patching up return Embiggen image
|
||||
return outputsuperimage
|
||||
# end of function declaration
|
||||
return make_image
|
@ -1,97 +0,0 @@
|
||||
'''
|
||||
ldm.invoke.ckpt_generator.img2img descends from ldm.invoke.generator
|
||||
'''
|
||||
|
||||
import torch
|
||||
import numpy as np
|
||||
import PIL
|
||||
from torch import Tensor
|
||||
from PIL import Image
|
||||
from ldm.invoke.devices import choose_autocast
|
||||
from ldm.invoke.ckpt_generator.base import CkptGenerator
|
||||
from ldm.models.diffusion.ddim import DDIMSampler
|
||||
from ldm.models.diffusion.shared_invokeai_diffusion import InvokeAIDiffuserComponent
|
||||
|
||||
class CkptImg2Img(CkptGenerator):
|
||||
def __init__(self, model, precision):
|
||||
super().__init__(model, precision)
|
||||
self.init_latent = None # by get_noise()
|
||||
|
||||
def get_make_image(self,prompt,sampler,steps,cfg_scale,ddim_eta,
|
||||
conditioning,init_image,strength,step_callback=None,threshold=0.0,perlin=0.0,**kwargs):
|
||||
"""
|
||||
Returns a function returning an image derived from the prompt and the initial image
|
||||
Return value depends on the seed at the time you call it.
|
||||
"""
|
||||
self.perlin = perlin
|
||||
|
||||
sampler.make_schedule(
|
||||
ddim_num_steps=steps, ddim_eta=ddim_eta, verbose=False
|
||||
)
|
||||
|
||||
if isinstance(init_image, PIL.Image.Image):
|
||||
init_image = self._image_to_tensor(init_image.convert('RGB'))
|
||||
|
||||
scope = choose_autocast(self.precision)
|
||||
with scope(self.model.device.type):
|
||||
self.init_latent = self.model.get_first_stage_encoding(
|
||||
self.model.encode_first_stage(init_image)
|
||||
) # move to latent space
|
||||
|
||||
t_enc = int(strength * steps)
|
||||
uc, c, extra_conditioning_info = conditioning
|
||||
|
||||
def make_image(x_T):
|
||||
# encode (scaled latent)
|
||||
z_enc = sampler.stochastic_encode(
|
||||
self.init_latent,
|
||||
torch.tensor([t_enc - 1]).to(self.model.device),
|
||||
noise=x_T
|
||||
)
|
||||
|
||||
if self.free_gpu_mem and self.model.model.device != self.model.device:
|
||||
self.model.model.to(self.model.device)
|
||||
|
||||
# decode it
|
||||
samples = sampler.decode(
|
||||
z_enc,
|
||||
c,
|
||||
t_enc,
|
||||
img_callback = step_callback,
|
||||
unconditional_guidance_scale=cfg_scale,
|
||||
unconditional_conditioning=uc,
|
||||
init_latent = self.init_latent, # changes how noising is performed in ksampler
|
||||
extra_conditioning_info = extra_conditioning_info,
|
||||
all_timesteps_count = steps
|
||||
)
|
||||
|
||||
if self.free_gpu_mem:
|
||||
self.model.model.to("cpu")
|
||||
|
||||
return self.sample_to_image(samples)
|
||||
|
||||
return make_image
|
||||
|
||||
def get_noise(self,width,height):
|
||||
device = self.model.device
|
||||
init_latent = self.init_latent
|
||||
assert init_latent is not None,'call to get_noise() when init_latent not set'
|
||||
if device.type == 'mps':
|
||||
x = torch.randn_like(init_latent, device='cpu').to(device)
|
||||
else:
|
||||
x = torch.randn_like(init_latent, device=device)
|
||||
if self.perlin > 0.0:
|
||||
shape = init_latent.shape
|
||||
x = (1-self.perlin)*x + self.perlin*self.get_perlin_noise(shape[3], shape[2])
|
||||
return x
|
||||
|
||||
def _image_to_tensor(self, image:Image, normalize:bool=True)->Tensor:
|
||||
image = np.array(image).astype(np.float32) / 255.0
|
||||
if len(image.shape) == 2: # 'L' image, as in a mask
|
||||
image = image[None,None]
|
||||
else: # 'RGB' image
|
||||
image = image[None].transpose(0, 3, 1, 2)
|
||||
image = torch.from_numpy(image)
|
||||
if normalize:
|
||||
image = 2.0 * image - 1.0
|
||||
return image.to(self.model.device)
|
@ -1,358 +0,0 @@
|
||||
'''
|
||||
ldm.invoke.ckpt_generator.inpaint descends from ldm.invoke.ckpt_generator
|
||||
'''
|
||||
|
||||
import math
|
||||
import torch
|
||||
import torchvision.transforms as T
|
||||
import numpy as np
|
||||
import cv2 as cv
|
||||
import PIL
|
||||
from PIL import Image, ImageFilter, ImageOps, ImageChops
|
||||
from skimage.exposure.histogram_matching import match_histograms
|
||||
from einops import rearrange, repeat
|
||||
from ldm.invoke.devices import choose_autocast
|
||||
from ldm.invoke.ckpt_generator.img2img import CkptImg2Img
|
||||
from ldm.models.diffusion.ddim import DDIMSampler
|
||||
from ldm.models.diffusion.ksampler import KSampler
|
||||
from ldm.invoke.generator.base import downsampling
|
||||
from ldm.util import debug_image
|
||||
from ldm.invoke.patchmatch import PatchMatch
|
||||
from ldm.invoke.globals import Globals
|
||||
|
||||
def infill_methods()->list[str]:
|
||||
methods = list()
|
||||
if PatchMatch.patchmatch_available():
|
||||
methods.append('patchmatch')
|
||||
methods.append('tile')
|
||||
return methods
|
||||
|
||||
class CkptInpaint(CkptImg2Img):
|
||||
def __init__(self, model, precision):
|
||||
self.init_latent = None
|
||||
self.pil_image = None
|
||||
self.pil_mask = None
|
||||
self.mask_blur_radius = 0
|
||||
self.infill_method = None
|
||||
super().__init__(model, precision)
|
||||
|
||||
# Outpaint support code
|
||||
def get_tile_images(self, image: np.ndarray, width=8, height=8):
|
||||
_nrows, _ncols, depth = image.shape
|
||||
_strides = image.strides
|
||||
|
||||
nrows, _m = divmod(_nrows, height)
|
||||
ncols, _n = divmod(_ncols, width)
|
||||
if _m != 0 or _n != 0:
|
||||
return None
|
||||
|
||||
return np.lib.stride_tricks.as_strided(
|
||||
np.ravel(image),
|
||||
shape=(nrows, ncols, height, width, depth),
|
||||
strides=(height * _strides[0], width * _strides[1], *_strides),
|
||||
writeable=False
|
||||
)
|
||||
|
||||
def infill_patchmatch(self, im: Image.Image) -> Image:
|
||||
if im.mode != 'RGBA':
|
||||
return im
|
||||
|
||||
# Skip patchmatch if patchmatch isn't available
|
||||
if not PatchMatch.patchmatch_available():
|
||||
return im
|
||||
|
||||
# Patchmatch (note, we may want to expose patch_size? Increasing it significantly impacts performance though)
|
||||
im_patched_np = PatchMatch.inpaint(im.convert('RGB'), ImageOps.invert(im.split()[-1]), patch_size = 3)
|
||||
im_patched = Image.fromarray(im_patched_np, mode = 'RGB')
|
||||
return im_patched
|
||||
|
||||
def tile_fill_missing(self, im: Image.Image, tile_size: int = 16, seed: int = None) -> Image:
|
||||
# Only fill if there's an alpha layer
|
||||
if im.mode != 'RGBA':
|
||||
return im
|
||||
|
||||
a = np.asarray(im, dtype=np.uint8)
|
||||
|
||||
tile_size = (tile_size, tile_size)
|
||||
|
||||
# Get the image as tiles of a specified size
|
||||
tiles = self.get_tile_images(a,*tile_size).copy()
|
||||
|
||||
# Get the mask as tiles
|
||||
tiles_mask = tiles[:,:,:,:,3]
|
||||
|
||||
# Find any mask tiles with any fully transparent pixels (we will be replacing these later)
|
||||
tmask_shape = tiles_mask.shape
|
||||
tiles_mask = tiles_mask.reshape(math.prod(tiles_mask.shape))
|
||||
n,ny = (math.prod(tmask_shape[0:2])), math.prod(tmask_shape[2:])
|
||||
tiles_mask = (tiles_mask > 0)
|
||||
tiles_mask = tiles_mask.reshape((n,ny)).all(axis = 1)
|
||||
|
||||
# Get RGB tiles in single array and filter by the mask
|
||||
tshape = tiles.shape
|
||||
tiles_all = tiles.reshape((math.prod(tiles.shape[0:2]), * tiles.shape[2:]))
|
||||
filtered_tiles = tiles_all[tiles_mask]
|
||||
|
||||
if len(filtered_tiles) == 0:
|
||||
return im
|
||||
|
||||
# Find all invalid tiles and replace with a random valid tile
|
||||
replace_count = (tiles_mask == False).sum()
|
||||
rng = np.random.default_rng(seed = seed)
|
||||
tiles_all[np.logical_not(tiles_mask)] = filtered_tiles[rng.choice(filtered_tiles.shape[0], replace_count),:,:,:]
|
||||
|
||||
# Convert back to an image
|
||||
tiles_all = tiles_all.reshape(tshape)
|
||||
tiles_all = tiles_all.swapaxes(1,2)
|
||||
st = tiles_all.reshape((math.prod(tiles_all.shape[0:2]), math.prod(tiles_all.shape[2:4]), tiles_all.shape[4]))
|
||||
si = Image.fromarray(st, mode='RGBA')
|
||||
|
||||
return si
|
||||
|
||||
|
||||
def mask_edge(self, mask: Image, edge_size: int, edge_blur: int) -> Image:
|
||||
npimg = np.asarray(mask, dtype=np.uint8)
|
||||
|
||||
# Detect any partially transparent regions
|
||||
npgradient = np.uint8(255 * (1.0 - np.floor(np.abs(0.5 - np.float32(npimg) / 255.0) * 2.0)))
|
||||
|
||||
# Detect hard edges
|
||||
npedge = cv.Canny(npimg, threshold1=100, threshold2=200)
|
||||
|
||||
# Combine
|
||||
npmask = npgradient + npedge
|
||||
|
||||
# Expand
|
||||
npmask = cv.dilate(npmask, np.ones((3,3), np.uint8), iterations = int(edge_size / 2))
|
||||
|
||||
new_mask = Image.fromarray(npmask)
|
||||
|
||||
if edge_blur > 0:
|
||||
new_mask = new_mask.filter(ImageFilter.BoxBlur(edge_blur))
|
||||
|
||||
return ImageOps.invert(new_mask)
|
||||
|
||||
|
||||
def seam_paint(self,
|
||||
im: Image.Image,
|
||||
seam_size: int,
|
||||
seam_blur: int,
|
||||
prompt,sampler,steps,cfg_scale,ddim_eta,
|
||||
conditioning,strength,
|
||||
noise,
|
||||
step_callback
|
||||
) -> Image.Image:
|
||||
hard_mask = self.pil_image.split()[-1].copy()
|
||||
mask = self.mask_edge(hard_mask, seam_size, seam_blur)
|
||||
|
||||
make_image = self.get_make_image(
|
||||
prompt,
|
||||
sampler,
|
||||
steps,
|
||||
cfg_scale,
|
||||
ddim_eta,
|
||||
conditioning,
|
||||
init_image = im.copy().convert('RGBA'),
|
||||
mask_image = mask.convert('RGB'), # Code currently requires an RGB mask
|
||||
strength = strength,
|
||||
mask_blur_radius = 0,
|
||||
seam_size = 0,
|
||||
step_callback = step_callback,
|
||||
inpaint_width = im.width,
|
||||
inpaint_height = im.height
|
||||
)
|
||||
|
||||
seam_noise = self.get_noise(im.width, im.height)
|
||||
|
||||
result = make_image(seam_noise)
|
||||
|
||||
return result
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def get_make_image(self,prompt,sampler,steps,cfg_scale,ddim_eta,
|
||||
conditioning,init_image,mask_image,strength,
|
||||
mask_blur_radius: int = 8,
|
||||
# Seam settings - when 0, doesn't fill seam
|
||||
seam_size: int = 0,
|
||||
seam_blur: int = 0,
|
||||
seam_strength: float = 0.7,
|
||||
seam_steps: int = 10,
|
||||
tile_size: int = 32,
|
||||
step_callback=None,
|
||||
inpaint_replace=False, enable_image_debugging=False,
|
||||
infill_method = None,
|
||||
inpaint_width=None,
|
||||
inpaint_height=None,
|
||||
**kwargs):
|
||||
"""
|
||||
Returns a function returning an image derived from the prompt and
|
||||
the initial image + mask. Return value depends on the seed at
|
||||
the time you call it. kwargs are 'init_latent' and 'strength'
|
||||
"""
|
||||
|
||||
self.enable_image_debugging = enable_image_debugging
|
||||
self.infill_method = infill_method or infill_methods()[0], # The infill method to use
|
||||
|
||||
self.inpaint_width = inpaint_width
|
||||
self.inpaint_height = inpaint_height
|
||||
|
||||
if isinstance(init_image, PIL.Image.Image):
|
||||
self.pil_image = init_image.copy()
|
||||
|
||||
# Do infill
|
||||
if infill_method == 'patchmatch' and PatchMatch.patchmatch_available():
|
||||
init_filled = self.infill_patchmatch(self.pil_image.copy())
|
||||
else: # if infill_method == 'tile': # Only two methods right now, so always use 'tile' if not patchmatch
|
||||
init_filled = self.tile_fill_missing(
|
||||
self.pil_image.copy(),
|
||||
seed = self.seed,
|
||||
tile_size = tile_size
|
||||
)
|
||||
init_filled.paste(init_image, (0,0), init_image.split()[-1])
|
||||
|
||||
# Resize if requested for inpainting
|
||||
if inpaint_width and inpaint_height:
|
||||
init_filled = init_filled.resize((inpaint_width, inpaint_height))
|
||||
|
||||
debug_image(init_filled, "init_filled", debug_status=self.enable_image_debugging)
|
||||
|
||||
# Create init tensor
|
||||
init_image = self._image_to_tensor(init_filled.convert('RGB'))
|
||||
|
||||
if isinstance(mask_image, PIL.Image.Image):
|
||||
self.pil_mask = mask_image.copy()
|
||||
debug_image(mask_image, "mask_image BEFORE multiply with pil_image", debug_status=self.enable_image_debugging)
|
||||
|
||||
mask_image = ImageChops.multiply(mask_image, self.pil_image.split()[-1].convert('RGB'))
|
||||
self.pil_mask = mask_image
|
||||
|
||||
# Resize if requested for inpainting
|
||||
if inpaint_width and inpaint_height:
|
||||
mask_image = mask_image.resize((inpaint_width, inpaint_height))
|
||||
|
||||
debug_image(mask_image, "mask_image AFTER multiply with pil_image", debug_status=self.enable_image_debugging)
|
||||
mask_image = mask_image.resize(
|
||||
(
|
||||
mask_image.width // downsampling,
|
||||
mask_image.height // downsampling
|
||||
),
|
||||
resample=Image.Resampling.NEAREST
|
||||
)
|
||||
mask_image = self._image_to_tensor(mask_image,normalize=False)
|
||||
|
||||
self.mask_blur_radius = mask_blur_radius
|
||||
|
||||
# klms samplers not supported yet, so ignore previous sampler
|
||||
if isinstance(sampler,KSampler):
|
||||
print(
|
||||
f">> Using recommended DDIM sampler for inpainting."
|
||||
)
|
||||
sampler = DDIMSampler(self.model, device=self.model.device)
|
||||
|
||||
sampler.make_schedule(
|
||||
ddim_num_steps=steps, ddim_eta=ddim_eta, verbose=False
|
||||
)
|
||||
|
||||
mask_image = mask_image[0][0].unsqueeze(0).repeat(4,1,1).unsqueeze(0)
|
||||
mask_image = repeat(mask_image, '1 ... -> b ...', b=1)
|
||||
|
||||
scope = choose_autocast(self.precision)
|
||||
with scope(self.model.device.type):
|
||||
self.init_latent = self.model.get_first_stage_encoding(
|
||||
self.model.encode_first_stage(init_image)
|
||||
) # move to latent space
|
||||
|
||||
t_enc = int(strength * steps)
|
||||
# todo: support cross-attention control
|
||||
uc, c, _ = conditioning
|
||||
|
||||
print(f">> target t_enc is {t_enc} steps")
|
||||
|
||||
@torch.no_grad()
|
||||
def make_image(x_T):
|
||||
# encode (scaled latent)
|
||||
z_enc = sampler.stochastic_encode(
|
||||
self.init_latent,
|
||||
torch.tensor([t_enc - 1]).to(self.model.device),
|
||||
noise=x_T
|
||||
)
|
||||
|
||||
# to replace masked area with latent noise, weighted by inpaint_replace strength
|
||||
if inpaint_replace > 0.0:
|
||||
print(f'>> inpaint will replace what was under the mask with a strength of {inpaint_replace}')
|
||||
l_noise = self.get_noise(kwargs['width'],kwargs['height'])
|
||||
inverted_mask = 1.0-mask_image # there will be 1s where the mask is
|
||||
masked_region = (1.0-inpaint_replace) * inverted_mask * z_enc + inpaint_replace * inverted_mask * l_noise
|
||||
z_enc = z_enc * mask_image + masked_region
|
||||
|
||||
if self.free_gpu_mem and self.model.model.device != self.model.device:
|
||||
self.model.model.to(self.model.device)
|
||||
|
||||
# decode it
|
||||
samples = sampler.decode(
|
||||
z_enc,
|
||||
c,
|
||||
t_enc,
|
||||
img_callback = step_callback,
|
||||
unconditional_guidance_scale = cfg_scale,
|
||||
unconditional_conditioning = uc,
|
||||
mask = mask_image,
|
||||
init_latent = self.init_latent
|
||||
)
|
||||
|
||||
result = self.sample_to_image(samples)
|
||||
|
||||
# Seam paint if this is our first pass (seam_size set to 0 during seam painting)
|
||||
if seam_size > 0:
|
||||
old_image = self.pil_image or init_image
|
||||
old_mask = self.pil_mask or mask_image
|
||||
|
||||
result = self.seam_paint(
|
||||
result,
|
||||
seam_size,
|
||||
seam_blur,
|
||||
prompt,
|
||||
sampler,
|
||||
seam_steps,
|
||||
cfg_scale,
|
||||
ddim_eta,
|
||||
conditioning,
|
||||
seam_strength,
|
||||
x_T,
|
||||
step_callback)
|
||||
|
||||
# Restore original settings
|
||||
self.get_make_image(prompt,sampler,steps,cfg_scale,ddim_eta,
|
||||
conditioning,
|
||||
old_image,
|
||||
old_mask,
|
||||
strength,
|
||||
mask_blur_radius, seam_size, seam_blur, seam_strength,
|
||||
seam_steps, tile_size, step_callback,
|
||||
inpaint_replace, enable_image_debugging,
|
||||
inpaint_width = inpaint_width,
|
||||
inpaint_height = inpaint_height,
|
||||
infill_method = infill_method,
|
||||
**kwargs)
|
||||
|
||||
return result
|
||||
|
||||
return make_image
|
||||
|
||||
|
||||
def sample_to_image(self, samples)->Image.Image:
|
||||
gen_result = super().sample_to_image(samples).convert('RGB')
|
||||
debug_image(gen_result, "gen_result", debug_status=self.enable_image_debugging)
|
||||
|
||||
# Resize if necessary
|
||||
if self.inpaint_width and self.inpaint_height:
|
||||
gen_result = gen_result.resize(self.pil_image.size)
|
||||
|
||||
if self.pil_image is None or self.pil_mask is None:
|
||||
return gen_result
|
||||
|
||||
corrected_result = super().repaste_and_color_correct(gen_result, self.pil_image, self.pil_mask, self.mask_blur_radius)
|
||||
debug_image(corrected_result, "corrected_result", debug_status=self.enable_image_debugging)
|
||||
|
||||
return corrected_result
|
@ -1,175 +0,0 @@
|
||||
"""omnibus module to be used with the runwayml 9-channel custom inpainting model"""
|
||||
|
||||
import torch
|
||||
import numpy as np
|
||||
from einops import repeat
|
||||
from PIL import Image, ImageOps, ImageChops
|
||||
from ldm.invoke.devices import choose_autocast
|
||||
from ldm.invoke.ckpt_generator.base import downsampling
|
||||
from ldm.invoke.ckpt_generator.img2img import CkptImg2Img
|
||||
from ldm.invoke.ckpt_generator.txt2img import CkptTxt2Img
|
||||
|
||||
class CkptOmnibus(CkptImg2Img,CkptTxt2Img):
|
||||
def __init__(self, model, precision):
|
||||
super().__init__(model, precision)
|
||||
self.pil_mask = None
|
||||
self.pil_image = None
|
||||
|
||||
def get_make_image(
|
||||
self,
|
||||
prompt,
|
||||
sampler,
|
||||
steps,
|
||||
cfg_scale,
|
||||
ddim_eta,
|
||||
conditioning,
|
||||
width,
|
||||
height,
|
||||
init_image = None,
|
||||
mask_image = None,
|
||||
strength = None,
|
||||
step_callback=None,
|
||||
threshold=0.0,
|
||||
perlin=0.0,
|
||||
mask_blur_radius: int = 8,
|
||||
**kwargs):
|
||||
"""
|
||||
Returns a function returning an image derived from the prompt and the initial image
|
||||
Return value depends on the seed at the time you call it.
|
||||
"""
|
||||
self.perlin = perlin
|
||||
num_samples = 1
|
||||
|
||||
sampler.make_schedule(
|
||||
ddim_num_steps=steps, ddim_eta=ddim_eta, verbose=False
|
||||
)
|
||||
|
||||
if isinstance(init_image, Image.Image):
|
||||
self.pil_image = init_image
|
||||
if init_image.mode != 'RGB':
|
||||
init_image = init_image.convert('RGB')
|
||||
init_image = self._image_to_tensor(init_image)
|
||||
|
||||
if isinstance(mask_image, Image.Image):
|
||||
self.pil_mask = mask_image
|
||||
|
||||
mask_image = ImageChops.multiply(mask_image.convert('L'), self.pil_image.split()[-1])
|
||||
mask_image = self._image_to_tensor(ImageOps.invert(mask_image), normalize=False)
|
||||
|
||||
self.mask_blur_radius = mask_blur_radius
|
||||
|
||||
t_enc = steps
|
||||
|
||||
if init_image is not None and mask_image is not None: # inpainting
|
||||
masked_image = init_image * (1 - mask_image) # masked image is the image masked by mask - masked regions zero
|
||||
|
||||
elif init_image is not None: # img2img
|
||||
scope = choose_autocast(self.precision)
|
||||
|
||||
with scope(self.model.device.type):
|
||||
self.init_latent = self.model.get_first_stage_encoding(
|
||||
self.model.encode_first_stage(init_image)
|
||||
) # move to latent space
|
||||
|
||||
# create a completely black mask (1s)
|
||||
mask_image = torch.ones(1, 1, init_image.shape[2], init_image.shape[3], device=self.model.device)
|
||||
# and the masked image is just a copy of the original
|
||||
masked_image = init_image
|
||||
|
||||
else: # txt2img
|
||||
init_image = torch.zeros(1, 3, height, width, device=self.model.device)
|
||||
mask_image = torch.ones(1, 1, height, width, device=self.model.device)
|
||||
masked_image = init_image
|
||||
|
||||
self.init_latent = init_image
|
||||
height = init_image.shape[2]
|
||||
width = init_image.shape[3]
|
||||
model = self.model
|
||||
|
||||
def make_image(x_T):
|
||||
with torch.no_grad():
|
||||
scope = choose_autocast(self.precision)
|
||||
with scope(self.model.device.type):
|
||||
|
||||
batch = self.make_batch_sd(
|
||||
init_image,
|
||||
mask_image,
|
||||
masked_image,
|
||||
prompt=prompt,
|
||||
device=model.device,
|
||||
num_samples=num_samples,
|
||||
)
|
||||
|
||||
c = model.cond_stage_model.encode(batch["txt"])
|
||||
c_cat = list()
|
||||
for ck in model.concat_keys:
|
||||
cc = batch[ck].float()
|
||||
if ck != model.masked_image_key:
|
||||
bchw = [num_samples, 4, height//8, width//8]
|
||||
cc = torch.nn.functional.interpolate(cc, size=bchw[-2:])
|
||||
else:
|
||||
cc = model.get_first_stage_encoding(model.encode_first_stage(cc))
|
||||
c_cat.append(cc)
|
||||
c_cat = torch.cat(c_cat, dim=1)
|
||||
|
||||
# cond
|
||||
cond={"c_concat": [c_cat], "c_crossattn": [c]}
|
||||
|
||||
# uncond cond
|
||||
uc_cross = model.get_unconditional_conditioning(num_samples, "")
|
||||
uc_full = {"c_concat": [c_cat], "c_crossattn": [uc_cross]}
|
||||
shape = [model.channels, height//8, width//8]
|
||||
|
||||
samples, _ = sampler.sample(
|
||||
batch_size = 1,
|
||||
S = steps,
|
||||
x_T = x_T,
|
||||
conditioning = cond,
|
||||
shape = shape,
|
||||
verbose = False,
|
||||
unconditional_guidance_scale = cfg_scale,
|
||||
unconditional_conditioning = uc_full,
|
||||
eta = 1.0,
|
||||
img_callback = step_callback,
|
||||
threshold = threshold,
|
||||
)
|
||||
if self.free_gpu_mem:
|
||||
self.model.model.to("cpu")
|
||||
return self.sample_to_image(samples)
|
||||
|
||||
return make_image
|
||||
|
||||
def make_batch_sd(
|
||||
self,
|
||||
image,
|
||||
mask,
|
||||
masked_image,
|
||||
prompt,
|
||||
device,
|
||||
num_samples=1):
|
||||
batch = {
|
||||
"image": repeat(image.to(device=device), "1 ... -> n ...", n=num_samples),
|
||||
"txt": num_samples * [prompt],
|
||||
"mask": repeat(mask.to(device=device), "1 ... -> n ...", n=num_samples),
|
||||
"masked_image": repeat(masked_image.to(device=device), "1 ... -> n ...", n=num_samples),
|
||||
}
|
||||
return batch
|
||||
|
||||
def get_noise(self, width:int, height:int):
|
||||
if self.init_latent is not None:
|
||||
height = self.init_latent.shape[2]
|
||||
width = self.init_latent.shape[3]
|
||||
return CkptTxt2Img.get_noise(self,width,height)
|
||||
|
||||
|
||||
def sample_to_image(self, samples)->Image.Image:
|
||||
gen_result = super().sample_to_image(samples).convert('RGB')
|
||||
|
||||
if self.pil_image is None or self.pil_mask is None:
|
||||
return gen_result
|
||||
if self.pil_image.size != self.pil_mask.size:
|
||||
return gen_result
|
||||
|
||||
corrected_result = super(CkptImg2Img, self).repaste_and_color_correct(gen_result, self.pil_image, self.pil_mask, self.mask_blur_radius)
|
||||
|
||||
return corrected_result
|
@ -1,90 +0,0 @@
|
||||
'''
|
||||
ldm.invoke.ckpt_generator.txt2img inherits from ldm.invoke.ckpt_generator
|
||||
'''
|
||||
|
||||
import torch
|
||||
import numpy as np
|
||||
from ldm.invoke.ckpt_generator.base import CkptGenerator
|
||||
from ldm.models.diffusion.shared_invokeai_diffusion import InvokeAIDiffuserComponent
|
||||
import gc
|
||||
|
||||
|
||||
class CkptTxt2Img(CkptGenerator):
|
||||
def __init__(self, model, precision):
|
||||
super().__init__(model, precision)
|
||||
|
||||
@torch.no_grad()
|
||||
def get_make_image(self,prompt,sampler,steps,cfg_scale,ddim_eta,
|
||||
conditioning,width,height,step_callback=None,threshold=0.0,perlin=0.0,
|
||||
attention_maps_callback=None,
|
||||
**kwargs):
|
||||
"""
|
||||
Returns a function returning an image derived from the prompt and the initial image
|
||||
Return value depends on the seed at the time you call it
|
||||
kwargs are 'width' and 'height'
|
||||
"""
|
||||
self.perlin = perlin
|
||||
uc, c, extra_conditioning_info = conditioning
|
||||
|
||||
@torch.no_grad()
|
||||
def make_image(x_T):
|
||||
shape = [
|
||||
self.latent_channels,
|
||||
height // self.downsampling_factor,
|
||||
width // self.downsampling_factor,
|
||||
]
|
||||
|
||||
if self.free_gpu_mem and self.model.model.device != self.model.device:
|
||||
self.model.model.to(self.model.device)
|
||||
|
||||
sampler.make_schedule(ddim_num_steps=steps, ddim_eta=ddim_eta, verbose=False)
|
||||
|
||||
samples, _ = sampler.sample(
|
||||
batch_size = 1,
|
||||
S = steps,
|
||||
x_T = x_T,
|
||||
conditioning = c,
|
||||
shape = shape,
|
||||
verbose = False,
|
||||
unconditional_guidance_scale = cfg_scale,
|
||||
unconditional_conditioning = uc,
|
||||
extra_conditioning_info = extra_conditioning_info,
|
||||
eta = ddim_eta,
|
||||
img_callback = step_callback,
|
||||
threshold = threshold,
|
||||
attention_maps_callback = attention_maps_callback,
|
||||
)
|
||||
|
||||
if self.free_gpu_mem:
|
||||
self.model.model.to('cpu')
|
||||
self.model.cond_stage_model.device = 'cpu'
|
||||
self.model.cond_stage_model.to('cpu')
|
||||
gc.collect()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
return self.sample_to_image(samples)
|
||||
|
||||
return make_image
|
||||
|
||||
|
||||
# returns a tensor filled with random numbers from a normal distribution
|
||||
def get_noise(self,width,height):
|
||||
device = self.model.device
|
||||
if self.use_mps_noise or device.type == 'mps':
|
||||
x = torch.randn([1,
|
||||
self.latent_channels,
|
||||
height // self.downsampling_factor,
|
||||
width // self.downsampling_factor],
|
||||
dtype=self.torch_dtype(),
|
||||
device='cpu').to(device)
|
||||
else:
|
||||
x = torch.randn([1,
|
||||
self.latent_channels,
|
||||
height // self.downsampling_factor,
|
||||
width // self.downsampling_factor],
|
||||
dtype=self.torch_dtype(),
|
||||
device=device)
|
||||
if self.perlin > 0.0:
|
||||
x = (1-self.perlin)*x + self.perlin*self.get_perlin_noise(width // self.downsampling_factor, height // self.downsampling_factor)
|
||||
return x
|
||||
|
@ -1,182 +0,0 @@
|
||||
'''
|
||||
ldm.invoke.ckpt_generator.txt2img inherits from ldm.invoke.ckpt_generator
|
||||
'''
|
||||
|
||||
import torch
|
||||
import numpy as np
|
||||
import math
|
||||
import gc
|
||||
from ldm.invoke.ckpt_generator.base import CkptGenerator
|
||||
from ldm.invoke.ckpt_generator.omnibus import CkptOmnibus
|
||||
from ldm.models.diffusion.ddim import DDIMSampler
|
||||
from ldm.models.diffusion.shared_invokeai_diffusion import InvokeAIDiffuserComponent
|
||||
from PIL import Image
|
||||
|
||||
class CkptTxt2Img2Img(CkptGenerator):
|
||||
def __init__(self, model, precision):
|
||||
super().__init__(model, precision)
|
||||
self.init_latent = None # for get_noise()
|
||||
|
||||
@torch.no_grad()
|
||||
def get_make_image(self,prompt,sampler,steps,cfg_scale,ddim_eta,
|
||||
conditioning,width,height,strength,step_callback=None,**kwargs):
|
||||
"""
|
||||
Returns a function returning an image derived from the prompt and the initial image
|
||||
Return value depends on the seed at the time you call it
|
||||
kwargs are 'width' and 'height'
|
||||
"""
|
||||
uc, c, extra_conditioning_info = conditioning
|
||||
scale_dim = min(width, height)
|
||||
scale = 512 / scale_dim
|
||||
|
||||
init_width = math.ceil(scale * width / 64) * 64
|
||||
init_height = math.ceil(scale * height / 64) * 64
|
||||
|
||||
@torch.no_grad()
|
||||
def make_image(x_T):
|
||||
|
||||
shape = [
|
||||
self.latent_channels,
|
||||
init_height // self.downsampling_factor,
|
||||
init_width // self.downsampling_factor,
|
||||
]
|
||||
|
||||
sampler.make_schedule(
|
||||
ddim_num_steps=steps, ddim_eta=ddim_eta, verbose=False
|
||||
)
|
||||
|
||||
#x = self.get_noise(init_width, init_height)
|
||||
x = x_T
|
||||
|
||||
if self.free_gpu_mem and self.model.model.device != self.model.device:
|
||||
self.model.model.to(self.model.device)
|
||||
|
||||
samples, _ = sampler.sample(
|
||||
batch_size = 1,
|
||||
S = steps,
|
||||
x_T = x,
|
||||
conditioning = c,
|
||||
shape = shape,
|
||||
verbose = False,
|
||||
unconditional_guidance_scale = cfg_scale,
|
||||
unconditional_conditioning = uc,
|
||||
eta = ddim_eta,
|
||||
img_callback = step_callback,
|
||||
extra_conditioning_info = extra_conditioning_info
|
||||
)
|
||||
|
||||
print(
|
||||
f"\n>> Interpolating from {init_width}x{init_height} to {width}x{height} using DDIM sampling"
|
||||
)
|
||||
|
||||
# resizing
|
||||
samples = torch.nn.functional.interpolate(
|
||||
samples,
|
||||
size=(height // self.downsampling_factor, width // self.downsampling_factor),
|
||||
mode="bilinear"
|
||||
)
|
||||
|
||||
t_enc = int(strength * steps)
|
||||
ddim_sampler = DDIMSampler(self.model, device=self.model.device)
|
||||
ddim_sampler.make_schedule(
|
||||
ddim_num_steps=steps, ddim_eta=ddim_eta, verbose=False
|
||||
)
|
||||
|
||||
z_enc = ddim_sampler.stochastic_encode(
|
||||
samples,
|
||||
torch.tensor([t_enc-1]).to(self.model.device),
|
||||
noise=self.get_noise(width,height,False)
|
||||
)
|
||||
|
||||
# decode it
|
||||
samples = ddim_sampler.decode(
|
||||
z_enc,
|
||||
c,
|
||||
t_enc,
|
||||
img_callback = step_callback,
|
||||
unconditional_guidance_scale=cfg_scale,
|
||||
unconditional_conditioning=uc,
|
||||
extra_conditioning_info=extra_conditioning_info,
|
||||
all_timesteps_count=steps
|
||||
)
|
||||
|
||||
if self.free_gpu_mem:
|
||||
self.model.model.to('cpu')
|
||||
self.model.cond_stage_model.device = 'cpu'
|
||||
self.model.cond_stage_model.to('cpu')
|
||||
gc.collect()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
return self.sample_to_image(samples)
|
||||
|
||||
# in the case of the inpainting model being loaded, the trick of
|
||||
# providing an interpolated latent doesn't work, so we transiently
|
||||
# create a 512x512 PIL image, upscale it, and run the inpainting
|
||||
# over it in img2img mode. Because the inpaing model is so conservative
|
||||
# it doesn't change the image (much)
|
||||
def inpaint_make_image(x_T):
|
||||
omnibus = CkptOmnibus(self.model,self.precision)
|
||||
result = omnibus.generate(
|
||||
prompt,
|
||||
sampler=sampler,
|
||||
width=init_width,
|
||||
height=init_height,
|
||||
step_callback=step_callback,
|
||||
steps = steps,
|
||||
cfg_scale = cfg_scale,
|
||||
ddim_eta = ddim_eta,
|
||||
conditioning = conditioning,
|
||||
**kwargs
|
||||
)
|
||||
assert result is not None and len(result)>0,'** txt2img failed **'
|
||||
image = result[0][0]
|
||||
interpolated_image = image.resize((width,height),resample=Image.Resampling.LANCZOS)
|
||||
print(kwargs.pop('init_image',None))
|
||||
result = omnibus.generate(
|
||||
prompt,
|
||||
sampler=sampler,
|
||||
init_image=interpolated_image,
|
||||
width=width,
|
||||
height=height,
|
||||
seed=result[0][1],
|
||||
step_callback=step_callback,
|
||||
steps = steps,
|
||||
cfg_scale = cfg_scale,
|
||||
ddim_eta = ddim_eta,
|
||||
conditioning = conditioning,
|
||||
**kwargs
|
||||
)
|
||||
return result[0][0]
|
||||
|
||||
if sampler.uses_inpainting_model():
|
||||
return inpaint_make_image
|
||||
else:
|
||||
return make_image
|
||||
|
||||
# returns a tensor filled with random numbers from a normal distribution
|
||||
def get_noise(self,width,height,scale = True):
|
||||
# print(f"Get noise: {width}x{height}")
|
||||
if scale:
|
||||
trained_square = 512 * 512
|
||||
actual_square = width * height
|
||||
scale = math.sqrt(trained_square / actual_square)
|
||||
scaled_width = math.ceil(scale * width / 64) * 64
|
||||
scaled_height = math.ceil(scale * height / 64) * 64
|
||||
else:
|
||||
scaled_width = width
|
||||
scaled_height = height
|
||||
|
||||
device = self.model.device
|
||||
if self.use_mps_noise or device.type == 'mps':
|
||||
return torch.randn([1,
|
||||
self.latent_channels,
|
||||
scaled_height // self.downsampling_factor,
|
||||
scaled_width // self.downsampling_factor],
|
||||
device='cpu').to(device)
|
||||
else:
|
||||
return torch.randn([1,
|
||||
self.latent_channels,
|
||||
scaled_height // self.downsampling_factor,
|
||||
scaled_width // self.downsampling_factor],
|
||||
device=device)
|
||||
|
@ -25,7 +25,7 @@ from ldm.invoke.globals import (
|
||||
global_cache_dir,
|
||||
global_config_dir,
|
||||
)
|
||||
from ldm.invoke.model_manager import ModelManager, SDLegacyType
|
||||
from invokeai.models import ModelManager, SDLegacyType
|
||||
from safetensors.torch import load_file
|
||||
from typing import Union
|
||||
|
||||
@ -56,7 +56,7 @@ from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionS
|
||||
from diffusers.utils import is_safetensors_available
|
||||
from transformers import AutoFeatureExtractor, BertTokenizerFast, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig
|
||||
|
||||
from ldm.invoke.generator.diffusers_pipeline import StableDiffusionGeneratorPipeline
|
||||
from invokeai.generator import StableDiffusionGeneratorPipeline
|
||||
|
||||
def shave_segments(path, n_shave_prefix_segments=1):
|
||||
"""
|
||||
|
@ -14,7 +14,7 @@ from transformers import CLIPTokenizer, CLIPTextModel
|
||||
from compel import Compel
|
||||
from compel.prompt_parser import FlattenedPrompt, Blend, Fragment, CrossAttentionControlSubstitute, PromptParser
|
||||
from .devices import torch_dtype
|
||||
from ..models.diffusion.shared_invokeai_diffusion import InvokeAIDiffuserComponent
|
||||
from invokeai.models import InvokeAIDiffuserComponent
|
||||
from ldm.invoke.globals import Globals
|
||||
|
||||
def get_tokenizer(model) -> CLIPTokenizer:
|
||||
|
@ -20,7 +20,7 @@ from typing import List
|
||||
import invokeai.configs as configs
|
||||
from ..generator.diffusers_pipeline import StableDiffusionGeneratorPipeline
|
||||
from ..globals import Globals, global_cache_dir, global_config_dir
|
||||
from ..model_manager import ModelManager
|
||||
from invokeai.models import ModelManager
|
||||
|
||||
warnings.filterwarnings("ignore")
|
||||
|
||||
|
@ -1,4 +0,0 @@
|
||||
'''
|
||||
Initialization file for the ldm.invoke.generator package
|
||||
'''
|
||||
from .base import Generator
|
@ -1,374 +0,0 @@
|
||||
'''
|
||||
Base class for ldm.invoke.generator.*
|
||||
including img2img, txt2img, and inpaint
|
||||
'''
|
||||
from __future__ import annotations
|
||||
|
||||
import os
|
||||
import os.path as osp
|
||||
import random
|
||||
import traceback
|
||||
from contextlib import nullcontext
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from PIL import Image, ImageFilter, ImageChops
|
||||
from diffusers import DiffusionPipeline
|
||||
from einops import rearrange
|
||||
from pathlib import Path
|
||||
from pytorch_lightning import seed_everything
|
||||
from tqdm import trange
|
||||
|
||||
import invokeai.assets.web as web_assets
|
||||
from ldm.models.diffusion.ddpm import DiffusionWrapper
|
||||
from ldm.util import rand_perlin_2d
|
||||
|
||||
downsampling = 8
|
||||
CAUTION_IMG = 'caution.png'
|
||||
|
||||
class Generator:
|
||||
downsampling_factor: int
|
||||
latent_channels: int
|
||||
precision: str
|
||||
model: DiffusionWrapper | DiffusionPipeline
|
||||
|
||||
def __init__(self, model: DiffusionWrapper | DiffusionPipeline, precision: str):
|
||||
self.model = model
|
||||
self.precision = precision
|
||||
self.seed = None
|
||||
self.latent_channels = model.channels
|
||||
self.downsampling_factor = downsampling # BUG: should come from model or config
|
||||
self.safety_checker = None
|
||||
self.perlin = 0.0
|
||||
self.threshold = 0
|
||||
self.variation_amount = 0
|
||||
self.with_variations = []
|
||||
self.use_mps_noise = False
|
||||
self.free_gpu_mem = None
|
||||
self.caution_img = None
|
||||
|
||||
# this is going to be overridden in img2img.py, txt2img.py and inpaint.py
|
||||
def get_make_image(self,prompt,**kwargs):
|
||||
"""
|
||||
Returns a function returning an image derived from the prompt and the initial image
|
||||
Return value depends on the seed at the time you call it
|
||||
"""
|
||||
raise NotImplementedError("image_iterator() must be implemented in a descendent class")
|
||||
|
||||
def set_variation(self, seed, variation_amount, with_variations):
|
||||
self.seed = seed
|
||||
self.variation_amount = variation_amount
|
||||
self.with_variations = with_variations
|
||||
|
||||
def generate(self,prompt,init_image,width,height,sampler, iterations=1,seed=None,
|
||||
image_callback=None, step_callback=None, threshold=0.0, perlin=0.0,
|
||||
h_symmetry_time_pct=None, v_symmetry_time_pct=None,
|
||||
safety_checker:dict=None,
|
||||
free_gpu_mem: bool=False,
|
||||
**kwargs):
|
||||
scope = nullcontext
|
||||
self.safety_checker = safety_checker
|
||||
self.free_gpu_mem = free_gpu_mem
|
||||
attention_maps_images = []
|
||||
attention_maps_callback = lambda saver: attention_maps_images.append(saver.get_stacked_maps_image())
|
||||
make_image = self.get_make_image(
|
||||
prompt,
|
||||
sampler = sampler,
|
||||
init_image = init_image,
|
||||
width = width,
|
||||
height = height,
|
||||
step_callback = step_callback,
|
||||
threshold = threshold,
|
||||
perlin = perlin,
|
||||
h_symmetry_time_pct = h_symmetry_time_pct,
|
||||
v_symmetry_time_pct = v_symmetry_time_pct,
|
||||
attention_maps_callback = attention_maps_callback,
|
||||
**kwargs
|
||||
)
|
||||
results = []
|
||||
seed = seed if seed is not None and seed >= 0 else self.new_seed()
|
||||
first_seed = seed
|
||||
seed, initial_noise = self.generate_initial_noise(seed, width, height)
|
||||
|
||||
# There used to be an additional self.model.ema_scope() here, but it breaks
|
||||
# the inpaint-1.5 model. Not sure what it did.... ?
|
||||
with scope(self.model.device.type):
|
||||
for n in trange(iterations, desc='Generating'):
|
||||
x_T = None
|
||||
if self.variation_amount > 0:
|
||||
seed_everything(seed)
|
||||
target_noise = self.get_noise(width,height)
|
||||
x_T = self.slerp(self.variation_amount, initial_noise, target_noise)
|
||||
elif initial_noise is not None:
|
||||
# i.e. we specified particular variations
|
||||
x_T = initial_noise
|
||||
else:
|
||||
seed_everything(seed)
|
||||
try:
|
||||
x_T = self.get_noise(width,height)
|
||||
except:
|
||||
print('** An error occurred while getting initial noise **')
|
||||
print(traceback.format_exc())
|
||||
|
||||
image = make_image(x_T)
|
||||
|
||||
if self.safety_checker is not None:
|
||||
image = self.safety_check(image)
|
||||
|
||||
results.append([image, seed])
|
||||
|
||||
if image_callback is not None:
|
||||
attention_maps_image = None if len(attention_maps_images)==0 else attention_maps_images[-1]
|
||||
image_callback(image, seed, first_seed=first_seed, attention_maps_image=attention_maps_image)
|
||||
|
||||
seed = self.new_seed()
|
||||
|
||||
# Free up memory from the last generation.
|
||||
clear_cuda_cache = kwargs['clear_cuda_cache'] if 'clear_cuda_cache' in kwargs else None
|
||||
if clear_cuda_cache is not None:
|
||||
clear_cuda_cache()
|
||||
|
||||
return results
|
||||
|
||||
def sample_to_image(self,samples)->Image.Image:
|
||||
"""
|
||||
Given samples returned from a sampler, converts
|
||||
it into a PIL Image
|
||||
"""
|
||||
with torch.inference_mode():
|
||||
image = self.model.decode_latents(samples)
|
||||
return self.model.numpy_to_pil(image)[0]
|
||||
|
||||
def repaste_and_color_correct(self, result: Image.Image, init_image: Image.Image, init_mask: Image.Image, mask_blur_radius: int = 8) -> Image.Image:
|
||||
if init_image is None or init_mask is None:
|
||||
return result
|
||||
|
||||
# Get the original alpha channel of the mask if there is one.
|
||||
# Otherwise it is some other black/white image format ('1', 'L' or 'RGB')
|
||||
pil_init_mask = init_mask.getchannel('A') if init_mask.mode == 'RGBA' else init_mask.convert('L')
|
||||
pil_init_image = init_image.convert('RGBA') # Add an alpha channel if one doesn't exist
|
||||
|
||||
# Build an image with only visible pixels from source to use as reference for color-matching.
|
||||
init_rgb_pixels = np.asarray(init_image.convert('RGB'), dtype=np.uint8)
|
||||
init_a_pixels = np.asarray(pil_init_image.getchannel('A'), dtype=np.uint8)
|
||||
init_mask_pixels = np.asarray(pil_init_mask, dtype=np.uint8)
|
||||
|
||||
# Get numpy version of result
|
||||
np_image = np.asarray(result, dtype=np.uint8)
|
||||
|
||||
# Mask and calculate mean and standard deviation
|
||||
mask_pixels = init_a_pixels * init_mask_pixels > 0
|
||||
np_init_rgb_pixels_masked = init_rgb_pixels[mask_pixels, :]
|
||||
np_image_masked = np_image[mask_pixels, :]
|
||||
|
||||
if np_init_rgb_pixels_masked.size > 0:
|
||||
init_means = np_init_rgb_pixels_masked.mean(axis=0)
|
||||
init_std = np_init_rgb_pixels_masked.std(axis=0)
|
||||
gen_means = np_image_masked.mean(axis=0)
|
||||
gen_std = np_image_masked.std(axis=0)
|
||||
|
||||
# Color correct
|
||||
np_matched_result = np_image.copy()
|
||||
np_matched_result[:,:,:] = (((np_matched_result[:,:,:].astype(np.float32) - gen_means[None,None,:]) / gen_std[None,None,:]) * init_std[None,None,:] + init_means[None,None,:]).clip(0, 255).astype(np.uint8)
|
||||
matched_result = Image.fromarray(np_matched_result, mode='RGB')
|
||||
else:
|
||||
matched_result = Image.fromarray(np_image, mode='RGB')
|
||||
|
||||
# Blur the mask out (into init image) by specified amount
|
||||
if mask_blur_radius > 0:
|
||||
nm = np.asarray(pil_init_mask, dtype=np.uint8)
|
||||
nmd = cv2.erode(nm, kernel=np.ones((3,3), dtype=np.uint8), iterations=int(mask_blur_radius / 2))
|
||||
pmd = Image.fromarray(nmd, mode='L')
|
||||
blurred_init_mask = pmd.filter(ImageFilter.BoxBlur(mask_blur_radius))
|
||||
else:
|
||||
blurred_init_mask = pil_init_mask
|
||||
|
||||
multiplied_blurred_init_mask = ImageChops.multiply(blurred_init_mask, self.pil_image.split()[-1])
|
||||
|
||||
# Paste original on color-corrected generation (using blurred mask)
|
||||
matched_result.paste(init_image, (0,0), mask = multiplied_blurred_init_mask)
|
||||
return matched_result
|
||||
|
||||
def sample_to_lowres_estimated_image(self,samples):
|
||||
# origingally adapted from code by @erucipe and @keturn here:
|
||||
# https://discuss.huggingface.co/t/decoding-latents-to-rgb-without-upscaling/23204/7
|
||||
|
||||
# these updated numbers for v1.5 are from @torridgristle
|
||||
v1_5_latent_rgb_factors = torch.tensor([
|
||||
# R G B
|
||||
[ 0.3444, 0.1385, 0.0670], # L1
|
||||
[ 0.1247, 0.4027, 0.1494], # L2
|
||||
[-0.3192, 0.2513, 0.2103], # L3
|
||||
[-0.1307, -0.1874, -0.7445] # L4
|
||||
], dtype=samples.dtype, device=samples.device)
|
||||
|
||||
latent_image = samples[0].permute(1, 2, 0) @ v1_5_latent_rgb_factors
|
||||
latents_ubyte = (((latent_image + 1) / 2)
|
||||
.clamp(0, 1) # change scale from -1..1 to 0..1
|
||||
.mul(0xFF) # to 0..255
|
||||
.byte()).cpu()
|
||||
|
||||
return Image.fromarray(latents_ubyte.numpy())
|
||||
|
||||
def generate_initial_noise(self, seed, width, height):
|
||||
initial_noise = None
|
||||
if self.variation_amount > 0 or len(self.with_variations) > 0:
|
||||
# use fixed initial noise plus random noise per iteration
|
||||
seed_everything(seed)
|
||||
initial_noise = self.get_noise(width,height)
|
||||
for v_seed, v_weight in self.with_variations:
|
||||
seed = v_seed
|
||||
seed_everything(seed)
|
||||
next_noise = self.get_noise(width,height)
|
||||
initial_noise = self.slerp(v_weight, initial_noise, next_noise)
|
||||
if self.variation_amount > 0:
|
||||
random.seed() # reset RNG to an actually random state, so we can get a random seed for variations
|
||||
seed = random.randrange(0,np.iinfo(np.uint32).max)
|
||||
return (seed, initial_noise)
|
||||
else:
|
||||
return (seed, None)
|
||||
|
||||
# returns a tensor filled with random numbers from a normal distribution
|
||||
def get_noise(self,width,height):
|
||||
"""
|
||||
Returns a tensor filled with random numbers, either form a normal distribution
|
||||
(txt2img) or from the latent image (img2img, inpaint)
|
||||
"""
|
||||
raise NotImplementedError("get_noise() must be implemented in a descendent class")
|
||||
|
||||
def get_perlin_noise(self,width,height):
|
||||
fixdevice = 'cpu' if (self.model.device.type == 'mps') else self.model.device
|
||||
# limit noise to only the diffusion image channels, not the mask channels
|
||||
input_channels = min(self.latent_channels, 4)
|
||||
# round up to the nearest block of 8
|
||||
temp_width = int((width + 7) / 8) * 8
|
||||
temp_height = int((height + 7) / 8) * 8
|
||||
noise = torch.stack([
|
||||
rand_perlin_2d((temp_height, temp_width),
|
||||
(8, 8),
|
||||
device = self.model.device).to(fixdevice) for _ in range(input_channels)], dim=0).to(self.model.device)
|
||||
return noise[0:4, 0:height, 0:width]
|
||||
|
||||
def new_seed(self):
|
||||
self.seed = random.randrange(0, np.iinfo(np.uint32).max)
|
||||
return self.seed
|
||||
|
||||
def slerp(self, t, v0, v1, DOT_THRESHOLD=0.9995):
|
||||
'''
|
||||
Spherical linear interpolation
|
||||
Args:
|
||||
t (float/np.ndarray): Float value between 0.0 and 1.0
|
||||
v0 (np.ndarray): Starting vector
|
||||
v1 (np.ndarray): Final vector
|
||||
DOT_THRESHOLD (float): Threshold for considering the two vectors as
|
||||
colineal. Not recommended to alter this.
|
||||
Returns:
|
||||
v2 (np.ndarray): Interpolation vector between v0 and v1
|
||||
'''
|
||||
inputs_are_torch = False
|
||||
if not isinstance(v0, np.ndarray):
|
||||
inputs_are_torch = True
|
||||
v0 = v0.detach().cpu().numpy()
|
||||
if not isinstance(v1, np.ndarray):
|
||||
inputs_are_torch = True
|
||||
v1 = v1.detach().cpu().numpy()
|
||||
|
||||
dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1)))
|
||||
if np.abs(dot) > DOT_THRESHOLD:
|
||||
v2 = (1 - t) * v0 + t * v1
|
||||
else:
|
||||
theta_0 = np.arccos(dot)
|
||||
sin_theta_0 = np.sin(theta_0)
|
||||
theta_t = theta_0 * t
|
||||
sin_theta_t = np.sin(theta_t)
|
||||
s0 = np.sin(theta_0 - theta_t) / sin_theta_0
|
||||
s1 = sin_theta_t / sin_theta_0
|
||||
v2 = s0 * v0 + s1 * v1
|
||||
|
||||
if inputs_are_torch:
|
||||
v2 = torch.from_numpy(v2).to(self.model.device)
|
||||
|
||||
return v2
|
||||
|
||||
def safety_check(self,image:Image.Image):
|
||||
'''
|
||||
If the CompViz safety checker flags an NSFW image, we
|
||||
blur it out.
|
||||
'''
|
||||
import diffusers
|
||||
|
||||
checker = self.safety_checker['checker']
|
||||
extractor = self.safety_checker['extractor']
|
||||
features = extractor([image], return_tensors="pt")
|
||||
features.to(self.model.device)
|
||||
|
||||
# unfortunately checker requires the numpy version, so we have to convert back
|
||||
x_image = np.array(image).astype(np.float32) / 255.0
|
||||
x_image = x_image[None].transpose(0, 3, 1, 2)
|
||||
|
||||
diffusers.logging.set_verbosity_error()
|
||||
checked_image, has_nsfw_concept = checker(images=x_image, clip_input=features.pixel_values)
|
||||
if has_nsfw_concept[0]:
|
||||
print('** An image with potential non-safe content has been detected. A blurred image will be returned. **')
|
||||
return self.blur(image)
|
||||
else:
|
||||
return image
|
||||
|
||||
def blur(self,input):
|
||||
blurry = input.filter(filter=ImageFilter.GaussianBlur(radius=32))
|
||||
try:
|
||||
caution = self.get_caution_img()
|
||||
if caution:
|
||||
blurry.paste(caution,(0,0),caution)
|
||||
except FileNotFoundError:
|
||||
pass
|
||||
return blurry
|
||||
|
||||
def get_caution_img(self):
|
||||
path = None
|
||||
if self.caution_img:
|
||||
return self.caution_img
|
||||
path = Path(web_assets.__path__[0]) / CAUTION_IMG
|
||||
caution = Image.open(path)
|
||||
self.caution_img = caution.resize((caution.width // 2, caution.height //2))
|
||||
return self.caution_img
|
||||
|
||||
# this is a handy routine for debugging use. Given a generated sample,
|
||||
# convert it into a PNG image and store it at the indicated path
|
||||
def save_sample(self, sample, filepath):
|
||||
image = self.sample_to_image(sample)
|
||||
dirname = os.path.dirname(filepath) or '.'
|
||||
if not os.path.exists(dirname):
|
||||
print(f'** creating directory {dirname}')
|
||||
os.makedirs(dirname, exist_ok=True)
|
||||
image.save(filepath,'PNG')
|
||||
|
||||
|
||||
def torch_dtype(self)->torch.dtype:
|
||||
return torch.float16 if self.precision == 'float16' else torch.float32
|
||||
|
||||
# returns a tensor filled with random numbers from a normal distribution
|
||||
def get_noise(self,width,height):
|
||||
device = self.model.device
|
||||
# limit noise to only the diffusion image channels, not the mask channels
|
||||
input_channels = min(self.latent_channels, 4)
|
||||
if self.use_mps_noise or device.type == 'mps':
|
||||
x = torch.randn([1,
|
||||
input_channels,
|
||||
height // self.downsampling_factor,
|
||||
width // self.downsampling_factor],
|
||||
dtype=self.torch_dtype(),
|
||||
device='cpu').to(device)
|
||||
else:
|
||||
x = torch.randn([1,
|
||||
input_channels,
|
||||
height // self.downsampling_factor,
|
||||
width // self.downsampling_factor],
|
||||
dtype=self.torch_dtype(),
|
||||
device=device)
|
||||
if self.perlin > 0.0:
|
||||
perlin_noise = self.get_perlin_noise(width // self.downsampling_factor, height // self.downsampling_factor)
|
||||
x = (1-self.perlin)*x + self.perlin*perlin_noise
|
||||
return x
|
@ -1,765 +0,0 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import dataclasses
|
||||
import inspect
|
||||
import psutil
|
||||
import secrets
|
||||
from collections.abc import Sequence
|
||||
from dataclasses import dataclass, field
|
||||
from typing import List, Optional, Union, Callable, Type, TypeVar, Generic, Any
|
||||
|
||||
import PIL.Image
|
||||
import einops
|
||||
import psutil
|
||||
import torch
|
||||
import torchvision.transforms as T
|
||||
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
||||
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
||||
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipeline
|
||||
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img import StableDiffusionImg2ImgPipeline
|
||||
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
||||
from diffusers.schedulers import KarrasDiffusionSchedulers
|
||||
from diffusers.schedulers.scheduling_utils import SchedulerMixin, SchedulerOutput
|
||||
from diffusers.utils.import_utils import is_xformers_available
|
||||
from diffusers.utils.outputs import BaseOutput
|
||||
from torchvision.transforms.functional import resize as tv_resize
|
||||
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
||||
from typing_extensions import ParamSpec
|
||||
|
||||
from ldm.invoke.globals import Globals
|
||||
from ldm.models.diffusion.shared_invokeai_diffusion import InvokeAIDiffuserComponent, PostprocessingSettings
|
||||
from ldm.modules.textual_inversion_manager import TextualInversionManager
|
||||
from ..devices import normalize_device, CPU_DEVICE
|
||||
from ..offloading import LazilyLoadedModelGroup, FullyLoadedModelGroup, ModelGroup
|
||||
from ...models.diffusion.cross_attention_map_saving import AttentionMapSaver
|
||||
from compel import EmbeddingsProvider
|
||||
|
||||
|
||||
@dataclass
|
||||
class PipelineIntermediateState:
|
||||
run_id: str
|
||||
step: int
|
||||
timestep: int
|
||||
latents: torch.Tensor
|
||||
predicted_original: Optional[torch.Tensor] = None
|
||||
attention_map_saver: Optional[AttentionMapSaver] = None
|
||||
|
||||
|
||||
# copied from configs/stable-diffusion/v1-inference.yaml
|
||||
_default_personalization_config_params = dict(
|
||||
placeholder_strings=["*"],
|
||||
initializer_wods=["sculpture"],
|
||||
per_image_tokens=False,
|
||||
num_vectors_per_token=1,
|
||||
progressive_words=False
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
class AddsMaskLatents:
|
||||
"""Add the channels required for inpainting model input.
|
||||
|
||||
The inpainting model takes the normal latent channels as input, _plus_ a one-channel mask
|
||||
and the latent encoding of the base image.
|
||||
|
||||
This class assumes the same mask and base image should apply to all items in the batch.
|
||||
"""
|
||||
forward: Callable[[torch.Tensor, torch.Tensor, torch.Tensor], torch.Tensor]
|
||||
mask: torch.Tensor
|
||||
initial_image_latents: torch.Tensor
|
||||
|
||||
def __call__(self, latents: torch.Tensor, t: torch.Tensor, text_embeddings: torch.Tensor) -> torch.Tensor:
|
||||
model_input = self.add_mask_channels(latents)
|
||||
return self.forward(model_input, t, text_embeddings)
|
||||
|
||||
def add_mask_channels(self, latents):
|
||||
batch_size = latents.size(0)
|
||||
# duplicate mask and latents for each batch
|
||||
mask = einops.repeat(self.mask, 'b c h w -> (repeat b) c h w', repeat=batch_size)
|
||||
image_latents = einops.repeat(self.initial_image_latents, 'b c h w -> (repeat b) c h w', repeat=batch_size)
|
||||
# add mask and image as additional channels
|
||||
model_input, _ = einops.pack([latents, mask, image_latents], 'b * h w')
|
||||
return model_input
|
||||
|
||||
|
||||
def are_like_tensors(a: torch.Tensor, b: object) -> bool:
|
||||
return (
|
||||
isinstance(b, torch.Tensor)
|
||||
and (a.size() == b.size())
|
||||
)
|
||||
|
||||
@dataclass
|
||||
class AddsMaskGuidance:
|
||||
mask: torch.FloatTensor
|
||||
mask_latents: torch.FloatTensor
|
||||
scheduler: SchedulerMixin
|
||||
noise: torch.Tensor
|
||||
_debug: Optional[Callable] = None
|
||||
|
||||
def __call__(self, step_output: BaseOutput | SchedulerOutput, t: torch.Tensor, conditioning) -> BaseOutput:
|
||||
output_class = step_output.__class__ # We'll create a new one with masked data.
|
||||
|
||||
# The problem with taking SchedulerOutput instead of the model output is that we're less certain what's in it.
|
||||
# It's reasonable to assume the first thing is prev_sample, but then does it have other things
|
||||
# like pred_original_sample? Should we apply the mask to them too?
|
||||
# But what if there's just some other random field?
|
||||
prev_sample = step_output[0]
|
||||
# Mask anything that has the same shape as prev_sample, return others as-is.
|
||||
return output_class(
|
||||
{k: (self.apply_mask(v, self._t_for_field(k, t))
|
||||
if are_like_tensors(prev_sample, v) else v)
|
||||
for k, v in step_output.items()}
|
||||
)
|
||||
|
||||
def _t_for_field(self, field_name:str, t):
|
||||
if field_name == "pred_original_sample":
|
||||
return torch.zeros_like(t, dtype=t.dtype) # it represents t=0
|
||||
return t
|
||||
|
||||
def apply_mask(self, latents: torch.Tensor, t) -> torch.Tensor:
|
||||
batch_size = latents.size(0)
|
||||
mask = einops.repeat(self.mask, 'b c h w -> (repeat b) c h w', repeat=batch_size)
|
||||
if t.dim() == 0:
|
||||
# some schedulers expect t to be one-dimensional.
|
||||
# TODO: file diffusers bug about inconsistency?
|
||||
t = einops.repeat(t, '-> batch', batch=batch_size)
|
||||
# Noise shouldn't be re-randomized between steps here. The multistep schedulers
|
||||
# get very confused about what is happening from step to step when we do that.
|
||||
mask_latents = self.scheduler.add_noise(self.mask_latents, self.noise, t)
|
||||
# TODO: Do we need to also apply scheduler.scale_model_input? Or is add_noise appropriately scaled already?
|
||||
# mask_latents = self.scheduler.scale_model_input(mask_latents, t)
|
||||
mask_latents = einops.repeat(mask_latents, 'b c h w -> (repeat b) c h w', repeat=batch_size)
|
||||
masked_input = torch.lerp(mask_latents.to(dtype=latents.dtype), latents, mask.to(dtype=latents.dtype))
|
||||
if self._debug:
|
||||
self._debug(masked_input, f"t={t} lerped")
|
||||
return masked_input
|
||||
|
||||
|
||||
def trim_to_multiple_of(*args, multiple_of=8):
|
||||
return tuple((x - x % multiple_of) for x in args)
|
||||
|
||||
|
||||
def image_resized_to_grid_as_tensor(image: PIL.Image.Image, normalize: bool=True, multiple_of=8) -> torch.FloatTensor:
|
||||
"""
|
||||
|
||||
:param image: input image
|
||||
:param normalize: scale the range to [-1, 1] instead of [0, 1]
|
||||
:param multiple_of: resize the input so both dimensions are a multiple of this
|
||||
"""
|
||||
w, h = trim_to_multiple_of(*image.size)
|
||||
transformation = T.Compose([
|
||||
T.Resize((h, w), T.InterpolationMode.LANCZOS),
|
||||
T.ToTensor(),
|
||||
])
|
||||
tensor = transformation(image)
|
||||
if normalize:
|
||||
tensor = tensor * 2.0 - 1.0
|
||||
return tensor
|
||||
|
||||
|
||||
def is_inpainting_model(unet: UNet2DConditionModel):
|
||||
return unet.conv_in.in_channels == 9
|
||||
|
||||
CallbackType = TypeVar('CallbackType')
|
||||
ReturnType = TypeVar('ReturnType')
|
||||
ParamType = ParamSpec('ParamType')
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class GeneratorToCallbackinator(Generic[ParamType, ReturnType, CallbackType]):
|
||||
"""Convert a generator to a function with a callback and a return value."""
|
||||
|
||||
generator_method: Callable[ParamType, ReturnType]
|
||||
callback_arg_type: Type[CallbackType]
|
||||
|
||||
def __call__(self, *args: ParamType.args,
|
||||
callback:Callable[[CallbackType], Any]=None,
|
||||
**kwargs: ParamType.kwargs) -> ReturnType:
|
||||
result = None
|
||||
for result in self.generator_method(*args, **kwargs):
|
||||
if callback is not None and isinstance(result, self.callback_arg_type):
|
||||
callback(result)
|
||||
if result is None:
|
||||
raise AssertionError("why was that an empty generator?")
|
||||
return result
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class ConditioningData:
|
||||
unconditioned_embeddings: torch.Tensor
|
||||
text_embeddings: torch.Tensor
|
||||
guidance_scale: float
|
||||
"""
|
||||
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
||||
`guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf).
|
||||
Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate
|
||||
images that are closely linked to the text `prompt`, usually at the expense of lower image quality.
|
||||
"""
|
||||
extra: Optional[InvokeAIDiffuserComponent.ExtraConditioningInfo] = None
|
||||
scheduler_args: dict[str, Any] = field(default_factory=dict)
|
||||
"""
|
||||
Additional arguments to pass to invokeai_diffuser.do_latent_postprocessing().
|
||||
"""
|
||||
postprocessing_settings: Optional[PostprocessingSettings] = None
|
||||
|
||||
@property
|
||||
def dtype(self):
|
||||
return self.text_embeddings.dtype
|
||||
|
||||
def add_scheduler_args_if_applicable(self, scheduler, **kwargs):
|
||||
scheduler_args = dict(self.scheduler_args)
|
||||
step_method = inspect.signature(scheduler.step)
|
||||
for name, value in kwargs.items():
|
||||
try:
|
||||
step_method.bind_partial(**{name: value})
|
||||
except TypeError:
|
||||
# FIXME: don't silently discard arguments
|
||||
pass # debug("%s does not accept argument named %r", scheduler, name)
|
||||
else:
|
||||
scheduler_args[name] = value
|
||||
return dataclasses.replace(self, scheduler_args=scheduler_args)
|
||||
|
||||
@dataclass
|
||||
class InvokeAIStableDiffusionPipelineOutput(StableDiffusionPipelineOutput):
|
||||
r"""
|
||||
Output class for InvokeAI's Stable Diffusion pipeline.
|
||||
|
||||
Args:
|
||||
attention_map_saver (`AttentionMapSaver`): Object containing attention maps that can be displayed to the user
|
||||
after generation completes. Optional.
|
||||
"""
|
||||
attention_map_saver: Optional[AttentionMapSaver]
|
||||
|
||||
|
||||
class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
r"""
|
||||
Pipeline for text-to-image generation using Stable Diffusion.
|
||||
|
||||
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
||||
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
||||
|
||||
Implementation note: This class started as a refactored copy of diffusers.StableDiffusionPipeline.
|
||||
Hopefully future versions of diffusers provide access to more of these functions so that we don't
|
||||
need to duplicate them here: https://github.com/huggingface/diffusers/issues/551#issuecomment-1281508384
|
||||
|
||||
Args:
|
||||
vae ([`AutoencoderKL`]):
|
||||
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
||||
text_encoder ([`CLIPTextModel`]):
|
||||
Frozen text-encoder. Stable Diffusion uses the text portion of
|
||||
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
||||
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
||||
tokenizer (`CLIPTokenizer`):
|
||||
Tokenizer of class
|
||||
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
||||
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
||||
scheduler ([`SchedulerMixin`]):
|
||||
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
|
||||
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
||||
safety_checker ([`StableDiffusionSafetyChecker`]):
|
||||
Classification module that estimates whether generated images could be considered offsensive or harmful.
|
||||
Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details.
|
||||
feature_extractor ([`CLIPFeatureExtractor`]):
|
||||
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
||||
"""
|
||||
_model_group: ModelGroup
|
||||
|
||||
ID_LENGTH = 8
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vae: AutoencoderKL,
|
||||
text_encoder: CLIPTextModel,
|
||||
tokenizer: CLIPTokenizer,
|
||||
unet: UNet2DConditionModel,
|
||||
scheduler: KarrasDiffusionSchedulers,
|
||||
safety_checker: Optional[StableDiffusionSafetyChecker],
|
||||
feature_extractor: Optional[CLIPFeatureExtractor],
|
||||
requires_safety_checker: bool = False,
|
||||
precision: str = 'float32',
|
||||
):
|
||||
super().__init__(vae, text_encoder, tokenizer, unet, scheduler,
|
||||
safety_checker, feature_extractor, requires_safety_checker)
|
||||
|
||||
self.register_modules(
|
||||
vae=vae,
|
||||
text_encoder=text_encoder,
|
||||
tokenizer=tokenizer,
|
||||
unet=unet,
|
||||
scheduler=scheduler,
|
||||
safety_checker=safety_checker,
|
||||
feature_extractor=feature_extractor,
|
||||
)
|
||||
self.invokeai_diffuser = InvokeAIDiffuserComponent(self.unet, self._unet_forward, is_running_diffusers=True)
|
||||
use_full_precision = (precision == 'float32' or precision == 'autocast')
|
||||
self.textual_inversion_manager = TextualInversionManager(tokenizer=self.tokenizer,
|
||||
text_encoder=self.text_encoder,
|
||||
full_precision=use_full_precision)
|
||||
# InvokeAI's interface for text embeddings and whatnot
|
||||
self.embeddings_provider = EmbeddingsProvider(
|
||||
tokenizer=self.tokenizer,
|
||||
text_encoder=self.text_encoder,
|
||||
textual_inversion_manager=self.textual_inversion_manager
|
||||
)
|
||||
|
||||
self._model_group = FullyLoadedModelGroup(self.unet.device)
|
||||
self._model_group.install(*self._submodels)
|
||||
|
||||
|
||||
def _adjust_memory_efficient_attention(self, latents: torch.Tensor):
|
||||
"""
|
||||
if xformers is available, use it, otherwise use sliced attention.
|
||||
"""
|
||||
if torch.cuda.is_available() and is_xformers_available() and not Globals.disable_xformers:
|
||||
self.enable_xformers_memory_efficient_attention()
|
||||
else:
|
||||
if torch.backends.mps.is_available():
|
||||
# until pytorch #91617 is fixed, slicing is borked on MPS
|
||||
# https://github.com/pytorch/pytorch/issues/91617
|
||||
# fix is in https://github.com/kulinseth/pytorch/pull/222 but no idea when it will get merged to pytorch mainline.
|
||||
pass
|
||||
else:
|
||||
if self.device.type == 'cpu' or self.device.type == 'mps':
|
||||
mem_free = psutil.virtual_memory().free
|
||||
elif self.device.type == 'cuda':
|
||||
mem_free, _ = torch.cuda.mem_get_info(normalize_device(self.device))
|
||||
else:
|
||||
raise ValueError(f"unrecognized device {self.device}")
|
||||
# input tensor of [1, 4, h/8, w/8]
|
||||
# output tensor of [16, (h/8 * w/8), (h/8 * w/8)]
|
||||
bytes_per_element_needed_for_baddbmm_duplication = latents.element_size() + 4
|
||||
max_size_required_for_baddbmm = \
|
||||
16 * \
|
||||
latents.size(dim=2) * latents.size(dim=3) * latents.size(dim=2) * latents.size(dim=3) * \
|
||||
bytes_per_element_needed_for_baddbmm_duplication
|
||||
if max_size_required_for_baddbmm > (mem_free * 3.0 / 4.0): # 3.3 / 4.0 is from old Invoke code
|
||||
self.enable_attention_slicing(slice_size='max')
|
||||
else:
|
||||
self.disable_attention_slicing()
|
||||
|
||||
|
||||
def enable_offload_submodels(self, device: torch.device):
|
||||
"""
|
||||
Offload each submodel when it's not in use.
|
||||
|
||||
Useful for low-vRAM situations where the size of the model in memory is a big chunk of
|
||||
the total available resource, and you want to free up as much for inference as possible.
|
||||
|
||||
This requires more moving parts and may add some delay as the U-Net is swapped out for the
|
||||
VAE and vice-versa.
|
||||
"""
|
||||
models = self._submodels
|
||||
if self._model_group is not None:
|
||||
self._model_group.uninstall(*models)
|
||||
group = LazilyLoadedModelGroup(device)
|
||||
group.install(*models)
|
||||
self._model_group = group
|
||||
|
||||
def disable_offload_submodels(self):
|
||||
"""
|
||||
Leave all submodels loaded.
|
||||
|
||||
Appropriate for cases where the size of the model in memory is small compared to the memory
|
||||
required for inference. Avoids the delay and complexity of shuffling the submodels to and
|
||||
from the GPU.
|
||||
"""
|
||||
models = self._submodels
|
||||
if self._model_group is not None:
|
||||
self._model_group.uninstall(*models)
|
||||
group = FullyLoadedModelGroup(self._model_group.execution_device)
|
||||
group.install(*models)
|
||||
self._model_group = group
|
||||
|
||||
def offload_all(self):
|
||||
"""Offload all this pipeline's models to CPU."""
|
||||
self._model_group.offload_current()
|
||||
|
||||
def ready(self):
|
||||
"""
|
||||
Ready this pipeline's models.
|
||||
|
||||
i.e. pre-load them to the GPU if appropriate.
|
||||
"""
|
||||
self._model_group.ready()
|
||||
|
||||
def to(self, torch_device: Optional[Union[str, torch.device]] = None):
|
||||
# overridden method; types match the superclass.
|
||||
if torch_device is None:
|
||||
return self
|
||||
self._model_group.set_device(torch.device(torch_device))
|
||||
self._model_group.ready()
|
||||
|
||||
@property
|
||||
def device(self) -> torch.device:
|
||||
return self._model_group.execution_device
|
||||
|
||||
@property
|
||||
def _submodels(self) -> Sequence[torch.nn.Module]:
|
||||
module_names, _, _ = self.extract_init_dict(dict(self.config))
|
||||
values = [getattr(self, name) for name in module_names.keys()]
|
||||
return [m for m in values if isinstance(m, torch.nn.Module)]
|
||||
|
||||
def image_from_embeddings(self, latents: torch.Tensor, num_inference_steps: int,
|
||||
conditioning_data: ConditioningData,
|
||||
*,
|
||||
noise: torch.Tensor,
|
||||
callback: Callable[[PipelineIntermediateState], None]=None,
|
||||
run_id=None) -> InvokeAIStableDiffusionPipelineOutput:
|
||||
r"""
|
||||
Function invoked when calling the pipeline for generation.
|
||||
|
||||
:param conditioning_data:
|
||||
:param latents: Pre-generated un-noised latents, to be used as inputs for
|
||||
image generation. Can be used to tweak the same generation with different prompts.
|
||||
:param num_inference_steps: The number of denoising steps. More denoising steps usually lead to a higher quality
|
||||
image at the expense of slower inference.
|
||||
:param noise: Noise to add to the latents, sampled from a Gaussian distribution.
|
||||
:param callback:
|
||||
:param run_id:
|
||||
"""
|
||||
result_latents, result_attention_map_saver = self.latents_from_embeddings(
|
||||
latents, num_inference_steps,
|
||||
conditioning_data,
|
||||
noise=noise,
|
||||
run_id=run_id,
|
||||
callback=callback)
|
||||
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
with torch.inference_mode():
|
||||
image = self.decode_latents(result_latents)
|
||||
output = InvokeAIStableDiffusionPipelineOutput(images=image, nsfw_content_detected=[], attention_map_saver=result_attention_map_saver)
|
||||
return self.check_for_safety(output, dtype=conditioning_data.dtype)
|
||||
|
||||
def latents_from_embeddings(self, latents: torch.Tensor, num_inference_steps: int,
|
||||
conditioning_data: ConditioningData,
|
||||
*,
|
||||
noise: torch.Tensor,
|
||||
timesteps=None,
|
||||
additional_guidance: List[Callable] = None, run_id=None,
|
||||
callback: Callable[[PipelineIntermediateState], None] = None
|
||||
) -> tuple[torch.Tensor, Optional[AttentionMapSaver]]:
|
||||
if timesteps is None:
|
||||
self.scheduler.set_timesteps(num_inference_steps, device=self._model_group.device_for(self.unet))
|
||||
timesteps = self.scheduler.timesteps
|
||||
infer_latents_from_embeddings = GeneratorToCallbackinator(self.generate_latents_from_embeddings, PipelineIntermediateState)
|
||||
result: PipelineIntermediateState = infer_latents_from_embeddings(
|
||||
latents, timesteps, conditioning_data,
|
||||
noise=noise,
|
||||
additional_guidance=additional_guidance,
|
||||
run_id=run_id,
|
||||
callback=callback)
|
||||
return result.latents, result.attention_map_saver
|
||||
|
||||
def generate_latents_from_embeddings(self, latents: torch.Tensor, timesteps,
|
||||
conditioning_data: ConditioningData,
|
||||
*,
|
||||
noise: torch.Tensor,
|
||||
run_id: str = None,
|
||||
additional_guidance: List[Callable] = None):
|
||||
self._adjust_memory_efficient_attention(latents)
|
||||
if run_id is None:
|
||||
run_id = secrets.token_urlsafe(self.ID_LENGTH)
|
||||
if additional_guidance is None:
|
||||
additional_guidance = []
|
||||
extra_conditioning_info = conditioning_data.extra
|
||||
with self.invokeai_diffuser.custom_attention_context(extra_conditioning_info=extra_conditioning_info,
|
||||
step_count=len(self.scheduler.timesteps)
|
||||
):
|
||||
|
||||
yield PipelineIntermediateState(run_id=run_id, step=-1, timestep=self.scheduler.num_train_timesteps,
|
||||
latents=latents)
|
||||
|
||||
batch_size = latents.shape[0]
|
||||
batched_t = torch.full((batch_size,), timesteps[0],
|
||||
dtype=timesteps.dtype, device=self._model_group.device_for(self.unet))
|
||||
latents = self.scheduler.add_noise(latents, noise, batched_t)
|
||||
|
||||
attention_map_saver: Optional[AttentionMapSaver] = None
|
||||
|
||||
for i, t in enumerate(self.progress_bar(timesteps)):
|
||||
batched_t.fill_(t)
|
||||
step_output = self.step(batched_t, latents, conditioning_data,
|
||||
step_index=i,
|
||||
total_step_count=len(timesteps),
|
||||
additional_guidance=additional_guidance)
|
||||
latents = step_output.prev_sample
|
||||
|
||||
latents = self.invokeai_diffuser.do_latent_postprocessing(
|
||||
postprocessing_settings=conditioning_data.postprocessing_settings,
|
||||
latents=latents,
|
||||
sigma=batched_t,
|
||||
step_index=i,
|
||||
total_step_count=len(timesteps)
|
||||
)
|
||||
|
||||
predicted_original = getattr(step_output, 'pred_original_sample', None)
|
||||
|
||||
# TODO resuscitate attention map saving
|
||||
#if i == len(timesteps)-1 and extra_conditioning_info is not None:
|
||||
# eos_token_index = extra_conditioning_info.tokens_count_including_eos_bos - 1
|
||||
# attention_map_token_ids = range(1, eos_token_index)
|
||||
# attention_map_saver = AttentionMapSaver(token_ids=attention_map_token_ids, latents_shape=latents.shape[-2:])
|
||||
# self.invokeai_diffuser.setup_attention_map_saving(attention_map_saver)
|
||||
|
||||
yield PipelineIntermediateState(run_id=run_id, step=i, timestep=int(t), latents=latents,
|
||||
predicted_original=predicted_original, attention_map_saver=attention_map_saver)
|
||||
|
||||
return latents, attention_map_saver
|
||||
|
||||
@torch.inference_mode()
|
||||
def step(self, t: torch.Tensor, latents: torch.Tensor,
|
||||
conditioning_data: ConditioningData,
|
||||
step_index:int, total_step_count:int,
|
||||
additional_guidance: List[Callable] = None):
|
||||
# invokeai_diffuser has batched timesteps, but diffusers schedulers expect a single value
|
||||
timestep = t[0]
|
||||
|
||||
if additional_guidance is None:
|
||||
additional_guidance = []
|
||||
|
||||
# TODO: should this scaling happen here or inside self._unet_forward?
|
||||
# i.e. before or after passing it to InvokeAIDiffuserComponent
|
||||
latent_model_input = self.scheduler.scale_model_input(latents, timestep)
|
||||
|
||||
# predict the noise residual
|
||||
noise_pred = self.invokeai_diffuser.do_diffusion_step(
|
||||
latent_model_input, t,
|
||||
conditioning_data.unconditioned_embeddings, conditioning_data.text_embeddings,
|
||||
conditioning_data.guidance_scale,
|
||||
step_index=step_index,
|
||||
total_step_count=total_step_count,
|
||||
)
|
||||
|
||||
# compute the previous noisy sample x_t -> x_t-1
|
||||
step_output = self.scheduler.step(noise_pred, timestep, latents,
|
||||
**conditioning_data.scheduler_args)
|
||||
|
||||
# TODO: this additional_guidance extension point feels redundant with InvokeAIDiffusionComponent.
|
||||
# But the way things are now, scheduler runs _after_ that, so there was
|
||||
# no way to use it to apply an operation that happens after the last scheduler.step.
|
||||
for guidance in additional_guidance:
|
||||
step_output = guidance(step_output, timestep, conditioning_data)
|
||||
|
||||
return step_output
|
||||
|
||||
def _unet_forward(self, latents, t, text_embeddings, cross_attention_kwargs: Optional[dict[str,Any]] = None):
|
||||
"""predict the noise residual"""
|
||||
if is_inpainting_model(self.unet) and latents.size(1) == 4:
|
||||
# Pad out normal non-inpainting inputs for an inpainting model.
|
||||
# FIXME: There are too many layers of functions and we have too many different ways of
|
||||
# overriding things! This should get handled in a way more consistent with the other
|
||||
# use of AddsMaskLatents.
|
||||
latents = AddsMaskLatents(
|
||||
self._unet_forward,
|
||||
mask=torch.ones_like(latents[:1, :1], device=latents.device, dtype=latents.dtype),
|
||||
initial_image_latents=torch.zeros_like(latents[:1], device=latents.device, dtype=latents.dtype)
|
||||
).add_mask_channels(latents)
|
||||
|
||||
# First three args should be positional, not keywords, so torch hooks can see them.
|
||||
return self.unet(latents, t, text_embeddings,
|
||||
cross_attention_kwargs=cross_attention_kwargs).sample
|
||||
|
||||
def img2img_from_embeddings(self,
|
||||
init_image: Union[torch.FloatTensor, PIL.Image.Image],
|
||||
strength: float,
|
||||
num_inference_steps: int,
|
||||
conditioning_data: ConditioningData,
|
||||
*, callback: Callable[[PipelineIntermediateState], None] = None,
|
||||
run_id=None,
|
||||
noise_func=None
|
||||
) -> InvokeAIStableDiffusionPipelineOutput:
|
||||
if isinstance(init_image, PIL.Image.Image):
|
||||
init_image = image_resized_to_grid_as_tensor(init_image.convert('RGB'))
|
||||
|
||||
if init_image.dim() == 3:
|
||||
init_image = einops.rearrange(init_image, 'c h w -> 1 c h w')
|
||||
|
||||
# 6. Prepare latent variables
|
||||
initial_latents = self.non_noised_latents_from_image(
|
||||
init_image, device=self._model_group.device_for(self.unet),
|
||||
dtype=self.unet.dtype)
|
||||
noise = noise_func(initial_latents)
|
||||
|
||||
return self.img2img_from_latents_and_embeddings(initial_latents, num_inference_steps,
|
||||
conditioning_data,
|
||||
strength,
|
||||
noise, run_id, callback)
|
||||
|
||||
def img2img_from_latents_and_embeddings(self, initial_latents, num_inference_steps,
|
||||
conditioning_data: ConditioningData,
|
||||
strength,
|
||||
noise: torch.Tensor, run_id=None, callback=None
|
||||
) -> InvokeAIStableDiffusionPipelineOutput:
|
||||
timesteps, _ = self.get_img2img_timesteps(num_inference_steps, strength,
|
||||
device=self._model_group.device_for(self.unet))
|
||||
result_latents, result_attention_maps = self.latents_from_embeddings(
|
||||
initial_latents, num_inference_steps, conditioning_data,
|
||||
timesteps=timesteps,
|
||||
noise=noise,
|
||||
run_id=run_id,
|
||||
callback=callback)
|
||||
|
||||
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
with torch.inference_mode():
|
||||
image = self.decode_latents(result_latents)
|
||||
output = InvokeAIStableDiffusionPipelineOutput(images=image, nsfw_content_detected=[], attention_map_saver=result_attention_maps)
|
||||
return self.check_for_safety(output, dtype=conditioning_data.dtype)
|
||||
|
||||
def get_img2img_timesteps(self, num_inference_steps: int, strength: float, device) -> (torch.Tensor, int):
|
||||
img2img_pipeline = StableDiffusionImg2ImgPipeline(**self.components)
|
||||
assert img2img_pipeline.scheduler is self.scheduler
|
||||
img2img_pipeline.scheduler.set_timesteps(num_inference_steps, device=device)
|
||||
timesteps, adjusted_steps = img2img_pipeline.get_timesteps(num_inference_steps, strength, device=device)
|
||||
# Workaround for low strength resulting in zero timesteps.
|
||||
# TODO: submit upstream fix for zero-step img2img
|
||||
if timesteps.numel() == 0:
|
||||
timesteps = self.scheduler.timesteps[-1:]
|
||||
adjusted_steps = timesteps.numel()
|
||||
return timesteps, adjusted_steps
|
||||
|
||||
def inpaint_from_embeddings(
|
||||
self,
|
||||
init_image: torch.FloatTensor,
|
||||
mask: torch.FloatTensor,
|
||||
strength: float,
|
||||
num_inference_steps: int,
|
||||
conditioning_data: ConditioningData,
|
||||
*, callback: Callable[[PipelineIntermediateState], None] = None,
|
||||
run_id=None,
|
||||
noise_func=None,
|
||||
) -> InvokeAIStableDiffusionPipelineOutput:
|
||||
device = self._model_group.device_for(self.unet)
|
||||
latents_dtype = self.unet.dtype
|
||||
|
||||
if isinstance(init_image, PIL.Image.Image):
|
||||
init_image = image_resized_to_grid_as_tensor(init_image.convert('RGB'))
|
||||
|
||||
init_image = init_image.to(device=device, dtype=latents_dtype)
|
||||
mask = mask.to(device=device, dtype=latents_dtype)
|
||||
|
||||
if init_image.dim() == 3:
|
||||
init_image = init_image.unsqueeze(0)
|
||||
|
||||
timesteps, _ = self.get_img2img_timesteps(num_inference_steps, strength, device=device)
|
||||
|
||||
# 6. Prepare latent variables
|
||||
# can't quite use upstream StableDiffusionImg2ImgPipeline.prepare_latents
|
||||
# because we have our own noise function
|
||||
init_image_latents = self.non_noised_latents_from_image(init_image, device=device, dtype=latents_dtype)
|
||||
noise = noise_func(init_image_latents)
|
||||
|
||||
if mask.dim() == 3:
|
||||
mask = mask.unsqueeze(0)
|
||||
latent_mask = tv_resize(mask, init_image_latents.shape[-2:], T.InterpolationMode.BILINEAR) \
|
||||
.to(device=device, dtype=latents_dtype)
|
||||
|
||||
guidance: List[Callable] = []
|
||||
|
||||
if is_inpainting_model(self.unet):
|
||||
# You'd think the inpainting model wouldn't be paying attention to the area it is going to repaint
|
||||
# (that's why there's a mask!) but it seems to really want that blanked out.
|
||||
masked_init_image = init_image * torch.where(mask < 0.5, 1, 0)
|
||||
masked_latents = self.non_noised_latents_from_image(masked_init_image, device=device, dtype=latents_dtype)
|
||||
|
||||
# TODO: we should probably pass this in so we don't have to try/finally around setting it.
|
||||
self.invokeai_diffuser.model_forward_callback = \
|
||||
AddsMaskLatents(self._unet_forward, latent_mask, masked_latents)
|
||||
else:
|
||||
guidance.append(AddsMaskGuidance(latent_mask, init_image_latents, self.scheduler, noise))
|
||||
|
||||
try:
|
||||
result_latents, result_attention_maps = self.latents_from_embeddings(
|
||||
init_image_latents, num_inference_steps,
|
||||
conditioning_data, noise=noise, timesteps=timesteps,
|
||||
additional_guidance=guidance,
|
||||
run_id=run_id, callback=callback)
|
||||
finally:
|
||||
self.invokeai_diffuser.model_forward_callback = self._unet_forward
|
||||
|
||||
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
with torch.inference_mode():
|
||||
image = self.decode_latents(result_latents)
|
||||
output = InvokeAIStableDiffusionPipelineOutput(images=image, nsfw_content_detected=[], attention_map_saver=result_attention_maps)
|
||||
return self.check_for_safety(output, dtype=conditioning_data.dtype)
|
||||
|
||||
def non_noised_latents_from_image(self, init_image, *, device: torch.device, dtype):
|
||||
init_image = init_image.to(device=device, dtype=dtype)
|
||||
with torch.inference_mode():
|
||||
if device.type == 'mps':
|
||||
# workaround for torch MPS bug that has been fixed in https://github.com/kulinseth/pytorch/pull/222
|
||||
# TODO remove this workaround once kulinseth#222 is merged to pytorch mainline
|
||||
self.vae.to(CPU_DEVICE)
|
||||
init_image = init_image.to(CPU_DEVICE)
|
||||
else:
|
||||
self._model_group.load(self.vae)
|
||||
init_latent_dist = self.vae.encode(init_image).latent_dist
|
||||
init_latents = init_latent_dist.sample().to(dtype=dtype) # FIXME: uses torch.randn. make reproducible!
|
||||
if device.type == 'mps':
|
||||
self.vae.to(device)
|
||||
init_latents = init_latents.to(device)
|
||||
|
||||
init_latents = 0.18215 * init_latents
|
||||
return init_latents
|
||||
|
||||
def check_for_safety(self, output, dtype):
|
||||
with torch.inference_mode():
|
||||
screened_images, has_nsfw_concept = self.run_safety_checker(output.images, dtype=dtype)
|
||||
screened_attention_map_saver = None
|
||||
if has_nsfw_concept is None or not has_nsfw_concept:
|
||||
screened_attention_map_saver = output.attention_map_saver
|
||||
return InvokeAIStableDiffusionPipelineOutput(screened_images,
|
||||
has_nsfw_concept,
|
||||
# block the attention maps if NSFW content is detected
|
||||
attention_map_saver=screened_attention_map_saver)
|
||||
|
||||
def run_safety_checker(self, image, device=None, dtype=None):
|
||||
# overriding to use the model group for device info instead of requiring the caller to know.
|
||||
if self.safety_checker is not None:
|
||||
device = self._model_group.device_for(self.safety_checker)
|
||||
return super().run_safety_checker(image, device, dtype)
|
||||
|
||||
@torch.inference_mode()
|
||||
def get_learned_conditioning(self, c: List[List[str]], *, return_tokens=True, fragment_weights=None):
|
||||
"""
|
||||
Compatibility function for ldm.models.diffusion.ddpm.LatentDiffusion.
|
||||
"""
|
||||
return self.embeddings_provider.get_embeddings_for_weighted_prompt_fragments(
|
||||
text_batch=c,
|
||||
fragment_weights_batch=fragment_weights,
|
||||
should_return_tokens=return_tokens,
|
||||
device=self._model_group.device_for(self.unet))
|
||||
|
||||
@property
|
||||
def cond_stage_model(self):
|
||||
return self.embeddings_provider
|
||||
|
||||
@torch.inference_mode()
|
||||
def _tokenize(self, prompt: Union[str, List[str]]):
|
||||
return self.tokenizer(
|
||||
prompt,
|
||||
padding="max_length",
|
||||
max_length=self.tokenizer.model_max_length,
|
||||
truncation=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
|
||||
@property
|
||||
def channels(self) -> int:
|
||||
"""Compatible with DiffusionWrapper"""
|
||||
return self.unet.in_channels
|
||||
|
||||
def decode_latents(self, latents):
|
||||
# Explicit call to get the vae loaded, since `decode` isn't the forward method.
|
||||
self._model_group.load(self.vae)
|
||||
return super().decode_latents(latents)
|
||||
|
||||
def debug_latents(self, latents, msg):
|
||||
with torch.inference_mode():
|
||||
from ldm.util import debug_image
|
||||
decoded = self.numpy_to_pil(self.decode_latents(latents))
|
||||
for i, img in enumerate(decoded):
|
||||
debug_image(img, f"latents {msg} {i+1}/{len(decoded)}", debug_status=True)
|
@ -1,501 +0,0 @@
|
||||
'''
|
||||
ldm.invoke.generator.embiggen descends from ldm.invoke.generator
|
||||
and generates with ldm.invoke.generator.img2img
|
||||
'''
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from tqdm import trange
|
||||
|
||||
from ldm.invoke.generator.base import Generator
|
||||
from ldm.invoke.generator.img2img import Img2Img
|
||||
|
||||
|
||||
class Embiggen(Generator):
|
||||
def __init__(self, model, precision):
|
||||
super().__init__(model, precision)
|
||||
self.init_latent = None
|
||||
|
||||
# Replace generate because Embiggen doesn't need/use most of what it does normallly
|
||||
def generate(self,prompt,iterations=1,seed=None,
|
||||
image_callback=None, step_callback=None,
|
||||
**kwargs):
|
||||
|
||||
make_image = self.get_make_image(
|
||||
prompt,
|
||||
step_callback = step_callback,
|
||||
**kwargs
|
||||
)
|
||||
results = []
|
||||
seed = seed if seed else self.new_seed()
|
||||
|
||||
# Noise will be generated by the Img2Img generator when called
|
||||
for _ in trange(iterations, desc='Generating'):
|
||||
# make_image will call Img2Img which will do the equivalent of get_noise itself
|
||||
image = make_image()
|
||||
results.append([image, seed])
|
||||
if image_callback is not None:
|
||||
image_callback(image, seed, prompt_in=prompt)
|
||||
seed = self.new_seed()
|
||||
return results
|
||||
|
||||
@torch.no_grad()
|
||||
def get_make_image(
|
||||
self,
|
||||
prompt,
|
||||
sampler,
|
||||
steps,
|
||||
cfg_scale,
|
||||
ddim_eta,
|
||||
conditioning,
|
||||
init_img,
|
||||
strength,
|
||||
width,
|
||||
height,
|
||||
embiggen,
|
||||
embiggen_tiles,
|
||||
step_callback=None,
|
||||
**kwargs
|
||||
):
|
||||
"""
|
||||
Returns a function returning an image derived from the prompt and multi-stage twice-baked potato layering over the img2img on the initial image
|
||||
Return value depends on the seed at the time you call it
|
||||
"""
|
||||
assert not sampler.uses_inpainting_model(), "--embiggen is not supported by inpainting models"
|
||||
|
||||
# Construct embiggen arg array, and sanity check arguments
|
||||
if embiggen == None: # embiggen can also be called with just embiggen_tiles
|
||||
embiggen = [1.0] # If not specified, assume no scaling
|
||||
elif embiggen[0] < 0:
|
||||
embiggen[0] = 1.0
|
||||
print(
|
||||
'>> Embiggen scaling factor cannot be negative, fell back to the default of 1.0 !')
|
||||
if len(embiggen) < 2:
|
||||
embiggen.append(0.75)
|
||||
elif embiggen[1] > 1.0 or embiggen[1] < 0:
|
||||
embiggen[1] = 0.75
|
||||
print('>> Embiggen upscaling strength for ESRGAN must be between 0 and 1, fell back to the default of 0.75 !')
|
||||
if len(embiggen) < 3:
|
||||
embiggen.append(0.25)
|
||||
elif embiggen[2] < 0:
|
||||
embiggen[2] = 0.25
|
||||
print('>> Overlap size for Embiggen must be a positive ratio between 0 and 1 OR a number of pixels, fell back to the default of 0.25 !')
|
||||
|
||||
# Convert tiles from their user-freindly count-from-one to count-from-zero, because we need to do modulo math
|
||||
# and then sort them, because... people.
|
||||
if embiggen_tiles:
|
||||
embiggen_tiles = list(map(lambda n: n-1, embiggen_tiles))
|
||||
embiggen_tiles.sort()
|
||||
|
||||
if strength >= 0.5:
|
||||
print(f'* WARNING: Embiggen may produce mirror motifs if the strength (-f) is too high (currently {strength}). Try values between 0.35-0.45.')
|
||||
|
||||
# Prep img2img generator, since we wrap over it
|
||||
gen_img2img = Img2Img(self.model,self.precision)
|
||||
|
||||
# Open original init image (not a tensor) to manipulate
|
||||
initsuperimage = Image.open(init_img)
|
||||
|
||||
with Image.open(init_img) as img:
|
||||
initsuperimage = img.convert('RGB')
|
||||
|
||||
# Size of the target super init image in pixels
|
||||
initsuperwidth, initsuperheight = initsuperimage.size
|
||||
|
||||
# Increase by scaling factor if not already resized, using ESRGAN as able
|
||||
if embiggen[0] != 1.0:
|
||||
initsuperwidth = round(initsuperwidth*embiggen[0])
|
||||
initsuperheight = round(initsuperheight*embiggen[0])
|
||||
if embiggen[1] > 0: # No point in ESRGAN upscaling if strength is set zero
|
||||
from ldm.invoke.restoration.realesrgan import ESRGAN
|
||||
esrgan = ESRGAN()
|
||||
print(
|
||||
f'>> ESRGAN upscaling init image prior to cutting with Embiggen with strength {embiggen[1]}')
|
||||
if embiggen[0] > 2:
|
||||
initsuperimage = esrgan.process(
|
||||
initsuperimage,
|
||||
embiggen[1], # upscale strength
|
||||
self.seed,
|
||||
4, # upscale scale
|
||||
)
|
||||
else:
|
||||
initsuperimage = esrgan.process(
|
||||
initsuperimage,
|
||||
embiggen[1], # upscale strength
|
||||
self.seed,
|
||||
2, # upscale scale
|
||||
)
|
||||
# We could keep recursively re-running ESRGAN for a requested embiggen[0] larger than 4x
|
||||
# but from personal experiance it doesn't greatly improve anything after 4x
|
||||
# Resize to target scaling factor resolution
|
||||
initsuperimage = initsuperimage.resize(
|
||||
(initsuperwidth, initsuperheight), Image.Resampling.LANCZOS)
|
||||
|
||||
# Use width and height as tile widths and height
|
||||
# Determine buffer size in pixels
|
||||
if embiggen[2] < 1:
|
||||
if embiggen[2] < 0:
|
||||
embiggen[2] = 0
|
||||
overlap_size_x = round(embiggen[2] * width)
|
||||
overlap_size_y = round(embiggen[2] * height)
|
||||
else:
|
||||
overlap_size_x = round(embiggen[2])
|
||||
overlap_size_y = round(embiggen[2])
|
||||
|
||||
# With overall image width and height known, determine how many tiles we need
|
||||
def ceildiv(a, b):
|
||||
return -1 * (-a // b)
|
||||
|
||||
# X and Y needs to be determined independantly (we may have savings on one based on the buffer pixel count)
|
||||
# (initsuperwidth - width) is the area remaining to the right that we need to layers tiles to fill
|
||||
# (width - overlap_size_x) is how much new we can fill with a single tile
|
||||
emb_tiles_x = 1
|
||||
emb_tiles_y = 1
|
||||
if (initsuperwidth - width) > 0:
|
||||
emb_tiles_x = ceildiv(initsuperwidth - width,
|
||||
width - overlap_size_x) + 1
|
||||
if (initsuperheight - height) > 0:
|
||||
emb_tiles_y = ceildiv(initsuperheight - height,
|
||||
height - overlap_size_y) + 1
|
||||
# Sanity
|
||||
assert emb_tiles_x > 1 or emb_tiles_y > 1, f'ERROR: Based on the requested dimensions of {initsuperwidth}x{initsuperheight} and tiles of {width}x{height} you don\'t need to Embiggen! Check your arguments.'
|
||||
|
||||
# Prep alpha layers --------------
|
||||
# https://stackoverflow.com/questions/69321734/how-to-create-different-transparency-like-gradient-with-python-pil
|
||||
# agradientL is Left-side transparent
|
||||
agradientL = Image.linear_gradient('L').rotate(
|
||||
90).resize((overlap_size_x, height))
|
||||
# agradientT is Top-side transparent
|
||||
agradientT = Image.linear_gradient('L').resize((width, overlap_size_y))
|
||||
# radial corner is the left-top corner, made full circle then cut to just the left-top quadrant
|
||||
agradientC = Image.new('L', (256, 256))
|
||||
for y in range(256):
|
||||
for x in range(256):
|
||||
# Find distance to lower right corner (numpy takes arrays)
|
||||
distanceToLR = np.sqrt([(255 - x) ** 2 + (255 - y) ** 2])[0]
|
||||
# Clamp values to max 255
|
||||
if distanceToLR > 255:
|
||||
distanceToLR = 255
|
||||
#Place the pixel as invert of distance
|
||||
agradientC.putpixel((x, y), round(255 - distanceToLR))
|
||||
|
||||
# Create alternative asymmetric diagonal corner to use on "tailing" intersections to prevent hard edges
|
||||
# Fits for a left-fading gradient on the bottom side and full opacity on the right side.
|
||||
agradientAsymC = Image.new('L', (256, 256))
|
||||
for y in range(256):
|
||||
for x in range(256):
|
||||
value = round(max(0, x-(255-y)) * (255 / max(1,y)))
|
||||
#Clamp values
|
||||
value = max(0, value)
|
||||
value = min(255, value)
|
||||
agradientAsymC.putpixel((x, y), value)
|
||||
|
||||
# Create alpha layers default fully white
|
||||
alphaLayerL = Image.new("L", (width, height), 255)
|
||||
alphaLayerT = Image.new("L", (width, height), 255)
|
||||
alphaLayerLTC = Image.new("L", (width, height), 255)
|
||||
# Paste gradients into alpha layers
|
||||
alphaLayerL.paste(agradientL, (0, 0))
|
||||
alphaLayerT.paste(agradientT, (0, 0))
|
||||
alphaLayerLTC.paste(agradientL, (0, 0))
|
||||
alphaLayerLTC.paste(agradientT, (0, 0))
|
||||
alphaLayerLTC.paste(agradientC.resize((overlap_size_x, overlap_size_y)), (0, 0))
|
||||
# make masks with an asymmetric upper-right corner so when the curved transparent corner of the next tile
|
||||
# to its right is placed it doesn't reveal a hard trailing semi-transparent edge in the overlapping space
|
||||
alphaLayerTaC = alphaLayerT.copy()
|
||||
alphaLayerTaC.paste(agradientAsymC.rotate(270).resize((overlap_size_x, overlap_size_y)), (width - overlap_size_x, 0))
|
||||
alphaLayerLTaC = alphaLayerLTC.copy()
|
||||
alphaLayerLTaC.paste(agradientAsymC.rotate(270).resize((overlap_size_x, overlap_size_y)), (width - overlap_size_x, 0))
|
||||
|
||||
if embiggen_tiles:
|
||||
# Individual unconnected sides
|
||||
alphaLayerR = Image.new("L", (width, height), 255)
|
||||
alphaLayerR.paste(agradientL.rotate(
|
||||
180), (width - overlap_size_x, 0))
|
||||
alphaLayerB = Image.new("L", (width, height), 255)
|
||||
alphaLayerB.paste(agradientT.rotate(
|
||||
180), (0, height - overlap_size_y))
|
||||
alphaLayerTB = Image.new("L", (width, height), 255)
|
||||
alphaLayerTB.paste(agradientT, (0, 0))
|
||||
alphaLayerTB.paste(agradientT.rotate(
|
||||
180), (0, height - overlap_size_y))
|
||||
alphaLayerLR = Image.new("L", (width, height), 255)
|
||||
alphaLayerLR.paste(agradientL, (0, 0))
|
||||
alphaLayerLR.paste(agradientL.rotate(
|
||||
180), (width - overlap_size_x, 0))
|
||||
|
||||
# Sides and corner Layers
|
||||
alphaLayerRBC = Image.new("L", (width, height), 255)
|
||||
alphaLayerRBC.paste(agradientL.rotate(
|
||||
180), (width - overlap_size_x, 0))
|
||||
alphaLayerRBC.paste(agradientT.rotate(
|
||||
180), (0, height - overlap_size_y))
|
||||
alphaLayerRBC.paste(agradientC.rotate(180).resize(
|
||||
(overlap_size_x, overlap_size_y)), (width - overlap_size_x, height - overlap_size_y))
|
||||
alphaLayerLBC = Image.new("L", (width, height), 255)
|
||||
alphaLayerLBC.paste(agradientL, (0, 0))
|
||||
alphaLayerLBC.paste(agradientT.rotate(
|
||||
180), (0, height - overlap_size_y))
|
||||
alphaLayerLBC.paste(agradientC.rotate(90).resize(
|
||||
(overlap_size_x, overlap_size_y)), (0, height - overlap_size_y))
|
||||
alphaLayerRTC = Image.new("L", (width, height), 255)
|
||||
alphaLayerRTC.paste(agradientL.rotate(
|
||||
180), (width - overlap_size_x, 0))
|
||||
alphaLayerRTC.paste(agradientT, (0, 0))
|
||||
alphaLayerRTC.paste(agradientC.rotate(270).resize(
|
||||
(overlap_size_x, overlap_size_y)), (width - overlap_size_x, 0))
|
||||
|
||||
# All but X layers
|
||||
alphaLayerABT = Image.new("L", (width, height), 255)
|
||||
alphaLayerABT.paste(alphaLayerLBC, (0, 0))
|
||||
alphaLayerABT.paste(agradientL.rotate(
|
||||
180), (width - overlap_size_x, 0))
|
||||
alphaLayerABT.paste(agradientC.rotate(180).resize(
|
||||
(overlap_size_x, overlap_size_y)), (width - overlap_size_x, height - overlap_size_y))
|
||||
alphaLayerABL = Image.new("L", (width, height), 255)
|
||||
alphaLayerABL.paste(alphaLayerRTC, (0, 0))
|
||||
alphaLayerABL.paste(agradientT.rotate(
|
||||
180), (0, height - overlap_size_y))
|
||||
alphaLayerABL.paste(agradientC.rotate(180).resize(
|
||||
(overlap_size_x, overlap_size_y)), (width - overlap_size_x, height - overlap_size_y))
|
||||
alphaLayerABR = Image.new("L", (width, height), 255)
|
||||
alphaLayerABR.paste(alphaLayerLBC, (0, 0))
|
||||
alphaLayerABR.paste(agradientT, (0, 0))
|
||||
alphaLayerABR.paste(agradientC.resize(
|
||||
(overlap_size_x, overlap_size_y)), (0, 0))
|
||||
alphaLayerABB = Image.new("L", (width, height), 255)
|
||||
alphaLayerABB.paste(alphaLayerRTC, (0, 0))
|
||||
alphaLayerABB.paste(agradientL, (0, 0))
|
||||
alphaLayerABB.paste(agradientC.resize(
|
||||
(overlap_size_x, overlap_size_y)), (0, 0))
|
||||
|
||||
# All-around layer
|
||||
alphaLayerAA = Image.new("L", (width, height), 255)
|
||||
alphaLayerAA.paste(alphaLayerABT, (0, 0))
|
||||
alphaLayerAA.paste(agradientT, (0, 0))
|
||||
alphaLayerAA.paste(agradientC.resize(
|
||||
(overlap_size_x, overlap_size_y)), (0, 0))
|
||||
alphaLayerAA.paste(agradientC.rotate(270).resize(
|
||||
(overlap_size_x, overlap_size_y)), (width - overlap_size_x, 0))
|
||||
|
||||
# Clean up temporary gradients
|
||||
del agradientL
|
||||
del agradientT
|
||||
del agradientC
|
||||
|
||||
def make_image():
|
||||
# Make main tiles -------------------------------------------------
|
||||
if embiggen_tiles:
|
||||
print(f'>> Making {len(embiggen_tiles)} Embiggen tiles...')
|
||||
else:
|
||||
print(
|
||||
f'>> Making {(emb_tiles_x * emb_tiles_y)} Embiggen tiles ({emb_tiles_x}x{emb_tiles_y})...')
|
||||
|
||||
emb_tile_store = []
|
||||
# Although we could use the same seed for every tile for determinism, at higher strengths this may
|
||||
# produce duplicated structures for each tile and make the tiling effect more obvious
|
||||
# instead track and iterate a local seed we pass to Img2Img
|
||||
seed = self.seed
|
||||
seedintlimit = np.iinfo(np.uint32).max - 1 # only retreive this one from numpy
|
||||
|
||||
for tile in range(emb_tiles_x * emb_tiles_y):
|
||||
# Don't iterate on first tile
|
||||
if tile != 0:
|
||||
if seed < seedintlimit:
|
||||
seed += 1
|
||||
else:
|
||||
seed = 0
|
||||
|
||||
# Determine if this is a re-run and replace
|
||||
if embiggen_tiles and not tile in embiggen_tiles:
|
||||
continue
|
||||
# Get row and column entries
|
||||
emb_row_i = tile // emb_tiles_x
|
||||
emb_column_i = tile % emb_tiles_x
|
||||
# Determine bounds to cut up the init image
|
||||
# Determine upper-left point
|
||||
if emb_column_i + 1 == emb_tiles_x:
|
||||
left = initsuperwidth - width
|
||||
else:
|
||||
left = round(emb_column_i * (width - overlap_size_x))
|
||||
if emb_row_i + 1 == emb_tiles_y:
|
||||
top = initsuperheight - height
|
||||
else:
|
||||
top = round(emb_row_i * (height - overlap_size_y))
|
||||
right = left + width
|
||||
bottom = top + height
|
||||
|
||||
# Cropped image of above dimension (does not modify the original)
|
||||
newinitimage = initsuperimage.crop((left, top, right, bottom))
|
||||
# DEBUG:
|
||||
# newinitimagepath = init_img[0:-4] + f'_emb_Ti{tile}.png'
|
||||
# newinitimage.save(newinitimagepath)
|
||||
|
||||
if embiggen_tiles:
|
||||
print(
|
||||
f'Making tile #{tile + 1} ({embiggen_tiles.index(tile) + 1} of {len(embiggen_tiles)} requested)')
|
||||
else:
|
||||
print(
|
||||
f'Starting {tile + 1} of {(emb_tiles_x * emb_tiles_y)} tiles')
|
||||
|
||||
# create a torch tensor from an Image
|
||||
newinitimage = np.array(
|
||||
newinitimage).astype(np.float32) / 255.0
|
||||
newinitimage = newinitimage[None].transpose(0, 3, 1, 2)
|
||||
newinitimage = torch.from_numpy(newinitimage)
|
||||
newinitimage = 2.0 * newinitimage - 1.0
|
||||
newinitimage = newinitimage.to(self.model.device)
|
||||
clear_cuda_cache = kwargs['clear_cuda_cache'] if 'clear_cuda_cache' in kwargs else None
|
||||
|
||||
tile_results = gen_img2img.generate(
|
||||
prompt,
|
||||
iterations = 1,
|
||||
seed = seed,
|
||||
sampler = sampler,
|
||||
steps = steps,
|
||||
cfg_scale = cfg_scale,
|
||||
conditioning = conditioning,
|
||||
ddim_eta = ddim_eta,
|
||||
image_callback = None, # called only after the final image is generated
|
||||
step_callback = step_callback, # called after each intermediate image is generated
|
||||
width = width,
|
||||
height = height,
|
||||
init_image = newinitimage, # notice that init_image is different from init_img
|
||||
mask_image = None,
|
||||
strength = strength,
|
||||
clear_cuda_cache = clear_cuda_cache
|
||||
)
|
||||
|
||||
emb_tile_store.append(tile_results[0][0])
|
||||
# DEBUG (but, also has other uses), worth saving if you want tiles without a transparency overlap to manually composite
|
||||
# emb_tile_store[-1].save(init_img[0:-4] + f'_emb_To{tile}.png')
|
||||
del newinitimage
|
||||
|
||||
# Sanity check we have them all
|
||||
if len(emb_tile_store) == (emb_tiles_x * emb_tiles_y) or (embiggen_tiles != [] and len(emb_tile_store) == len(embiggen_tiles)):
|
||||
outputsuperimage = Image.new(
|
||||
"RGBA", (initsuperwidth, initsuperheight))
|
||||
if embiggen_tiles:
|
||||
outputsuperimage.alpha_composite(
|
||||
initsuperimage.convert('RGBA'), (0, 0))
|
||||
for tile in range(emb_tiles_x * emb_tiles_y):
|
||||
if embiggen_tiles:
|
||||
if tile in embiggen_tiles:
|
||||
intileimage = emb_tile_store.pop(0)
|
||||
else:
|
||||
continue
|
||||
else:
|
||||
intileimage = emb_tile_store[tile]
|
||||
intileimage = intileimage.convert('RGBA')
|
||||
# Get row and column entries
|
||||
emb_row_i = tile // emb_tiles_x
|
||||
emb_column_i = tile % emb_tiles_x
|
||||
if emb_row_i == 0 and emb_column_i == 0 and not embiggen_tiles:
|
||||
left = 0
|
||||
top = 0
|
||||
else:
|
||||
# Determine upper-left point
|
||||
if emb_column_i + 1 == emb_tiles_x:
|
||||
left = initsuperwidth - width
|
||||
else:
|
||||
left = round(emb_column_i *
|
||||
(width - overlap_size_x))
|
||||
if emb_row_i + 1 == emb_tiles_y:
|
||||
top = initsuperheight - height
|
||||
else:
|
||||
top = round(emb_row_i * (height - overlap_size_y))
|
||||
# Handle gradients for various conditions
|
||||
# Handle emb_rerun case
|
||||
if embiggen_tiles:
|
||||
# top of image
|
||||
if emb_row_i == 0:
|
||||
if emb_column_i == 0:
|
||||
if (tile+1) in embiggen_tiles: # Look-ahead right
|
||||
if (tile+emb_tiles_x) not in embiggen_tiles: # Look-ahead down
|
||||
intileimage.putalpha(alphaLayerB)
|
||||
# Otherwise do nothing on this tile
|
||||
elif (tile+emb_tiles_x) in embiggen_tiles: # Look-ahead down only
|
||||
intileimage.putalpha(alphaLayerR)
|
||||
else:
|
||||
intileimage.putalpha(alphaLayerRBC)
|
||||
elif emb_column_i == emb_tiles_x - 1:
|
||||
if (tile+emb_tiles_x) in embiggen_tiles: # Look-ahead down
|
||||
intileimage.putalpha(alphaLayerL)
|
||||
else:
|
||||
intileimage.putalpha(alphaLayerLBC)
|
||||
else:
|
||||
if (tile+1) in embiggen_tiles: # Look-ahead right
|
||||
if (tile+emb_tiles_x) in embiggen_tiles: # Look-ahead down
|
||||
intileimage.putalpha(alphaLayerL)
|
||||
else:
|
||||
intileimage.putalpha(alphaLayerLBC)
|
||||
elif (tile+emb_tiles_x) in embiggen_tiles: # Look-ahead down only
|
||||
intileimage.putalpha(alphaLayerLR)
|
||||
else:
|
||||
intileimage.putalpha(alphaLayerABT)
|
||||
# bottom of image
|
||||
elif emb_row_i == emb_tiles_y - 1:
|
||||
if emb_column_i == 0:
|
||||
if (tile+1) in embiggen_tiles: # Look-ahead right
|
||||
intileimage.putalpha(alphaLayerTaC)
|
||||
else:
|
||||
intileimage.putalpha(alphaLayerRTC)
|
||||
elif emb_column_i == emb_tiles_x - 1:
|
||||
# No tiles to look ahead to
|
||||
intileimage.putalpha(alphaLayerLTC)
|
||||
else:
|
||||
if (tile+1) in embiggen_tiles: # Look-ahead right
|
||||
intileimage.putalpha(alphaLayerLTaC)
|
||||
else:
|
||||
intileimage.putalpha(alphaLayerABB)
|
||||
# vertical middle of image
|
||||
else:
|
||||
if emb_column_i == 0:
|
||||
if (tile+1) in embiggen_tiles: # Look-ahead right
|
||||
if (tile+emb_tiles_x) in embiggen_tiles: # Look-ahead down
|
||||
intileimage.putalpha(alphaLayerTaC)
|
||||
else:
|
||||
intileimage.putalpha(alphaLayerTB)
|
||||
elif (tile+emb_tiles_x) in embiggen_tiles: # Look-ahead down only
|
||||
intileimage.putalpha(alphaLayerRTC)
|
||||
else:
|
||||
intileimage.putalpha(alphaLayerABL)
|
||||
elif emb_column_i == emb_tiles_x - 1:
|
||||
if (tile+emb_tiles_x) in embiggen_tiles: # Look-ahead down
|
||||
intileimage.putalpha(alphaLayerLTC)
|
||||
else:
|
||||
intileimage.putalpha(alphaLayerABR)
|
||||
else:
|
||||
if (tile+1) in embiggen_tiles: # Look-ahead right
|
||||
if (tile+emb_tiles_x) in embiggen_tiles: # Look-ahead down
|
||||
intileimage.putalpha(alphaLayerLTaC)
|
||||
else:
|
||||
intileimage.putalpha(alphaLayerABR)
|
||||
elif (tile+emb_tiles_x) in embiggen_tiles: # Look-ahead down only
|
||||
intileimage.putalpha(alphaLayerABB)
|
||||
else:
|
||||
intileimage.putalpha(alphaLayerAA)
|
||||
# Handle normal tiling case (much simpler - since we tile left to right, top to bottom)
|
||||
else:
|
||||
if emb_row_i == 0 and emb_column_i >= 1:
|
||||
intileimage.putalpha(alphaLayerL)
|
||||
elif emb_row_i >= 1 and emb_column_i == 0:
|
||||
if emb_column_i + 1 == emb_tiles_x: # If we don't have anything that can be placed to the right
|
||||
intileimage.putalpha(alphaLayerT)
|
||||
else:
|
||||
intileimage.putalpha(alphaLayerTaC)
|
||||
else:
|
||||
if emb_column_i + 1 == emb_tiles_x: # If we don't have anything that can be placed to the right
|
||||
intileimage.putalpha(alphaLayerLTC)
|
||||
else:
|
||||
intileimage.putalpha(alphaLayerLTaC)
|
||||
# Layer tile onto final image
|
||||
outputsuperimage.alpha_composite(intileimage, (left, top))
|
||||
else:
|
||||
print('Error: could not find all Embiggen output tiles in memory? Something must have gone wrong with img2img generation.')
|
||||
|
||||
# after internal loops and patching up return Embiggen image
|
||||
return outputsuperimage
|
||||
# end of function declaration
|
||||
return make_image
|
@ -1,70 +0,0 @@
|
||||
'''
|
||||
ldm.invoke.generator.img2img descends from ldm.invoke.generator
|
||||
'''
|
||||
|
||||
import torch
|
||||
from diffusers import logging
|
||||
|
||||
from ldm.invoke.generator.base import Generator
|
||||
from ldm.invoke.generator.diffusers_pipeline import StableDiffusionGeneratorPipeline, ConditioningData
|
||||
from ldm.models.diffusion.shared_invokeai_diffusion import PostprocessingSettings
|
||||
|
||||
|
||||
class Img2Img(Generator):
|
||||
def __init__(self, model, precision):
|
||||
super().__init__(model, precision)
|
||||
self.init_latent = None # by get_noise()
|
||||
|
||||
def get_make_image(self,prompt,sampler,steps,cfg_scale,ddim_eta,
|
||||
conditioning,init_image,strength,step_callback=None,threshold=0.0,warmup=0.2,perlin=0.0,
|
||||
h_symmetry_time_pct=None,v_symmetry_time_pct=None,attention_maps_callback=None,
|
||||
**kwargs):
|
||||
"""
|
||||
Returns a function returning an image derived from the prompt and the initial image
|
||||
Return value depends on the seed at the time you call it.
|
||||
"""
|
||||
self.perlin = perlin
|
||||
|
||||
# noinspection PyTypeChecker
|
||||
pipeline: StableDiffusionGeneratorPipeline = self.model
|
||||
pipeline.scheduler = sampler
|
||||
|
||||
uc, c, extra_conditioning_info = conditioning
|
||||
conditioning_data = (
|
||||
ConditioningData(
|
||||
uc, c, cfg_scale, extra_conditioning_info,
|
||||
postprocessing_settings=PostprocessingSettings(
|
||||
threshold=threshold,
|
||||
warmup=warmup,
|
||||
h_symmetry_time_pct=h_symmetry_time_pct,
|
||||
v_symmetry_time_pct=v_symmetry_time_pct
|
||||
)
|
||||
).add_scheduler_args_if_applicable(pipeline.scheduler, eta=ddim_eta))
|
||||
|
||||
|
||||
def make_image(x_T):
|
||||
# FIXME: use x_T for initial seeded noise
|
||||
# We're not at the moment because the pipeline automatically resizes init_image if
|
||||
# necessary, which the x_T input might not match.
|
||||
logging.set_verbosity_error() # quench safety check warnings
|
||||
pipeline_output = pipeline.img2img_from_embeddings(
|
||||
init_image, strength, steps, conditioning_data,
|
||||
noise_func=self.get_noise_like,
|
||||
callback=step_callback
|
||||
)
|
||||
if pipeline_output.attention_map_saver is not None and attention_maps_callback is not None:
|
||||
attention_maps_callback(pipeline_output.attention_map_saver)
|
||||
return pipeline.numpy_to_pil(pipeline_output.images)[0]
|
||||
|
||||
return make_image
|
||||
|
||||
def get_noise_like(self, like: torch.Tensor):
|
||||
device = like.device
|
||||
if device.type == 'mps':
|
||||
x = torch.randn_like(like, device='cpu').to(device)
|
||||
else:
|
||||
x = torch.randn_like(like, device=device)
|
||||
if self.perlin > 0.0:
|
||||
shape = like.shape
|
||||
x = (1-self.perlin)*x + self.perlin*self.get_perlin_noise(shape[3], shape[2])
|
||||
return x
|
@ -1,324 +0,0 @@
|
||||
'''
|
||||
ldm.invoke.generator.inpaint descends from ldm.invoke.generator
|
||||
'''
|
||||
from __future__ import annotations
|
||||
|
||||
import math
|
||||
|
||||
import PIL
|
||||
import cv2
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image, ImageFilter, ImageOps, ImageChops
|
||||
|
||||
from ldm.invoke.generator.diffusers_pipeline import image_resized_to_grid_as_tensor, StableDiffusionGeneratorPipeline, \
|
||||
ConditioningData
|
||||
from ldm.invoke.generator.img2img import Img2Img
|
||||
from ldm.invoke.patchmatch import PatchMatch
|
||||
from ldm.util import debug_image
|
||||
|
||||
|
||||
def infill_methods()->list[str]:
|
||||
methods = [
|
||||
"tile",
|
||||
"solid",
|
||||
]
|
||||
if PatchMatch.patchmatch_available():
|
||||
methods.insert(0, 'patchmatch')
|
||||
return methods
|
||||
|
||||
class Inpaint(Img2Img):
|
||||
def __init__(self, model, precision):
|
||||
self.inpaint_height = 0
|
||||
self.inpaint_width = 0
|
||||
self.enable_image_debugging = False
|
||||
self.init_latent = None
|
||||
self.pil_image = None
|
||||
self.pil_mask = None
|
||||
self.mask_blur_radius = 0
|
||||
self.infill_method = None
|
||||
super().__init__(model, precision)
|
||||
|
||||
# Outpaint support code
|
||||
def get_tile_images(self, image: np.ndarray, width=8, height=8):
|
||||
_nrows, _ncols, depth = image.shape
|
||||
_strides = image.strides
|
||||
|
||||
nrows, _m = divmod(_nrows, height)
|
||||
ncols, _n = divmod(_ncols, width)
|
||||
if _m != 0 or _n != 0:
|
||||
return None
|
||||
|
||||
return np.lib.stride_tricks.as_strided(
|
||||
np.ravel(image),
|
||||
shape=(nrows, ncols, height, width, depth),
|
||||
strides=(height * _strides[0], width * _strides[1], *_strides),
|
||||
writeable=False
|
||||
)
|
||||
|
||||
def infill_patchmatch(self, im: Image.Image) -> Image:
|
||||
if im.mode != 'RGBA':
|
||||
return im
|
||||
|
||||
# Skip patchmatch if patchmatch isn't available
|
||||
if not PatchMatch.patchmatch_available():
|
||||
return im
|
||||
|
||||
# Patchmatch (note, we may want to expose patch_size? Increasing it significantly impacts performance though)
|
||||
im_patched_np = PatchMatch.inpaint(im.convert('RGB'), ImageOps.invert(im.split()[-1]), patch_size = 3)
|
||||
im_patched = Image.fromarray(im_patched_np, mode = 'RGB')
|
||||
return im_patched
|
||||
|
||||
def tile_fill_missing(self, im: Image.Image, tile_size: int = 16, seed: int = None) -> Image:
|
||||
# Only fill if there's an alpha layer
|
||||
if im.mode != 'RGBA':
|
||||
return im
|
||||
|
||||
a = np.asarray(im, dtype=np.uint8)
|
||||
|
||||
tile_size = (tile_size, tile_size)
|
||||
|
||||
# Get the image as tiles of a specified size
|
||||
tiles = self.get_tile_images(a,*tile_size).copy()
|
||||
|
||||
# Get the mask as tiles
|
||||
tiles_mask = tiles[:,:,:,:,3]
|
||||
|
||||
# Find any mask tiles with any fully transparent pixels (we will be replacing these later)
|
||||
tmask_shape = tiles_mask.shape
|
||||
tiles_mask = tiles_mask.reshape(math.prod(tiles_mask.shape))
|
||||
n,ny = (math.prod(tmask_shape[0:2])), math.prod(tmask_shape[2:])
|
||||
tiles_mask = (tiles_mask > 0)
|
||||
tiles_mask = tiles_mask.reshape((n,ny)).all(axis = 1)
|
||||
|
||||
# Get RGB tiles in single array and filter by the mask
|
||||
tshape = tiles.shape
|
||||
tiles_all = tiles.reshape((math.prod(tiles.shape[0:2]), * tiles.shape[2:]))
|
||||
filtered_tiles = tiles_all[tiles_mask]
|
||||
|
||||
if len(filtered_tiles) == 0:
|
||||
return im
|
||||
|
||||
# Find all invalid tiles and replace with a random valid tile
|
||||
replace_count = (tiles_mask == False).sum()
|
||||
rng = np.random.default_rng(seed = seed)
|
||||
tiles_all[np.logical_not(tiles_mask)] = filtered_tiles[rng.choice(filtered_tiles.shape[0], replace_count),:,:,:]
|
||||
|
||||
# Convert back to an image
|
||||
tiles_all = tiles_all.reshape(tshape)
|
||||
tiles_all = tiles_all.swapaxes(1,2)
|
||||
st = tiles_all.reshape((math.prod(tiles_all.shape[0:2]), math.prod(tiles_all.shape[2:4]), tiles_all.shape[4]))
|
||||
si = Image.fromarray(st, mode='RGBA')
|
||||
|
||||
return si
|
||||
|
||||
|
||||
def mask_edge(self, mask: Image, edge_size: int, edge_blur: int) -> Image:
|
||||
npimg = np.asarray(mask, dtype=np.uint8)
|
||||
|
||||
# Detect any partially transparent regions
|
||||
npgradient = np.uint8(255 * (1.0 - np.floor(np.abs(0.5 - np.float32(npimg) / 255.0) * 2.0)))
|
||||
|
||||
# Detect hard edges
|
||||
npedge = cv2.Canny(npimg, threshold1=100, threshold2=200)
|
||||
|
||||
# Combine
|
||||
npmask = npgradient + npedge
|
||||
|
||||
# Expand
|
||||
npmask = cv2.dilate(npmask, np.ones((3,3), np.uint8), iterations = int(edge_size / 2))
|
||||
|
||||
new_mask = Image.fromarray(npmask)
|
||||
|
||||
if edge_blur > 0:
|
||||
new_mask = new_mask.filter(ImageFilter.BoxBlur(edge_blur))
|
||||
|
||||
return ImageOps.invert(new_mask)
|
||||
|
||||
|
||||
def seam_paint(self, im: Image.Image, seam_size: int, seam_blur: int, prompt, sampler, steps, cfg_scale, ddim_eta,
|
||||
conditioning, strength, noise, infill_method, step_callback) -> Image.Image:
|
||||
hard_mask = self.pil_image.split()[-1].copy()
|
||||
mask = self.mask_edge(hard_mask, seam_size, seam_blur)
|
||||
|
||||
make_image = self.get_make_image(
|
||||
prompt,
|
||||
sampler,
|
||||
steps,
|
||||
cfg_scale,
|
||||
ddim_eta,
|
||||
conditioning,
|
||||
init_image = im.copy().convert('RGBA'),
|
||||
mask_image = mask,
|
||||
strength = strength,
|
||||
mask_blur_radius = 0,
|
||||
seam_size = 0,
|
||||
step_callback = step_callback,
|
||||
inpaint_width = im.width,
|
||||
inpaint_height = im.height,
|
||||
infill_method = infill_method
|
||||
)
|
||||
|
||||
seam_noise = self.get_noise(im.width, im.height)
|
||||
|
||||
result = make_image(seam_noise)
|
||||
|
||||
return result
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def get_make_image(self,prompt,sampler,steps,cfg_scale,ddim_eta,
|
||||
conditioning,
|
||||
init_image: PIL.Image.Image | torch.FloatTensor,
|
||||
mask_image: PIL.Image.Image | torch.FloatTensor,
|
||||
strength: float,
|
||||
mask_blur_radius: int = 8,
|
||||
# Seam settings - when 0, doesn't fill seam
|
||||
seam_size: int = 0,
|
||||
seam_blur: int = 0,
|
||||
seam_strength: float = 0.7,
|
||||
seam_steps: int = 10,
|
||||
tile_size: int = 32,
|
||||
step_callback=None,
|
||||
inpaint_replace=False, enable_image_debugging=False,
|
||||
infill_method = None,
|
||||
inpaint_width=None,
|
||||
inpaint_height=None,
|
||||
inpaint_fill:tuple(int)=(0x7F, 0x7F, 0x7F, 0xFF),
|
||||
attention_maps_callback=None,
|
||||
**kwargs):
|
||||
"""
|
||||
Returns a function returning an image derived from the prompt and
|
||||
the initial image + mask. Return value depends on the seed at
|
||||
the time you call it. kwargs are 'init_latent' and 'strength'
|
||||
"""
|
||||
|
||||
self.enable_image_debugging = enable_image_debugging
|
||||
infill_method = infill_method or infill_methods()[0]
|
||||
self.infill_method = infill_method
|
||||
|
||||
self.inpaint_width = inpaint_width
|
||||
self.inpaint_height = inpaint_height
|
||||
|
||||
if isinstance(init_image, PIL.Image.Image):
|
||||
self.pil_image = init_image.copy()
|
||||
|
||||
# Do infill
|
||||
if infill_method == 'patchmatch' and PatchMatch.patchmatch_available():
|
||||
init_filled = self.infill_patchmatch(self.pil_image.copy())
|
||||
elif infill_method == 'tile':
|
||||
init_filled = self.tile_fill_missing(
|
||||
self.pil_image.copy(),
|
||||
seed = self.seed,
|
||||
tile_size = tile_size
|
||||
)
|
||||
elif infill_method == 'solid':
|
||||
solid_bg = PIL.Image.new("RGBA", init_image.size, inpaint_fill)
|
||||
init_filled = PIL.Image.alpha_composite(solid_bg, init_image)
|
||||
else:
|
||||
raise ValueError(f"Non-supported infill type {infill_method}", infill_method)
|
||||
init_filled.paste(init_image, (0,0), init_image.split()[-1])
|
||||
|
||||
# Resize if requested for inpainting
|
||||
if inpaint_width and inpaint_height:
|
||||
init_filled = init_filled.resize((inpaint_width, inpaint_height))
|
||||
|
||||
debug_image(init_filled, "init_filled", debug_status=self.enable_image_debugging)
|
||||
|
||||
# Create init tensor
|
||||
init_image = image_resized_to_grid_as_tensor(init_filled.convert('RGB'))
|
||||
|
||||
if isinstance(mask_image, PIL.Image.Image):
|
||||
self.pil_mask = mask_image.copy()
|
||||
debug_image(mask_image, "mask_image BEFORE multiply with pil_image", debug_status=self.enable_image_debugging)
|
||||
|
||||
init_alpha = self.pil_image.getchannel("A")
|
||||
if mask_image.mode != "L":
|
||||
# FIXME: why do we get passed an RGB image here? We can only use single-channel.
|
||||
mask_image = mask_image.convert("L")
|
||||
mask_image = ImageChops.multiply(mask_image, init_alpha)
|
||||
self.pil_mask = mask_image
|
||||
|
||||
# Resize if requested for inpainting
|
||||
if inpaint_width and inpaint_height:
|
||||
mask_image = mask_image.resize((inpaint_width, inpaint_height))
|
||||
|
||||
debug_image(mask_image, "mask_image AFTER multiply with pil_image", debug_status=self.enable_image_debugging)
|
||||
mask: torch.FloatTensor = image_resized_to_grid_as_tensor(mask_image, normalize=False)
|
||||
else:
|
||||
mask: torch.FloatTensor = mask_image
|
||||
|
||||
self.mask_blur_radius = mask_blur_radius
|
||||
|
||||
# noinspection PyTypeChecker
|
||||
pipeline: StableDiffusionGeneratorPipeline = self.model
|
||||
pipeline.scheduler = sampler
|
||||
|
||||
# todo: support cross-attention control
|
||||
uc, c, _ = conditioning
|
||||
conditioning_data = (ConditioningData(uc, c, cfg_scale)
|
||||
.add_scheduler_args_if_applicable(pipeline.scheduler, eta=ddim_eta))
|
||||
|
||||
|
||||
def make_image(x_T):
|
||||
pipeline_output = pipeline.inpaint_from_embeddings(
|
||||
init_image=init_image,
|
||||
mask=1 - mask, # expects white means "paint here."
|
||||
strength=strength,
|
||||
num_inference_steps=steps,
|
||||
conditioning_data=conditioning_data,
|
||||
noise_func=self.get_noise_like,
|
||||
callback=step_callback,
|
||||
)
|
||||
|
||||
if pipeline_output.attention_map_saver is not None and attention_maps_callback is not None:
|
||||
attention_maps_callback(pipeline_output.attention_map_saver)
|
||||
|
||||
result = self.postprocess_size_and_mask(pipeline.numpy_to_pil(pipeline_output.images)[0])
|
||||
|
||||
# Seam paint if this is our first pass (seam_size set to 0 during seam painting)
|
||||
if seam_size > 0:
|
||||
old_image = self.pil_image or init_image
|
||||
old_mask = self.pil_mask or mask_image
|
||||
|
||||
result = self.seam_paint(result, seam_size, seam_blur, prompt, sampler, seam_steps, cfg_scale, ddim_eta,
|
||||
conditioning, seam_strength, x_T, infill_method, step_callback)
|
||||
|
||||
# Restore original settings
|
||||
self.get_make_image(prompt,sampler,steps,cfg_scale,ddim_eta,
|
||||
conditioning,
|
||||
old_image,
|
||||
old_mask,
|
||||
strength,
|
||||
mask_blur_radius, seam_size, seam_blur, seam_strength,
|
||||
seam_steps, tile_size, step_callback,
|
||||
inpaint_replace, enable_image_debugging,
|
||||
inpaint_width = inpaint_width,
|
||||
inpaint_height = inpaint_height,
|
||||
infill_method = infill_method,
|
||||
**kwargs)
|
||||
|
||||
return result
|
||||
|
||||
return make_image
|
||||
|
||||
|
||||
def sample_to_image(self, samples)->Image.Image:
|
||||
gen_result = super().sample_to_image(samples).convert('RGB')
|
||||
return self.postprocess_size_and_mask(gen_result)
|
||||
|
||||
|
||||
def postprocess_size_and_mask(self, gen_result: Image.Image) -> Image.Image:
|
||||
debug_image(gen_result, "gen_result", debug_status=self.enable_image_debugging)
|
||||
|
||||
# Resize if necessary
|
||||
if self.inpaint_width and self.inpaint_height:
|
||||
gen_result = gen_result.resize(self.pil_image.size)
|
||||
|
||||
if self.pil_image is None or self.pil_mask is None:
|
||||
return gen_result
|
||||
|
||||
corrected_result = self.repaste_and_color_correct(gen_result, self.pil_image, self.pil_mask, self.mask_blur_radius)
|
||||
debug_image(corrected_result, "corrected_result", debug_status=self.enable_image_debugging)
|
||||
|
||||
return corrected_result
|
@ -1,173 +0,0 @@
|
||||
"""omnibus module to be used with the runwayml 9-channel custom inpainting model"""
|
||||
|
||||
import torch
|
||||
from PIL import Image, ImageOps
|
||||
from einops import repeat
|
||||
|
||||
from ldm.invoke.devices import choose_autocast
|
||||
from ldm.invoke.generator.img2img import Img2Img
|
||||
from ldm.invoke.generator.txt2img import Txt2Img
|
||||
|
||||
|
||||
class Omnibus(Img2Img,Txt2Img):
|
||||
def __init__(self, model, precision):
|
||||
super().__init__(model, precision)
|
||||
self.pil_mask = None
|
||||
self.pil_image = None
|
||||
|
||||
def get_make_image(
|
||||
self,
|
||||
prompt,
|
||||
sampler,
|
||||
steps,
|
||||
cfg_scale,
|
||||
ddim_eta,
|
||||
conditioning,
|
||||
width,
|
||||
height,
|
||||
init_image = None,
|
||||
mask_image = None,
|
||||
strength = None,
|
||||
step_callback=None,
|
||||
threshold=0.0,
|
||||
perlin=0.0,
|
||||
mask_blur_radius: int = 8,
|
||||
**kwargs):
|
||||
"""
|
||||
Returns a function returning an image derived from the prompt and the initial image
|
||||
Return value depends on the seed at the time you call it.
|
||||
"""
|
||||
self.perlin = perlin
|
||||
num_samples = 1
|
||||
|
||||
sampler.make_schedule(
|
||||
ddim_num_steps=steps, ddim_eta=ddim_eta, verbose=False
|
||||
)
|
||||
|
||||
if isinstance(init_image, Image.Image):
|
||||
self.pil_image = init_image
|
||||
if init_image.mode != 'RGB':
|
||||
init_image = init_image.convert('RGB')
|
||||
init_image = self._image_to_tensor(init_image)
|
||||
|
||||
if isinstance(mask_image, Image.Image):
|
||||
self.pil_mask = mask_image
|
||||
|
||||
mask_image = ImageChops.multiply(mask_image.convert('L'), self.pil_image.split()[-1])
|
||||
mask_image = self._image_to_tensor(ImageOps.invert(mask_image), normalize=False)
|
||||
|
||||
self.mask_blur_radius = mask_blur_radius
|
||||
|
||||
if init_image is not None and mask_image is not None: # inpainting
|
||||
masked_image = init_image * (1 - mask_image) # masked image is the image masked by mask - masked regions zero
|
||||
|
||||
elif init_image is not None: # img2img
|
||||
scope = choose_autocast(self.precision)
|
||||
|
||||
with scope(self.model.device.type):
|
||||
self.init_latent = self.model.get_first_stage_encoding(
|
||||
self.model.encode_first_stage(init_image)
|
||||
) # move to latent space
|
||||
|
||||
# create a completely black mask (1s)
|
||||
mask_image = torch.ones(1, 1, init_image.shape[2], init_image.shape[3], device=self.model.device)
|
||||
# and the masked image is just a copy of the original
|
||||
masked_image = init_image
|
||||
|
||||
else: # txt2img
|
||||
init_image = torch.zeros(1, 3, height, width, device=self.model.device)
|
||||
mask_image = torch.ones(1, 1, height, width, device=self.model.device)
|
||||
masked_image = init_image
|
||||
|
||||
self.init_latent = init_image
|
||||
height = init_image.shape[2]
|
||||
width = init_image.shape[3]
|
||||
model = self.model
|
||||
|
||||
def make_image(x_T):
|
||||
with torch.no_grad():
|
||||
scope = choose_autocast(self.precision)
|
||||
with scope(self.model.device.type):
|
||||
|
||||
batch = self.make_batch_sd(
|
||||
init_image,
|
||||
mask_image,
|
||||
masked_image,
|
||||
prompt=prompt,
|
||||
device=model.device,
|
||||
num_samples=num_samples,
|
||||
)
|
||||
|
||||
c = model.cond_stage_model.encode(batch["txt"])
|
||||
c_cat = list()
|
||||
for ck in model.concat_keys:
|
||||
cc = batch[ck].float()
|
||||
if ck != model.masked_image_key:
|
||||
bchw = [num_samples, 4, height//8, width//8]
|
||||
cc = torch.nn.functional.interpolate(cc, size=bchw[-2:])
|
||||
else:
|
||||
cc = model.get_first_stage_encoding(model.encode_first_stage(cc))
|
||||
c_cat.append(cc)
|
||||
c_cat = torch.cat(c_cat, dim=1)
|
||||
|
||||
# cond
|
||||
cond={"c_concat": [c_cat], "c_crossattn": [c]}
|
||||
|
||||
# uncond cond
|
||||
uc_cross = model.get_unconditional_conditioning(num_samples, "")
|
||||
uc_full = {"c_concat": [c_cat], "c_crossattn": [uc_cross]}
|
||||
shape = [model.channels, height//8, width//8]
|
||||
|
||||
samples, _ = sampler.sample(
|
||||
batch_size = 1,
|
||||
S = steps,
|
||||
x_T = x_T,
|
||||
conditioning = cond,
|
||||
shape = shape,
|
||||
verbose = False,
|
||||
unconditional_guidance_scale = cfg_scale,
|
||||
unconditional_conditioning = uc_full,
|
||||
eta = 1.0,
|
||||
img_callback = step_callback,
|
||||
threshold = threshold,
|
||||
)
|
||||
if self.free_gpu_mem:
|
||||
self.model.model.to("cpu")
|
||||
return self.sample_to_image(samples)
|
||||
|
||||
return make_image
|
||||
|
||||
def make_batch_sd(
|
||||
self,
|
||||
image,
|
||||
mask,
|
||||
masked_image,
|
||||
prompt,
|
||||
device,
|
||||
num_samples=1):
|
||||
batch = {
|
||||
"image": repeat(image.to(device=device), "1 ... -> n ...", n=num_samples),
|
||||
"txt": num_samples * [prompt],
|
||||
"mask": repeat(mask.to(device=device), "1 ... -> n ...", n=num_samples),
|
||||
"masked_image": repeat(masked_image.to(device=device), "1 ... -> n ...", n=num_samples),
|
||||
}
|
||||
return batch
|
||||
|
||||
def get_noise(self, width:int, height:int):
|
||||
if self.init_latent is not None:
|
||||
height = self.init_latent.shape[2]
|
||||
width = self.init_latent.shape[3]
|
||||
return Txt2Img.get_noise(self,width,height)
|
||||
|
||||
|
||||
def sample_to_image(self, samples)->Image.Image:
|
||||
gen_result = super().sample_to_image(samples).convert('RGB')
|
||||
|
||||
if self.pil_image is None or self.pil_mask is None:
|
||||
return gen_result
|
||||
if self.pil_image.size != self.pil_mask.size:
|
||||
return gen_result
|
||||
|
||||
corrected_result = super(Img2Img, self).repaste_and_color_correct(gen_result, self.pil_image, self.pil_mask, self.mask_blur_radius)
|
||||
|
||||
return corrected_result
|
@ -1,61 +0,0 @@
|
||||
'''
|
||||
ldm.invoke.generator.txt2img inherits from ldm.invoke.generator
|
||||
'''
|
||||
import PIL.Image
|
||||
import torch
|
||||
|
||||
from .base import Generator
|
||||
from .diffusers_pipeline import StableDiffusionGeneratorPipeline, ConditioningData
|
||||
from ...models.diffusion.shared_invokeai_diffusion import PostprocessingSettings
|
||||
|
||||
|
||||
class Txt2Img(Generator):
|
||||
def __init__(self, model, precision):
|
||||
super().__init__(model, precision)
|
||||
|
||||
@torch.no_grad()
|
||||
def get_make_image(self,prompt,sampler,steps,cfg_scale,ddim_eta,
|
||||
conditioning,width,height,step_callback=None,threshold=0.0,warmup=0.2,perlin=0.0,
|
||||
h_symmetry_time_pct=None,v_symmetry_time_pct=None,attention_maps_callback=None,
|
||||
**kwargs):
|
||||
"""
|
||||
Returns a function returning an image derived from the prompt and the initial image
|
||||
Return value depends on the seed at the time you call it
|
||||
kwargs are 'width' and 'height'
|
||||
"""
|
||||
self.perlin = perlin
|
||||
|
||||
# noinspection PyTypeChecker
|
||||
pipeline: StableDiffusionGeneratorPipeline = self.model
|
||||
pipeline.scheduler = sampler
|
||||
|
||||
uc, c, extra_conditioning_info = conditioning
|
||||
conditioning_data = (
|
||||
ConditioningData(
|
||||
uc, c, cfg_scale, extra_conditioning_info,
|
||||
postprocessing_settings=PostprocessingSettings(
|
||||
threshold=threshold,
|
||||
warmup=warmup,
|
||||
h_symmetry_time_pct=h_symmetry_time_pct,
|
||||
v_symmetry_time_pct=v_symmetry_time_pct
|
||||
)
|
||||
).add_scheduler_args_if_applicable(pipeline.scheduler, eta=ddim_eta))
|
||||
|
||||
def make_image(x_T) -> PIL.Image.Image:
|
||||
pipeline_output = pipeline.image_from_embeddings(
|
||||
latents=torch.zeros_like(x_T,dtype=self.torch_dtype()),
|
||||
noise=x_T,
|
||||
num_inference_steps=steps,
|
||||
conditioning_data=conditioning_data,
|
||||
callback=step_callback,
|
||||
)
|
||||
|
||||
if pipeline_output.attention_map_saver is not None and attention_maps_callback is not None:
|
||||
attention_maps_callback(pipeline_output.attention_map_saver)
|
||||
|
||||
return pipeline.numpy_to_pil(pipeline_output.images)[0]
|
||||
|
||||
return make_image
|
||||
|
||||
|
||||
|
@ -1,163 +0,0 @@
|
||||
'''
|
||||
ldm.invoke.generator.txt2img inherits from ldm.invoke.generator
|
||||
'''
|
||||
|
||||
import math
|
||||
from typing import Callable, Optional
|
||||
|
||||
import torch
|
||||
from diffusers.utils.logging import get_verbosity, set_verbosity, set_verbosity_error
|
||||
|
||||
from ldm.invoke.generator.base import Generator
|
||||
from ldm.invoke.generator.diffusers_pipeline import trim_to_multiple_of, StableDiffusionGeneratorPipeline, \
|
||||
ConditioningData
|
||||
from ldm.models.diffusion.shared_invokeai_diffusion import PostprocessingSettings
|
||||
|
||||
|
||||
class Txt2Img2Img(Generator):
|
||||
def __init__(self, model, precision):
|
||||
super().__init__(model, precision)
|
||||
self.init_latent = None # for get_noise()
|
||||
|
||||
def get_make_image(self, prompt:str, sampler, steps:int, cfg_scale:float, ddim_eta,
|
||||
conditioning, width:int, height:int, strength:float,
|
||||
step_callback:Optional[Callable]=None, threshold=0.0, warmup=0.2, perlin=0.0,
|
||||
h_symmetry_time_pct=None, v_symmetry_time_pct=None, attention_maps_callback=None, **kwargs):
|
||||
"""
|
||||
Returns a function returning an image derived from the prompt and the initial image
|
||||
Return value depends on the seed at the time you call it
|
||||
kwargs are 'width' and 'height'
|
||||
"""
|
||||
self.perlin = perlin
|
||||
|
||||
# noinspection PyTypeChecker
|
||||
pipeline: StableDiffusionGeneratorPipeline = self.model
|
||||
pipeline.scheduler = sampler
|
||||
|
||||
uc, c, extra_conditioning_info = conditioning
|
||||
conditioning_data = (
|
||||
ConditioningData(
|
||||
uc, c, cfg_scale, extra_conditioning_info,
|
||||
postprocessing_settings = PostprocessingSettings(
|
||||
threshold=threshold,
|
||||
warmup=0.2,
|
||||
h_symmetry_time_pct=h_symmetry_time_pct,
|
||||
v_symmetry_time_pct=v_symmetry_time_pct
|
||||
)
|
||||
).add_scheduler_args_if_applicable(pipeline.scheduler, eta=ddim_eta))
|
||||
|
||||
def make_image(x_T):
|
||||
|
||||
first_pass_latent_output, _ = pipeline.latents_from_embeddings(
|
||||
latents=torch.zeros_like(x_T),
|
||||
num_inference_steps=steps,
|
||||
conditioning_data=conditioning_data,
|
||||
noise=x_T,
|
||||
callback=step_callback,
|
||||
)
|
||||
|
||||
# Get our initial generation width and height directly from the latent output so
|
||||
# the message below is accurate.
|
||||
init_width = first_pass_latent_output.size()[3] * self.downsampling_factor
|
||||
init_height = first_pass_latent_output.size()[2] * self.downsampling_factor
|
||||
print(
|
||||
f"\n>> Interpolating from {init_width}x{init_height} to {width}x{height} using DDIM sampling"
|
||||
)
|
||||
|
||||
# resizing
|
||||
resized_latents = torch.nn.functional.interpolate(
|
||||
first_pass_latent_output,
|
||||
size=(height // self.downsampling_factor, width // self.downsampling_factor),
|
||||
mode="bilinear"
|
||||
)
|
||||
|
||||
# Free up memory from the last generation.
|
||||
clear_cuda_cache = kwargs['clear_cuda_cache'] or None
|
||||
if clear_cuda_cache is not None:
|
||||
clear_cuda_cache()
|
||||
|
||||
second_pass_noise = self.get_noise_like(resized_latents, override_perlin=True)
|
||||
|
||||
# Clear symmetry for the second pass
|
||||
from dataclasses import replace
|
||||
new_postprocessing_settings = replace(conditioning_data.postprocessing_settings, h_symmetry_time_pct=None)
|
||||
new_postprocessing_settings = replace(new_postprocessing_settings, v_symmetry_time_pct=None)
|
||||
new_conditioning_data = replace(conditioning_data, postprocessing_settings=new_postprocessing_settings)
|
||||
|
||||
verbosity = get_verbosity()
|
||||
set_verbosity_error()
|
||||
pipeline_output = pipeline.img2img_from_latents_and_embeddings(
|
||||
resized_latents,
|
||||
num_inference_steps=steps,
|
||||
conditioning_data=new_conditioning_data,
|
||||
strength=strength,
|
||||
noise=second_pass_noise,
|
||||
callback=step_callback)
|
||||
set_verbosity(verbosity)
|
||||
|
||||
if pipeline_output.attention_map_saver is not None and attention_maps_callback is not None:
|
||||
attention_maps_callback(pipeline_output.attention_map_saver)
|
||||
|
||||
return pipeline.numpy_to_pil(pipeline_output.images)[0]
|
||||
|
||||
|
||||
# FIXME: do we really need something entirely different for the inpainting model?
|
||||
|
||||
# in the case of the inpainting model being loaded, the trick of
|
||||
# providing an interpolated latent doesn't work, so we transiently
|
||||
# create a 512x512 PIL image, upscale it, and run the inpainting
|
||||
# over it in img2img mode. Because the inpaing model is so conservative
|
||||
# it doesn't change the image (much)
|
||||
|
||||
return make_image
|
||||
|
||||
def get_noise_like(self, like: torch.Tensor, override_perlin: bool=False):
|
||||
device = like.device
|
||||
if device.type == 'mps':
|
||||
x = torch.randn_like(like, device='cpu', dtype=self.torch_dtype()).to(device)
|
||||
else:
|
||||
x = torch.randn_like(like, device=device, dtype=self.torch_dtype())
|
||||
if self.perlin > 0.0 and override_perlin == False:
|
||||
shape = like.shape
|
||||
x = (1-self.perlin)*x + self.perlin*self.get_perlin_noise(shape[3], shape[2])
|
||||
return x
|
||||
|
||||
# returns a tensor filled with random numbers from a normal distribution
|
||||
def get_noise(self,width,height,scale = True):
|
||||
# print(f"Get noise: {width}x{height}")
|
||||
if scale:
|
||||
# Scale the input width and height for the initial generation
|
||||
# Make their area equivalent to the model's resolution area (e.g. 512*512 = 262144),
|
||||
# while keeping the minimum dimension at least 0.5 * resolution (e.g. 512*0.5 = 256)
|
||||
|
||||
aspect = width / height
|
||||
dimension = self.model.unet.config.sample_size * self.model.vae_scale_factor
|
||||
min_dimension = math.floor(dimension * 0.5)
|
||||
model_area = dimension * dimension # hardcoded for now since all models are trained on square images
|
||||
|
||||
if aspect > 1.0:
|
||||
init_height = max(min_dimension, math.sqrt(model_area / aspect))
|
||||
init_width = init_height * aspect
|
||||
else:
|
||||
init_width = max(min_dimension, math.sqrt(model_area * aspect))
|
||||
init_height = init_width / aspect
|
||||
|
||||
scaled_width, scaled_height = trim_to_multiple_of(math.floor(init_width), math.floor(init_height))
|
||||
|
||||
else:
|
||||
scaled_width = width
|
||||
scaled_height = height
|
||||
|
||||
device = self.model.device
|
||||
channels = self.latent_channels
|
||||
if channels == 9:
|
||||
channels = 4 # we don't really want noise for all the mask channels
|
||||
shape = (1, channels,
|
||||
scaled_height // self.downsampling_factor, scaled_width // self.downsampling_factor)
|
||||
if self.use_mps_noise or device.type == 'mps':
|
||||
tensor = torch.empty(size=shape, device='cpu')
|
||||
tensor = self.get_noise_like(like=tensor).to(device)
|
||||
else:
|
||||
tensor = torch.empty(size=shape, device=device)
|
||||
tensor = self.get_noise_like(like=tensor)
|
||||
return tensor
|
@ -61,7 +61,7 @@ Globals.sequential_guidance = False
|
||||
Globals.full_precision = False
|
||||
|
||||
# whether we should convert ckpt files into diffusers models on the fly
|
||||
Globals.ckpt_convert = False
|
||||
Globals.ckpt_convert = True
|
||||
|
||||
# logging tokenization everywhere
|
||||
Globals.log_tokenization = False
|
||||
|
@ -23,7 +23,7 @@ from omegaconf import OmegaConf
|
||||
from ldm.invoke.config.widgets import FloatTitleSlider
|
||||
from ldm.invoke.globals import (Globals, global_cache_dir, global_config_file,
|
||||
global_models_dir, global_set_root)
|
||||
from ldm.invoke.model_manager import ModelManager
|
||||
from invokeai.models import ModelManager
|
||||
|
||||
DEST_MERGED_MODEL_DIR = "merged_models"
|
||||
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -1,596 +0,0 @@
|
||||
import torch
|
||||
import pytorch_lightning as pl
|
||||
import torch.nn.functional as F
|
||||
from contextlib import contextmanager
|
||||
|
||||
from taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer
|
||||
|
||||
from ldm.modules.diffusionmodules.model import Encoder, Decoder
|
||||
from ldm.modules.distributions.distributions import (
|
||||
DiagonalGaussianDistribution,
|
||||
)
|
||||
|
||||
from ldm.util import instantiate_from_config
|
||||
|
||||
|
||||
class VQModel(pl.LightningModule):
|
||||
def __init__(
|
||||
self,
|
||||
ddconfig,
|
||||
lossconfig,
|
||||
n_embed,
|
||||
embed_dim,
|
||||
ckpt_path=None,
|
||||
ignore_keys=[],
|
||||
image_key='image',
|
||||
colorize_nlabels=None,
|
||||
monitor=None,
|
||||
batch_resize_range=None,
|
||||
scheduler_config=None,
|
||||
lr_g_factor=1.0,
|
||||
remap=None,
|
||||
sane_index_shape=False, # tell vector quantizer to return indices as bhw
|
||||
use_ema=False,
|
||||
):
|
||||
super().__init__()
|
||||
self.embed_dim = embed_dim
|
||||
self.n_embed = n_embed
|
||||
self.image_key = image_key
|
||||
self.encoder = Encoder(**ddconfig)
|
||||
self.decoder = Decoder(**ddconfig)
|
||||
self.loss = instantiate_from_config(lossconfig)
|
||||
self.quantize = VectorQuantizer(
|
||||
n_embed,
|
||||
embed_dim,
|
||||
beta=0.25,
|
||||
remap=remap,
|
||||
sane_index_shape=sane_index_shape,
|
||||
)
|
||||
self.quant_conv = torch.nn.Conv2d(ddconfig['z_channels'], embed_dim, 1)
|
||||
self.post_quant_conv = torch.nn.Conv2d(
|
||||
embed_dim, ddconfig['z_channels'], 1
|
||||
)
|
||||
if colorize_nlabels is not None:
|
||||
assert type(colorize_nlabels) == int
|
||||
self.register_buffer(
|
||||
'colorize', torch.randn(3, colorize_nlabels, 1, 1)
|
||||
)
|
||||
if monitor is not None:
|
||||
self.monitor = monitor
|
||||
self.batch_resize_range = batch_resize_range
|
||||
if self.batch_resize_range is not None:
|
||||
print(
|
||||
f'{self.__class__.__name__}: Using per-batch resizing in range {batch_resize_range}.'
|
||||
)
|
||||
|
||||
self.use_ema = use_ema
|
||||
if self.use_ema:
|
||||
self.model_ema = LitEma(self)
|
||||
print(f'>> Keeping EMAs of {len(list(self.model_ema.buffers()))}.')
|
||||
|
||||
if ckpt_path is not None:
|
||||
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
||||
self.scheduler_config = scheduler_config
|
||||
self.lr_g_factor = lr_g_factor
|
||||
|
||||
@contextmanager
|
||||
def ema_scope(self, context=None):
|
||||
if self.use_ema:
|
||||
self.model_ema.store(self.parameters())
|
||||
self.model_ema.copy_to(self)
|
||||
if context is not None:
|
||||
print(f'{context}: Switched to EMA weights')
|
||||
try:
|
||||
yield None
|
||||
finally:
|
||||
if self.use_ema:
|
||||
self.model_ema.restore(self.parameters())
|
||||
if context is not None:
|
||||
print(f'{context}: Restored training weights')
|
||||
|
||||
def init_from_ckpt(self, path, ignore_keys=list()):
|
||||
sd = torch.load(path, map_location='cpu')['state_dict']
|
||||
keys = list(sd.keys())
|
||||
for k in keys:
|
||||
for ik in ignore_keys:
|
||||
if k.startswith(ik):
|
||||
print('Deleting key {} from state_dict.'.format(k))
|
||||
del sd[k]
|
||||
missing, unexpected = self.load_state_dict(sd, strict=False)
|
||||
print(
|
||||
f'Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys'
|
||||
)
|
||||
if len(missing) > 0:
|
||||
print(f'Missing Keys: {missing}')
|
||||
print(f'Unexpected Keys: {unexpected}')
|
||||
|
||||
def on_train_batch_end(self, *args, **kwargs):
|
||||
if self.use_ema:
|
||||
self.model_ema(self)
|
||||
|
||||
def encode(self, x):
|
||||
h = self.encoder(x)
|
||||
h = self.quant_conv(h)
|
||||
quant, emb_loss, info = self.quantize(h)
|
||||
return quant, emb_loss, info
|
||||
|
||||
def encode_to_prequant(self, x):
|
||||
h = self.encoder(x)
|
||||
h = self.quant_conv(h)
|
||||
return h
|
||||
|
||||
def decode(self, quant):
|
||||
quant = self.post_quant_conv(quant)
|
||||
dec = self.decoder(quant)
|
||||
return dec
|
||||
|
||||
def decode_code(self, code_b):
|
||||
quant_b = self.quantize.embed_code(code_b)
|
||||
dec = self.decode(quant_b)
|
||||
return dec
|
||||
|
||||
def forward(self, input, return_pred_indices=False):
|
||||
quant, diff, (_, _, ind) = self.encode(input)
|
||||
dec = self.decode(quant)
|
||||
if return_pred_indices:
|
||||
return dec, diff, ind
|
||||
return dec, diff
|
||||
|
||||
def get_input(self, batch, k):
|
||||
x = batch[k]
|
||||
if len(x.shape) == 3:
|
||||
x = x[..., None]
|
||||
x = (
|
||||
x.permute(0, 3, 1, 2)
|
||||
.to(memory_format=torch.contiguous_format)
|
||||
.float()
|
||||
)
|
||||
if self.batch_resize_range is not None:
|
||||
lower_size = self.batch_resize_range[0]
|
||||
upper_size = self.batch_resize_range[1]
|
||||
if self.global_step <= 4:
|
||||
# do the first few batches with max size to avoid later oom
|
||||
new_resize = upper_size
|
||||
else:
|
||||
new_resize = np.random.choice(
|
||||
np.arange(lower_size, upper_size + 16, 16)
|
||||
)
|
||||
if new_resize != x.shape[2]:
|
||||
x = F.interpolate(x, size=new_resize, mode='bicubic')
|
||||
x = x.detach()
|
||||
return x
|
||||
|
||||
def training_step(self, batch, batch_idx, optimizer_idx):
|
||||
# https://github.com/pytorch/pytorch/issues/37142
|
||||
# try not to fool the heuristics
|
||||
x = self.get_input(batch, self.image_key)
|
||||
xrec, qloss, ind = self(x, return_pred_indices=True)
|
||||
|
||||
if optimizer_idx == 0:
|
||||
# autoencode
|
||||
aeloss, log_dict_ae = self.loss(
|
||||
qloss,
|
||||
x,
|
||||
xrec,
|
||||
optimizer_idx,
|
||||
self.global_step,
|
||||
last_layer=self.get_last_layer(),
|
||||
split='train',
|
||||
predicted_indices=ind,
|
||||
)
|
||||
|
||||
self.log_dict(
|
||||
log_dict_ae,
|
||||
prog_bar=False,
|
||||
logger=True,
|
||||
on_step=True,
|
||||
on_epoch=True,
|
||||
)
|
||||
return aeloss
|
||||
|
||||
if optimizer_idx == 1:
|
||||
# discriminator
|
||||
discloss, log_dict_disc = self.loss(
|
||||
qloss,
|
||||
x,
|
||||
xrec,
|
||||
optimizer_idx,
|
||||
self.global_step,
|
||||
last_layer=self.get_last_layer(),
|
||||
split='train',
|
||||
)
|
||||
self.log_dict(
|
||||
log_dict_disc,
|
||||
prog_bar=False,
|
||||
logger=True,
|
||||
on_step=True,
|
||||
on_epoch=True,
|
||||
)
|
||||
return discloss
|
||||
|
||||
def validation_step(self, batch, batch_idx):
|
||||
log_dict = self._validation_step(batch, batch_idx)
|
||||
with self.ema_scope():
|
||||
log_dict_ema = self._validation_step(
|
||||
batch, batch_idx, suffix='_ema'
|
||||
)
|
||||
return log_dict
|
||||
|
||||
def _validation_step(self, batch, batch_idx, suffix=''):
|
||||
x = self.get_input(batch, self.image_key)
|
||||
xrec, qloss, ind = self(x, return_pred_indices=True)
|
||||
aeloss, log_dict_ae = self.loss(
|
||||
qloss,
|
||||
x,
|
||||
xrec,
|
||||
0,
|
||||
self.global_step,
|
||||
last_layer=self.get_last_layer(),
|
||||
split='val' + suffix,
|
||||
predicted_indices=ind,
|
||||
)
|
||||
|
||||
discloss, log_dict_disc = self.loss(
|
||||
qloss,
|
||||
x,
|
||||
xrec,
|
||||
1,
|
||||
self.global_step,
|
||||
last_layer=self.get_last_layer(),
|
||||
split='val' + suffix,
|
||||
predicted_indices=ind,
|
||||
)
|
||||
rec_loss = log_dict_ae[f'val{suffix}/rec_loss']
|
||||
self.log(
|
||||
f'val{suffix}/rec_loss',
|
||||
rec_loss,
|
||||
prog_bar=True,
|
||||
logger=True,
|
||||
on_step=False,
|
||||
on_epoch=True,
|
||||
sync_dist=True,
|
||||
)
|
||||
self.log(
|
||||
f'val{suffix}/aeloss',
|
||||
aeloss,
|
||||
prog_bar=True,
|
||||
logger=True,
|
||||
on_step=False,
|
||||
on_epoch=True,
|
||||
sync_dist=True,
|
||||
)
|
||||
if version.parse(pl.__version__) >= version.parse('1.4.0'):
|
||||
del log_dict_ae[f'val{suffix}/rec_loss']
|
||||
self.log_dict(log_dict_ae)
|
||||
self.log_dict(log_dict_disc)
|
||||
return self.log_dict
|
||||
|
||||
def configure_optimizers(self):
|
||||
lr_d = self.learning_rate
|
||||
lr_g = self.lr_g_factor * self.learning_rate
|
||||
print('lr_d', lr_d)
|
||||
print('lr_g', lr_g)
|
||||
opt_ae = torch.optim.Adam(
|
||||
list(self.encoder.parameters())
|
||||
+ list(self.decoder.parameters())
|
||||
+ list(self.quantize.parameters())
|
||||
+ list(self.quant_conv.parameters())
|
||||
+ list(self.post_quant_conv.parameters()),
|
||||
lr=lr_g,
|
||||
betas=(0.5, 0.9),
|
||||
)
|
||||
opt_disc = torch.optim.Adam(
|
||||
self.loss.discriminator.parameters(), lr=lr_d, betas=(0.5, 0.9)
|
||||
)
|
||||
|
||||
if self.scheduler_config is not None:
|
||||
scheduler = instantiate_from_config(self.scheduler_config)
|
||||
|
||||
print('Setting up LambdaLR scheduler...')
|
||||
scheduler = [
|
||||
{
|
||||
'scheduler': LambdaLR(
|
||||
opt_ae, lr_lambda=scheduler.schedule
|
||||
),
|
||||
'interval': 'step',
|
||||
'frequency': 1,
|
||||
},
|
||||
{
|
||||
'scheduler': LambdaLR(
|
||||
opt_disc, lr_lambda=scheduler.schedule
|
||||
),
|
||||
'interval': 'step',
|
||||
'frequency': 1,
|
||||
},
|
||||
]
|
||||
return [opt_ae, opt_disc], scheduler
|
||||
return [opt_ae, opt_disc], []
|
||||
|
||||
def get_last_layer(self):
|
||||
return self.decoder.conv_out.weight
|
||||
|
||||
def log_images(self, batch, only_inputs=False, plot_ema=False, **kwargs):
|
||||
log = dict()
|
||||
x = self.get_input(batch, self.image_key)
|
||||
x = x.to(self.device)
|
||||
if only_inputs:
|
||||
log['inputs'] = x
|
||||
return log
|
||||
xrec, _ = self(x)
|
||||
if x.shape[1] > 3:
|
||||
# colorize with random projection
|
||||
assert xrec.shape[1] > 3
|
||||
x = self.to_rgb(x)
|
||||
xrec = self.to_rgb(xrec)
|
||||
log['inputs'] = x
|
||||
log['reconstructions'] = xrec
|
||||
if plot_ema:
|
||||
with self.ema_scope():
|
||||
xrec_ema, _ = self(x)
|
||||
if x.shape[1] > 3:
|
||||
xrec_ema = self.to_rgb(xrec_ema)
|
||||
log['reconstructions_ema'] = xrec_ema
|
||||
return log
|
||||
|
||||
def to_rgb(self, x):
|
||||
assert self.image_key == 'segmentation'
|
||||
if not hasattr(self, 'colorize'):
|
||||
self.register_buffer(
|
||||
'colorize', torch.randn(3, x.shape[1], 1, 1).to(x)
|
||||
)
|
||||
x = F.conv2d(x, weight=self.colorize)
|
||||
x = 2.0 * (x - x.min()) / (x.max() - x.min()) - 1.0
|
||||
return x
|
||||
|
||||
|
||||
class VQModelInterface(VQModel):
|
||||
def __init__(self, embed_dim, *args, **kwargs):
|
||||
super().__init__(embed_dim=embed_dim, *args, **kwargs)
|
||||
self.embed_dim = embed_dim
|
||||
|
||||
def encode(self, x):
|
||||
h = self.encoder(x)
|
||||
h = self.quant_conv(h)
|
||||
return h
|
||||
|
||||
def decode(self, h, force_not_quantize=False):
|
||||
# also go through quantization layer
|
||||
if not force_not_quantize:
|
||||
quant, emb_loss, info = self.quantize(h)
|
||||
else:
|
||||
quant = h
|
||||
quant = self.post_quant_conv(quant)
|
||||
dec = self.decoder(quant)
|
||||
return dec
|
||||
|
||||
|
||||
class AutoencoderKL(pl.LightningModule):
|
||||
def __init__(
|
||||
self,
|
||||
ddconfig,
|
||||
lossconfig,
|
||||
embed_dim,
|
||||
ckpt_path=None,
|
||||
ignore_keys=[],
|
||||
image_key='image',
|
||||
colorize_nlabels=None,
|
||||
monitor=None,
|
||||
):
|
||||
super().__init__()
|
||||
self.image_key = image_key
|
||||
self.encoder = Encoder(**ddconfig)
|
||||
self.decoder = Decoder(**ddconfig)
|
||||
self.loss = instantiate_from_config(lossconfig)
|
||||
assert ddconfig['double_z']
|
||||
self.quant_conv = torch.nn.Conv2d(
|
||||
2 * ddconfig['z_channels'], 2 * embed_dim, 1
|
||||
)
|
||||
self.post_quant_conv = torch.nn.Conv2d(
|
||||
embed_dim, ddconfig['z_channels'], 1
|
||||
)
|
||||
self.embed_dim = embed_dim
|
||||
if colorize_nlabels is not None:
|
||||
assert type(colorize_nlabels) == int
|
||||
self.register_buffer(
|
||||
'colorize', torch.randn(3, colorize_nlabels, 1, 1)
|
||||
)
|
||||
if monitor is not None:
|
||||
self.monitor = monitor
|
||||
if ckpt_path is not None:
|
||||
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
||||
|
||||
def init_from_ckpt(self, path, ignore_keys=list()):
|
||||
sd = torch.load(path, map_location='cpu')['state_dict']
|
||||
keys = list(sd.keys())
|
||||
for k in keys:
|
||||
for ik in ignore_keys:
|
||||
if k.startswith(ik):
|
||||
print('Deleting key {} from state_dict.'.format(k))
|
||||
del sd[k]
|
||||
self.load_state_dict(sd, strict=False)
|
||||
print(f'Restored from {path}')
|
||||
|
||||
def encode(self, x):
|
||||
h = self.encoder(x)
|
||||
moments = self.quant_conv(h)
|
||||
posterior = DiagonalGaussianDistribution(moments)
|
||||
return posterior
|
||||
|
||||
def decode(self, z):
|
||||
z = self.post_quant_conv(z)
|
||||
dec = self.decoder(z)
|
||||
return dec
|
||||
|
||||
def forward(self, input, sample_posterior=True):
|
||||
posterior = self.encode(input)
|
||||
if sample_posterior:
|
||||
z = posterior.sample()
|
||||
else:
|
||||
z = posterior.mode()
|
||||
dec = self.decode(z)
|
||||
return dec, posterior
|
||||
|
||||
def get_input(self, batch, k):
|
||||
x = batch[k]
|
||||
if len(x.shape) == 3:
|
||||
x = x[..., None]
|
||||
x = (
|
||||
x.permute(0, 3, 1, 2)
|
||||
.to(memory_format=torch.contiguous_format)
|
||||
.float()
|
||||
)
|
||||
return x
|
||||
|
||||
def training_step(self, batch, batch_idx, optimizer_idx):
|
||||
inputs = self.get_input(batch, self.image_key)
|
||||
reconstructions, posterior = self(inputs)
|
||||
|
||||
if optimizer_idx == 0:
|
||||
# train encoder+decoder+logvar
|
||||
aeloss, log_dict_ae = self.loss(
|
||||
inputs,
|
||||
reconstructions,
|
||||
posterior,
|
||||
optimizer_idx,
|
||||
self.global_step,
|
||||
last_layer=self.get_last_layer(),
|
||||
split='train',
|
||||
)
|
||||
self.log(
|
||||
'aeloss',
|
||||
aeloss,
|
||||
prog_bar=True,
|
||||
logger=True,
|
||||
on_step=True,
|
||||
on_epoch=True,
|
||||
)
|
||||
self.log_dict(
|
||||
log_dict_ae,
|
||||
prog_bar=False,
|
||||
logger=True,
|
||||
on_step=True,
|
||||
on_epoch=False,
|
||||
)
|
||||
return aeloss
|
||||
|
||||
if optimizer_idx == 1:
|
||||
# train the discriminator
|
||||
discloss, log_dict_disc = self.loss(
|
||||
inputs,
|
||||
reconstructions,
|
||||
posterior,
|
||||
optimizer_idx,
|
||||
self.global_step,
|
||||
last_layer=self.get_last_layer(),
|
||||
split='train',
|
||||
)
|
||||
|
||||
self.log(
|
||||
'discloss',
|
||||
discloss,
|
||||
prog_bar=True,
|
||||
logger=True,
|
||||
on_step=True,
|
||||
on_epoch=True,
|
||||
)
|
||||
self.log_dict(
|
||||
log_dict_disc,
|
||||
prog_bar=False,
|
||||
logger=True,
|
||||
on_step=True,
|
||||
on_epoch=False,
|
||||
)
|
||||
return discloss
|
||||
|
||||
def validation_step(self, batch, batch_idx):
|
||||
inputs = self.get_input(batch, self.image_key)
|
||||
reconstructions, posterior = self(inputs)
|
||||
aeloss, log_dict_ae = self.loss(
|
||||
inputs,
|
||||
reconstructions,
|
||||
posterior,
|
||||
0,
|
||||
self.global_step,
|
||||
last_layer=self.get_last_layer(),
|
||||
split='val',
|
||||
)
|
||||
|
||||
discloss, log_dict_disc = self.loss(
|
||||
inputs,
|
||||
reconstructions,
|
||||
posterior,
|
||||
1,
|
||||
self.global_step,
|
||||
last_layer=self.get_last_layer(),
|
||||
split='val',
|
||||
)
|
||||
|
||||
self.log('val/rec_loss', log_dict_ae['val/rec_loss'])
|
||||
self.log_dict(log_dict_ae)
|
||||
self.log_dict(log_dict_disc)
|
||||
return self.log_dict
|
||||
|
||||
def configure_optimizers(self):
|
||||
lr = self.learning_rate
|
||||
opt_ae = torch.optim.Adam(
|
||||
list(self.encoder.parameters())
|
||||
+ list(self.decoder.parameters())
|
||||
+ list(self.quant_conv.parameters())
|
||||
+ list(self.post_quant_conv.parameters()),
|
||||
lr=lr,
|
||||
betas=(0.5, 0.9),
|
||||
)
|
||||
opt_disc = torch.optim.Adam(
|
||||
self.loss.discriminator.parameters(), lr=lr, betas=(0.5, 0.9)
|
||||
)
|
||||
return [opt_ae, opt_disc], []
|
||||
|
||||
def get_last_layer(self):
|
||||
return self.decoder.conv_out.weight
|
||||
|
||||
@torch.no_grad()
|
||||
def log_images(self, batch, only_inputs=False, **kwargs):
|
||||
log = dict()
|
||||
x = self.get_input(batch, self.image_key)
|
||||
x = x.to(self.device)
|
||||
if not only_inputs:
|
||||
xrec, posterior = self(x)
|
||||
if x.shape[1] > 3:
|
||||
# colorize with random projection
|
||||
assert xrec.shape[1] > 3
|
||||
x = self.to_rgb(x)
|
||||
xrec = self.to_rgb(xrec)
|
||||
log['samples'] = self.decode(torch.randn_like(posterior.sample()))
|
||||
log['reconstructions'] = xrec
|
||||
log['inputs'] = x
|
||||
return log
|
||||
|
||||
def to_rgb(self, x):
|
||||
assert self.image_key == 'segmentation'
|
||||
if not hasattr(self, 'colorize'):
|
||||
self.register_buffer(
|
||||
'colorize', torch.randn(3, x.shape[1], 1, 1).to(x)
|
||||
)
|
||||
x = F.conv2d(x, weight=self.colorize)
|
||||
x = 2.0 * (x - x.min()) / (x.max() - x.min()) - 1.0
|
||||
return x
|
||||
|
||||
|
||||
class IdentityFirstStage(torch.nn.Module):
|
||||
def __init__(self, *args, vq_interface=False, **kwargs):
|
||||
self.vq_interface = vq_interface # TODO: Should be true by default but check to not break older stuff
|
||||
super().__init__()
|
||||
|
||||
def encode(self, x, *args, **kwargs):
|
||||
return x
|
||||
|
||||
def decode(self, x, *args, **kwargs):
|
||||
return x
|
||||
|
||||
def quantize(self, x, *args, **kwargs):
|
||||
if self.vq_interface:
|
||||
return x, None, [None, None, None]
|
||||
return x
|
||||
|
||||
def forward(self, x, *args, **kwargs):
|
||||
return x
|
@ -1,355 +0,0 @@
|
||||
import os
|
||||
import torch
|
||||
import pytorch_lightning as pl
|
||||
from omegaconf import OmegaConf
|
||||
from torch.nn import functional as F
|
||||
from torch.optim import AdamW
|
||||
from torch.optim.lr_scheduler import LambdaLR
|
||||
from copy import deepcopy
|
||||
from einops import rearrange
|
||||
from glob import glob
|
||||
from natsort import natsorted
|
||||
|
||||
from ldm.modules.diffusionmodules.openaimodel import (
|
||||
EncoderUNetModel,
|
||||
UNetModel,
|
||||
)
|
||||
from ldm.util import log_txt_as_img, default, ismap, instantiate_from_config
|
||||
|
||||
__models__ = {'class_label': EncoderUNetModel, 'segmentation': UNetModel}
|
||||
|
||||
|
||||
def disabled_train(self, mode=True):
|
||||
"""Overwrite model.train with this function to make sure train/eval mode
|
||||
does not change anymore."""
|
||||
return self
|
||||
|
||||
|
||||
class NoisyLatentImageClassifier(pl.LightningModule):
|
||||
def __init__(
|
||||
self,
|
||||
diffusion_path,
|
||||
num_classes,
|
||||
ckpt_path=None,
|
||||
pool='attention',
|
||||
label_key=None,
|
||||
diffusion_ckpt_path=None,
|
||||
scheduler_config=None,
|
||||
weight_decay=1.0e-2,
|
||||
log_steps=10,
|
||||
monitor='val/loss',
|
||||
*args,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.num_classes = num_classes
|
||||
# get latest config of diffusion model
|
||||
diffusion_config = natsorted(
|
||||
glob(os.path.join(diffusion_path, 'configs', '*-project.yaml'))
|
||||
)[-1]
|
||||
self.diffusion_config = OmegaConf.load(diffusion_config).model
|
||||
self.diffusion_config.params.ckpt_path = diffusion_ckpt_path
|
||||
self.load_diffusion()
|
||||
|
||||
self.monitor = monitor
|
||||
self.numd = (
|
||||
self.diffusion_model.first_stage_model.encoder.num_resolutions - 1
|
||||
)
|
||||
self.log_time_interval = (
|
||||
self.diffusion_model.num_timesteps // log_steps
|
||||
)
|
||||
self.log_steps = log_steps
|
||||
|
||||
self.label_key = (
|
||||
label_key
|
||||
if not hasattr(self.diffusion_model, 'cond_stage_key')
|
||||
else self.diffusion_model.cond_stage_key
|
||||
)
|
||||
|
||||
assert (
|
||||
self.label_key is not None
|
||||
), 'label_key neither in diffusion model nor in model.params'
|
||||
|
||||
if self.label_key not in __models__:
|
||||
raise NotImplementedError()
|
||||
|
||||
self.load_classifier(ckpt_path, pool)
|
||||
|
||||
self.scheduler_config = scheduler_config
|
||||
self.use_scheduler = self.scheduler_config is not None
|
||||
self.weight_decay = weight_decay
|
||||
|
||||
def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
|
||||
sd = torch.load(path, map_location='cpu')
|
||||
if 'state_dict' in list(sd.keys()):
|
||||
sd = sd['state_dict']
|
||||
keys = list(sd.keys())
|
||||
for k in keys:
|
||||
for ik in ignore_keys:
|
||||
if k.startswith(ik):
|
||||
print('Deleting key {} from state_dict.'.format(k))
|
||||
del sd[k]
|
||||
missing, unexpected = (
|
||||
self.load_state_dict(sd, strict=False)
|
||||
if not only_model
|
||||
else self.model.load_state_dict(sd, strict=False)
|
||||
)
|
||||
print(
|
||||
f'Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys'
|
||||
)
|
||||
if len(missing) > 0:
|
||||
print(f'Missing Keys: {missing}')
|
||||
if len(unexpected) > 0:
|
||||
print(f'Unexpected Keys: {unexpected}')
|
||||
|
||||
def load_diffusion(self):
|
||||
model = instantiate_from_config(self.diffusion_config)
|
||||
self.diffusion_model = model.eval()
|
||||
self.diffusion_model.train = disabled_train
|
||||
for param in self.diffusion_model.parameters():
|
||||
param.requires_grad = False
|
||||
|
||||
def load_classifier(self, ckpt_path, pool):
|
||||
model_config = deepcopy(
|
||||
self.diffusion_config.params.unet_config.params
|
||||
)
|
||||
model_config.in_channels = (
|
||||
self.diffusion_config.params.unet_config.params.out_channels
|
||||
)
|
||||
model_config.out_channels = self.num_classes
|
||||
if self.label_key == 'class_label':
|
||||
model_config.pool = pool
|
||||
|
||||
self.model = __models__[self.label_key](**model_config)
|
||||
if ckpt_path is not None:
|
||||
print(
|
||||
'#####################################################################'
|
||||
)
|
||||
print(f'load from ckpt "{ckpt_path}"')
|
||||
print(
|
||||
'#####################################################################'
|
||||
)
|
||||
self.init_from_ckpt(ckpt_path)
|
||||
|
||||
@torch.no_grad()
|
||||
def get_x_noisy(self, x, t, noise=None):
|
||||
noise = default(noise, lambda: torch.randn_like(x))
|
||||
continuous_sqrt_alpha_cumprod = None
|
||||
if self.diffusion_model.use_continuous_noise:
|
||||
continuous_sqrt_alpha_cumprod = (
|
||||
self.diffusion_model.sample_continuous_noise_level(
|
||||
x.shape[0], t + 1
|
||||
)
|
||||
)
|
||||
# todo: make sure t+1 is correct here
|
||||
|
||||
return self.diffusion_model.q_sample(
|
||||
x_start=x,
|
||||
t=t,
|
||||
noise=noise,
|
||||
continuous_sqrt_alpha_cumprod=continuous_sqrt_alpha_cumprod,
|
||||
)
|
||||
|
||||
def forward(self, x_noisy, t, *args, **kwargs):
|
||||
return self.model(x_noisy, t)
|
||||
|
||||
@torch.no_grad()
|
||||
def get_input(self, batch, k):
|
||||
x = batch[k]
|
||||
if len(x.shape) == 3:
|
||||
x = x[..., None]
|
||||
x = rearrange(x, 'b h w c -> b c h w')
|
||||
x = x.to(memory_format=torch.contiguous_format).float()
|
||||
return x
|
||||
|
||||
@torch.no_grad()
|
||||
def get_conditioning(self, batch, k=None):
|
||||
if k is None:
|
||||
k = self.label_key
|
||||
assert k is not None, 'Needs to provide label key'
|
||||
|
||||
targets = batch[k].to(self.device)
|
||||
|
||||
if self.label_key == 'segmentation':
|
||||
targets = rearrange(targets, 'b h w c -> b c h w')
|
||||
for down in range(self.numd):
|
||||
h, w = targets.shape[-2:]
|
||||
targets = F.interpolate(
|
||||
targets, size=(h // 2, w // 2), mode='nearest'
|
||||
)
|
||||
|
||||
# targets = rearrange(targets,'b c h w -> b h w c')
|
||||
|
||||
return targets
|
||||
|
||||
def compute_top_k(self, logits, labels, k, reduction='mean'):
|
||||
_, top_ks = torch.topk(logits, k, dim=1)
|
||||
if reduction == 'mean':
|
||||
return (
|
||||
(top_ks == labels[:, None]).float().sum(dim=-1).mean().item()
|
||||
)
|
||||
elif reduction == 'none':
|
||||
return (top_ks == labels[:, None]).float().sum(dim=-1)
|
||||
|
||||
def on_train_epoch_start(self):
|
||||
# save some memory
|
||||
self.diffusion_model.model.to('cpu')
|
||||
|
||||
@torch.no_grad()
|
||||
def write_logs(self, loss, logits, targets):
|
||||
log_prefix = 'train' if self.training else 'val'
|
||||
log = {}
|
||||
log[f'{log_prefix}/loss'] = loss.mean()
|
||||
log[f'{log_prefix}/acc@1'] = self.compute_top_k(
|
||||
logits, targets, k=1, reduction='mean'
|
||||
)
|
||||
log[f'{log_prefix}/acc@5'] = self.compute_top_k(
|
||||
logits, targets, k=5, reduction='mean'
|
||||
)
|
||||
|
||||
self.log_dict(
|
||||
log,
|
||||
prog_bar=False,
|
||||
logger=True,
|
||||
on_step=self.training,
|
||||
on_epoch=True,
|
||||
)
|
||||
self.log(
|
||||
'loss', log[f'{log_prefix}/loss'], prog_bar=True, logger=False
|
||||
)
|
||||
self.log(
|
||||
'global_step',
|
||||
self.global_step,
|
||||
logger=False,
|
||||
on_epoch=False,
|
||||
prog_bar=True,
|
||||
)
|
||||
lr = self.optimizers().param_groups[0]['lr']
|
||||
self.log(
|
||||
'lr_abs',
|
||||
lr,
|
||||
on_step=True,
|
||||
logger=True,
|
||||
on_epoch=False,
|
||||
prog_bar=True,
|
||||
)
|
||||
|
||||
def shared_step(self, batch, t=None):
|
||||
x, *_ = self.diffusion_model.get_input(
|
||||
batch, k=self.diffusion_model.first_stage_key
|
||||
)
|
||||
targets = self.get_conditioning(batch)
|
||||
if targets.dim() == 4:
|
||||
targets = targets.argmax(dim=1)
|
||||
if t is None:
|
||||
t = torch.randint(
|
||||
0,
|
||||
self.diffusion_model.num_timesteps,
|
||||
(x.shape[0],),
|
||||
device=self.device,
|
||||
).long()
|
||||
else:
|
||||
t = torch.full(
|
||||
size=(x.shape[0],), fill_value=t, device=self.device
|
||||
).long()
|
||||
x_noisy = self.get_x_noisy(x, t)
|
||||
logits = self(x_noisy, t)
|
||||
|
||||
loss = F.cross_entropy(logits, targets, reduction='none')
|
||||
|
||||
self.write_logs(loss.detach(), logits.detach(), targets.detach())
|
||||
|
||||
loss = loss.mean()
|
||||
return loss, logits, x_noisy, targets
|
||||
|
||||
def training_step(self, batch, batch_idx):
|
||||
loss, *_ = self.shared_step(batch)
|
||||
return loss
|
||||
|
||||
def reset_noise_accs(self):
|
||||
self.noisy_acc = {
|
||||
t: {'acc@1': [], 'acc@5': []}
|
||||
for t in range(
|
||||
0,
|
||||
self.diffusion_model.num_timesteps,
|
||||
self.diffusion_model.log_every_t,
|
||||
)
|
||||
}
|
||||
|
||||
def on_validation_start(self):
|
||||
self.reset_noise_accs()
|
||||
|
||||
@torch.no_grad()
|
||||
def validation_step(self, batch, batch_idx):
|
||||
loss, *_ = self.shared_step(batch)
|
||||
|
||||
for t in self.noisy_acc:
|
||||
_, logits, _, targets = self.shared_step(batch, t)
|
||||
self.noisy_acc[t]['acc@1'].append(
|
||||
self.compute_top_k(logits, targets, k=1, reduction='mean')
|
||||
)
|
||||
self.noisy_acc[t]['acc@5'].append(
|
||||
self.compute_top_k(logits, targets, k=5, reduction='mean')
|
||||
)
|
||||
|
||||
return loss
|
||||
|
||||
def configure_optimizers(self):
|
||||
optimizer = AdamW(
|
||||
self.model.parameters(),
|
||||
lr=self.learning_rate,
|
||||
weight_decay=self.weight_decay,
|
||||
)
|
||||
|
||||
if self.use_scheduler:
|
||||
scheduler = instantiate_from_config(self.scheduler_config)
|
||||
|
||||
print('Setting up LambdaLR scheduler...')
|
||||
scheduler = [
|
||||
{
|
||||
'scheduler': LambdaLR(
|
||||
optimizer, lr_lambda=scheduler.schedule
|
||||
),
|
||||
'interval': 'step',
|
||||
'frequency': 1,
|
||||
}
|
||||
]
|
||||
return [optimizer], scheduler
|
||||
|
||||
return optimizer
|
||||
|
||||
@torch.no_grad()
|
||||
def log_images(self, batch, N=8, *args, **kwargs):
|
||||
log = dict()
|
||||
x = self.get_input(batch, self.diffusion_model.first_stage_key)
|
||||
log['inputs'] = x
|
||||
|
||||
y = self.get_conditioning(batch)
|
||||
|
||||
if self.label_key == 'class_label':
|
||||
y = log_txt_as_img((x.shape[2], x.shape[3]), batch['human_label'])
|
||||
log['labels'] = y
|
||||
|
||||
if ismap(y):
|
||||
log['labels'] = self.diffusion_model.to_rgb(y)
|
||||
|
||||
for step in range(self.log_steps):
|
||||
current_time = step * self.log_time_interval
|
||||
|
||||
_, logits, x_noisy, _ = self.shared_step(batch, t=current_time)
|
||||
|
||||
log[f'inputs@t{current_time}'] = x_noisy
|
||||
|
||||
pred = F.one_hot(
|
||||
logits.argmax(dim=1), num_classes=self.num_classes
|
||||
)
|
||||
pred = rearrange(pred, 'b h w c -> b c h w')
|
||||
|
||||
log[f'pred@t{current_time}'] = self.diffusion_model.to_rgb(
|
||||
pred
|
||||
)
|
||||
|
||||
for key in log:
|
||||
log[key] = log[key][:N]
|
||||
|
||||
return log
|
@ -1,642 +0,0 @@
|
||||
|
||||
# adapted from bloc97's CrossAttentionControl colab
|
||||
# https://github.com/bloc97/CrossAttentionControl
|
||||
|
||||
|
||||
import enum
|
||||
import math
|
||||
from typing import Optional, Callable
|
||||
|
||||
import psutil
|
||||
import torch
|
||||
import diffusers
|
||||
from torch import nn
|
||||
|
||||
from compel.cross_attention_control import Arguments
|
||||
from diffusers.models.unet_2d_condition import UNet2DConditionModel
|
||||
from diffusers.models.cross_attention import AttnProcessor
|
||||
from ldm.invoke.devices import torch_dtype
|
||||
|
||||
|
||||
class CrossAttentionType(enum.Enum):
|
||||
SELF = 1
|
||||
TOKENS = 2
|
||||
|
||||
|
||||
class Context:
|
||||
|
||||
cross_attention_mask: Optional[torch.Tensor]
|
||||
cross_attention_index_map: Optional[torch.Tensor]
|
||||
|
||||
class Action(enum.Enum):
|
||||
NONE = 0
|
||||
SAVE = 1,
|
||||
APPLY = 2
|
||||
|
||||
def __init__(self, arguments: Arguments, step_count: int):
|
||||
"""
|
||||
:param arguments: Arguments for the cross-attention control process
|
||||
:param step_count: The absolute total number of steps of diffusion (for img2img this is likely larger than the number of steps that will actually run)
|
||||
"""
|
||||
self.cross_attention_mask = None
|
||||
self.cross_attention_index_map = None
|
||||
self.self_cross_attention_action = Context.Action.NONE
|
||||
self.tokens_cross_attention_action = Context.Action.NONE
|
||||
self.arguments = arguments
|
||||
self.step_count = step_count
|
||||
|
||||
self.self_cross_attention_module_identifiers = []
|
||||
self.tokens_cross_attention_module_identifiers = []
|
||||
|
||||
self.saved_cross_attention_maps = {}
|
||||
|
||||
self.clear_requests(cleanup=True)
|
||||
|
||||
def register_cross_attention_modules(self, model):
|
||||
for name,module in get_cross_attention_modules(model, CrossAttentionType.SELF):
|
||||
if name in self.self_cross_attention_module_identifiers:
|
||||
assert False, f"name {name} cannot appear more than once"
|
||||
self.self_cross_attention_module_identifiers.append(name)
|
||||
for name,module in get_cross_attention_modules(model, CrossAttentionType.TOKENS):
|
||||
if name in self.tokens_cross_attention_module_identifiers:
|
||||
assert False, f"name {name} cannot appear more than once"
|
||||
self.tokens_cross_attention_module_identifiers.append(name)
|
||||
|
||||
def request_save_attention_maps(self, cross_attention_type: CrossAttentionType):
|
||||
if cross_attention_type == CrossAttentionType.SELF:
|
||||
self.self_cross_attention_action = Context.Action.SAVE
|
||||
else:
|
||||
self.tokens_cross_attention_action = Context.Action.SAVE
|
||||
|
||||
def request_apply_saved_attention_maps(self, cross_attention_type: CrossAttentionType):
|
||||
if cross_attention_type == CrossAttentionType.SELF:
|
||||
self.self_cross_attention_action = Context.Action.APPLY
|
||||
else:
|
||||
self.tokens_cross_attention_action = Context.Action.APPLY
|
||||
|
||||
def is_tokens_cross_attention(self, module_identifier) -> bool:
|
||||
return module_identifier in self.tokens_cross_attention_module_identifiers
|
||||
|
||||
def get_should_save_maps(self, module_identifier: str) -> bool:
|
||||
if module_identifier in self.self_cross_attention_module_identifiers:
|
||||
return self.self_cross_attention_action == Context.Action.SAVE
|
||||
elif module_identifier in self.tokens_cross_attention_module_identifiers:
|
||||
return self.tokens_cross_attention_action == Context.Action.SAVE
|
||||
return False
|
||||
|
||||
def get_should_apply_saved_maps(self, module_identifier: str) -> bool:
|
||||
if module_identifier in self.self_cross_attention_module_identifiers:
|
||||
return self.self_cross_attention_action == Context.Action.APPLY
|
||||
elif module_identifier in self.tokens_cross_attention_module_identifiers:
|
||||
return self.tokens_cross_attention_action == Context.Action.APPLY
|
||||
return False
|
||||
|
||||
def get_active_cross_attention_control_types_for_step(self, percent_through:float=None)\
|
||||
-> list[CrossAttentionType]:
|
||||
"""
|
||||
Should cross-attention control be applied on the given step?
|
||||
:param percent_through: How far through the step sequence are we (0.0=pure noise, 1.0=completely denoised image). Expected range 0.0..<1.0.
|
||||
:return: A list of attention types that cross-attention control should be performed for on the given step. May be [].
|
||||
"""
|
||||
if percent_through is None:
|
||||
return [CrossAttentionType.SELF, CrossAttentionType.TOKENS]
|
||||
|
||||
opts = self.arguments.edit_options
|
||||
to_control = []
|
||||
if opts['s_start'] <= percent_through < opts['s_end']:
|
||||
to_control.append(CrossAttentionType.SELF)
|
||||
if opts['t_start'] <= percent_through < opts['t_end']:
|
||||
to_control.append(CrossAttentionType.TOKENS)
|
||||
return to_control
|
||||
|
||||
def save_slice(self, identifier: str, slice: torch.Tensor, dim: Optional[int], offset: int,
|
||||
slice_size: Optional[int]):
|
||||
if identifier not in self.saved_cross_attention_maps:
|
||||
self.saved_cross_attention_maps[identifier] = {
|
||||
'dim': dim,
|
||||
'slice_size': slice_size,
|
||||
'slices': {offset or 0: slice}
|
||||
}
|
||||
else:
|
||||
self.saved_cross_attention_maps[identifier]['slices'][offset or 0] = slice
|
||||
|
||||
def get_slice(self, identifier: str, requested_dim: Optional[int], requested_offset: int, slice_size: int):
|
||||
saved_attention_dict = self.saved_cross_attention_maps[identifier]
|
||||
if requested_dim is None:
|
||||
if saved_attention_dict['dim'] is not None:
|
||||
raise RuntimeError(f"dim mismatch: expected dim=None, have {saved_attention_dict['dim']}")
|
||||
return saved_attention_dict['slices'][0]
|
||||
|
||||
if saved_attention_dict['dim'] == requested_dim:
|
||||
if slice_size != saved_attention_dict['slice_size']:
|
||||
raise RuntimeError(
|
||||
f"slice_size mismatch: expected slice_size={slice_size}, have {saved_attention_dict['slice_size']}")
|
||||
return saved_attention_dict['slices'][requested_offset]
|
||||
|
||||
if saved_attention_dict['dim'] is None:
|
||||
whole_saved_attention = saved_attention_dict['slices'][0]
|
||||
if requested_dim == 0:
|
||||
return whole_saved_attention[requested_offset:requested_offset + slice_size]
|
||||
elif requested_dim == 1:
|
||||
return whole_saved_attention[:, requested_offset:requested_offset + slice_size]
|
||||
|
||||
raise RuntimeError(f"Cannot convert dim {saved_attention_dict['dim']} to requested dim {requested_dim}")
|
||||
|
||||
def get_slicing_strategy(self, identifier: str) -> tuple[Optional[int], Optional[int]]:
|
||||
saved_attention = self.saved_cross_attention_maps.get(identifier, None)
|
||||
if saved_attention is None:
|
||||
return None, None
|
||||
return saved_attention['dim'], saved_attention['slice_size']
|
||||
|
||||
def clear_requests(self, cleanup=True):
|
||||
self.tokens_cross_attention_action = Context.Action.NONE
|
||||
self.self_cross_attention_action = Context.Action.NONE
|
||||
if cleanup:
|
||||
self.saved_cross_attention_maps = {}
|
||||
|
||||
def offload_saved_attention_slices_to_cpu(self):
|
||||
for key, map_dict in self.saved_cross_attention_maps.items():
|
||||
for offset, slice in map_dict['slices'].items():
|
||||
map_dict[offset] = slice.to('cpu')
|
||||
|
||||
|
||||
|
||||
class InvokeAICrossAttentionMixin:
|
||||
"""
|
||||
Enable InvokeAI-flavoured CrossAttention calculation, which does aggressive low-memory slicing and calls
|
||||
through both to an attention_slice_wrangler and a slicing_strategy_getter for custom attention map wrangling
|
||||
and dymamic slicing strategy selection.
|
||||
"""
|
||||
def __init__(self):
|
||||
self.mem_total_gb = psutil.virtual_memory().total // (1 << 30)
|
||||
self.attention_slice_wrangler = None
|
||||
self.slicing_strategy_getter = None
|
||||
self.attention_slice_calculated_callback = None
|
||||
|
||||
def set_attention_slice_wrangler(self, wrangler: Optional[Callable[[nn.Module, torch.Tensor, int, int, int], torch.Tensor]]):
|
||||
'''
|
||||
Set custom attention calculator to be called when attention is calculated
|
||||
:param wrangler: Callback, with args (module, suggested_attention_slice, dim, offset, slice_size),
|
||||
which returns either the suggested_attention_slice or an adjusted equivalent.
|
||||
`module` is the current CrossAttention module for which the callback is being invoked.
|
||||
`suggested_attention_slice` is the default-calculated attention slice
|
||||
`dim` is -1 if the attenion map has not been sliced, or 0 or 1 for dimension-0 or dimension-1 slicing.
|
||||
If `dim` is >= 0, `offset` and `slice_size` specify the slice start and length.
|
||||
|
||||
Pass None to use the default attention calculation.
|
||||
:return:
|
||||
'''
|
||||
self.attention_slice_wrangler = wrangler
|
||||
|
||||
def set_slicing_strategy_getter(self, getter: Optional[Callable[[nn.Module], tuple[int,int]]]):
|
||||
self.slicing_strategy_getter = getter
|
||||
|
||||
def set_attention_slice_calculated_callback(self, callback: Optional[Callable[[torch.Tensor], None]]):
|
||||
self.attention_slice_calculated_callback = callback
|
||||
|
||||
def einsum_lowest_level(self, query, key, value, dim, offset, slice_size):
|
||||
# calculate attention scores
|
||||
#attention_scores = torch.einsum('b i d, b j d -> b i j', q, k)
|
||||
attention_scores = torch.baddbmm(
|
||||
torch.empty(query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device),
|
||||
query,
|
||||
key.transpose(-1, -2),
|
||||
beta=0,
|
||||
alpha=self.scale,
|
||||
)
|
||||
|
||||
# calculate attention slice by taking the best scores for each latent pixel
|
||||
default_attention_slice = attention_scores.softmax(dim=-1, dtype=attention_scores.dtype)
|
||||
attention_slice_wrangler = self.attention_slice_wrangler
|
||||
if attention_slice_wrangler is not None:
|
||||
attention_slice = attention_slice_wrangler(self, default_attention_slice, dim, offset, slice_size)
|
||||
else:
|
||||
attention_slice = default_attention_slice
|
||||
|
||||
if self.attention_slice_calculated_callback is not None:
|
||||
self.attention_slice_calculated_callback(attention_slice, dim, offset, slice_size)
|
||||
|
||||
hidden_states = torch.bmm(attention_slice, value)
|
||||
return hidden_states
|
||||
|
||||
def einsum_op_slice_dim0(self, q, k, v, slice_size):
|
||||
r = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
|
||||
for i in range(0, q.shape[0], slice_size):
|
||||
end = i + slice_size
|
||||
r[i:end] = self.einsum_lowest_level(q[i:end], k[i:end], v[i:end], dim=0, offset=i, slice_size=slice_size)
|
||||
return r
|
||||
|
||||
def einsum_op_slice_dim1(self, q, k, v, slice_size):
|
||||
r = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
|
||||
for i in range(0, q.shape[1], slice_size):
|
||||
end = i + slice_size
|
||||
r[:, i:end] = self.einsum_lowest_level(q[:, i:end], k, v, dim=1, offset=i, slice_size=slice_size)
|
||||
return r
|
||||
|
||||
def einsum_op_mps_v1(self, q, k, v):
|
||||
if q.shape[1] <= 4096: # (512x512) max q.shape[1]: 4096
|
||||
return self.einsum_lowest_level(q, k, v, None, None, None)
|
||||
else:
|
||||
slice_size = math.floor(2**30 / (q.shape[0] * q.shape[1]))
|
||||
return self.einsum_op_slice_dim1(q, k, v, slice_size)
|
||||
|
||||
def einsum_op_mps_v2(self, q, k, v):
|
||||
if self.mem_total_gb > 8 and q.shape[1] <= 4096:
|
||||
return self.einsum_lowest_level(q, k, v, None, None, None)
|
||||
else:
|
||||
return self.einsum_op_slice_dim0(q, k, v, 1)
|
||||
|
||||
def einsum_op_tensor_mem(self, q, k, v, max_tensor_mb):
|
||||
size_mb = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size() // (1 << 20)
|
||||
if size_mb <= max_tensor_mb:
|
||||
return self.einsum_lowest_level(q, k, v, None, None, None)
|
||||
div = 1 << int((size_mb - 1) / max_tensor_mb).bit_length()
|
||||
if div <= q.shape[0]:
|
||||
return self.einsum_op_slice_dim0(q, k, v, q.shape[0] // div)
|
||||
return self.einsum_op_slice_dim1(q, k, v, max(q.shape[1] // div, 1))
|
||||
|
||||
def einsum_op_cuda(self, q, k, v):
|
||||
# check if we already have a slicing strategy (this should only happen during cross-attention controlled generation)
|
||||
slicing_strategy_getter = self.slicing_strategy_getter
|
||||
if slicing_strategy_getter is not None:
|
||||
(dim, slice_size) = slicing_strategy_getter(self)
|
||||
if dim is not None:
|
||||
# print("using saved slicing strategy with dim", dim, "slice size", slice_size)
|
||||
if dim == 0:
|
||||
return self.einsum_op_slice_dim0(q, k, v, slice_size)
|
||||
elif dim == 1:
|
||||
return self.einsum_op_slice_dim1(q, k, v, slice_size)
|
||||
|
||||
# fallback for when there is no saved strategy, or saved strategy does not slice
|
||||
mem_free_total = get_mem_free_total(q.device)
|
||||
# Divide factor of safety as there's copying and fragmentation
|
||||
return self.einsum_op_tensor_mem(q, k, v, mem_free_total / 3.3 / (1 << 20))
|
||||
|
||||
|
||||
def get_invokeai_attention_mem_efficient(self, q, k, v):
|
||||
if q.device.type == 'cuda':
|
||||
#print("in get_attention_mem_efficient with q shape", q.shape, ", k shape", k.shape, ", free memory is", get_mem_free_total(q.device))
|
||||
return self.einsum_op_cuda(q, k, v)
|
||||
|
||||
if q.device.type == 'mps' or q.device.type == 'cpu':
|
||||
if self.mem_total_gb >= 32:
|
||||
return self.einsum_op_mps_v1(q, k, v)
|
||||
return self.einsum_op_mps_v2(q, k, v)
|
||||
|
||||
# Smaller slices are faster due to L2/L3/SLC caches.
|
||||
# Tested on i7 with 8MB L3 cache.
|
||||
return self.einsum_op_tensor_mem(q, k, v, 32)
|
||||
|
||||
|
||||
|
||||
def restore_default_cross_attention(model, is_running_diffusers: bool, restore_attention_processor: Optional[AttnProcessor]=None):
|
||||
if is_running_diffusers:
|
||||
unet = model
|
||||
unet.set_attn_processor(restore_attention_processor or CrossAttnProcessor())
|
||||
else:
|
||||
remove_attention_function(model)
|
||||
|
||||
|
||||
def override_cross_attention(model, context: Context, is_running_diffusers = False):
|
||||
"""
|
||||
Inject attention parameters and functions into the passed in model to enable cross attention editing.
|
||||
|
||||
:param model: The unet model to inject into.
|
||||
:return: None
|
||||
"""
|
||||
|
||||
# adapted from init_attention_edit
|
||||
device = context.arguments.edited_conditioning.device
|
||||
|
||||
# urgh. should this be hardcoded?
|
||||
max_length = 77
|
||||
# mask=1 means use base prompt attention, mask=0 means use edited prompt attention
|
||||
mask = torch.zeros(max_length, dtype=torch_dtype(device))
|
||||
indices_target = torch.arange(max_length, dtype=torch.long)
|
||||
indices = torch.arange(max_length, dtype=torch.long)
|
||||
for name, a0, a1, b0, b1 in context.arguments.edit_opcodes:
|
||||
if b0 < max_length:
|
||||
if name == "equal":# or (name == "replace" and a1 - a0 == b1 - b0):
|
||||
# these tokens have not been edited
|
||||
indices[b0:b1] = indices_target[a0:a1]
|
||||
mask[b0:b1] = 1
|
||||
|
||||
context.cross_attention_mask = mask.to(device)
|
||||
context.cross_attention_index_map = indices.to(device)
|
||||
if is_running_diffusers:
|
||||
unet = model
|
||||
old_attn_processors = unet.attn_processors
|
||||
if torch.backends.mps.is_available():
|
||||
# see note in StableDiffusionGeneratorPipeline.__init__ about borked slicing on MPS
|
||||
unet.set_attn_processor(SwapCrossAttnProcessor())
|
||||
else:
|
||||
# try to re-use an existing slice size
|
||||
default_slice_size = 4
|
||||
slice_size = next((p.slice_size for p in old_attn_processors.values() if type(p) is SlicedAttnProcessor), default_slice_size)
|
||||
unet.set_attn_processor(SlicedSwapCrossAttnProcesser(slice_size=slice_size))
|
||||
return old_attn_processors
|
||||
else:
|
||||
context.register_cross_attention_modules(model)
|
||||
inject_attention_function(model, context)
|
||||
return None
|
||||
|
||||
|
||||
|
||||
|
||||
def get_cross_attention_modules(model, which: CrossAttentionType) -> list[tuple[str, InvokeAICrossAttentionMixin]]:
|
||||
from ldm.modules.attention import CrossAttention # avoid circular import
|
||||
cross_attention_class: type = InvokeAIDiffusersCrossAttention if isinstance(model,UNet2DConditionModel) else CrossAttention
|
||||
which_attn = "attn1" if which is CrossAttentionType.SELF else "attn2"
|
||||
attention_module_tuples = [(name,module) for name, module in model.named_modules() if
|
||||
isinstance(module, cross_attention_class) and which_attn in name]
|
||||
cross_attention_modules_in_model_count = len(attention_module_tuples)
|
||||
expected_count = 16
|
||||
if cross_attention_modules_in_model_count != expected_count:
|
||||
# non-fatal error but .swap() won't work.
|
||||
print(f"Error! CrossAttentionControl found an unexpected number of {cross_attention_class} modules in the model " +
|
||||
f"(expected {expected_count}, found {cross_attention_modules_in_model_count}). Either monkey-patching failed " +
|
||||
f"or some assumption has changed about the structure of the model itself. Please fix the monkey-patching, " +
|
||||
f"and/or update the {expected_count} above to an appropriate number, and/or find and inform someone who knows " +
|
||||
f"what it means. This error is non-fatal, but it is likely that .swap() and attention map display will not " +
|
||||
f"work properly until it is fixed.")
|
||||
return attention_module_tuples
|
||||
|
||||
|
||||
def inject_attention_function(unet, context: Context):
|
||||
# ORIGINAL SOURCE CODE: https://github.com/huggingface/diffusers/blob/91ddd2a25b848df0fa1262d4f1cd98c7ccb87750/src/diffusers/models/attention.py#L276
|
||||
|
||||
def attention_slice_wrangler(module, suggested_attention_slice:torch.Tensor, dim, offset, slice_size):
|
||||
|
||||
#memory_usage = suggested_attention_slice.element_size() * suggested_attention_slice.nelement()
|
||||
|
||||
attention_slice = suggested_attention_slice
|
||||
|
||||
if context.get_should_save_maps(module.identifier):
|
||||
#print(module.identifier, "saving suggested_attention_slice of shape",
|
||||
# suggested_attention_slice.shape, "dim", dim, "offset", offset)
|
||||
slice_to_save = attention_slice.to('cpu') if dim is not None else attention_slice
|
||||
context.save_slice(module.identifier, slice_to_save, dim=dim, offset=offset, slice_size=slice_size)
|
||||
elif context.get_should_apply_saved_maps(module.identifier):
|
||||
#print(module.identifier, "applying saved attention slice for dim", dim, "offset", offset)
|
||||
saved_attention_slice = context.get_slice(module.identifier, dim, offset, slice_size)
|
||||
|
||||
# slice may have been offloaded to CPU
|
||||
saved_attention_slice = saved_attention_slice.to(suggested_attention_slice.device)
|
||||
|
||||
if context.is_tokens_cross_attention(module.identifier):
|
||||
index_map = context.cross_attention_index_map
|
||||
remapped_saved_attention_slice = torch.index_select(saved_attention_slice, -1, index_map)
|
||||
this_attention_slice = suggested_attention_slice
|
||||
|
||||
mask = context.cross_attention_mask.to(torch_dtype(suggested_attention_slice.device))
|
||||
saved_mask = mask
|
||||
this_mask = 1 - mask
|
||||
attention_slice = remapped_saved_attention_slice * saved_mask + \
|
||||
this_attention_slice * this_mask
|
||||
else:
|
||||
# just use everything
|
||||
attention_slice = saved_attention_slice
|
||||
|
||||
return attention_slice
|
||||
|
||||
cross_attention_modules = get_cross_attention_modules(unet, CrossAttentionType.TOKENS) + get_cross_attention_modules(unet, CrossAttentionType.SELF)
|
||||
for identifier, module in cross_attention_modules:
|
||||
module.identifier = identifier
|
||||
try:
|
||||
module.set_attention_slice_wrangler(attention_slice_wrangler)
|
||||
module.set_slicing_strategy_getter(
|
||||
lambda module: context.get_slicing_strategy(identifier)
|
||||
)
|
||||
except AttributeError as e:
|
||||
if is_attribute_error_about(e, 'set_attention_slice_wrangler'):
|
||||
print(f"TODO: implement set_attention_slice_wrangler for {type(module)}") # TODO
|
||||
else:
|
||||
raise
|
||||
|
||||
|
||||
def remove_attention_function(unet):
|
||||
cross_attention_modules = get_cross_attention_modules(unet, CrossAttentionType.TOKENS) + get_cross_attention_modules(unet, CrossAttentionType.SELF)
|
||||
for identifier, module in cross_attention_modules:
|
||||
try:
|
||||
# clear wrangler callback
|
||||
module.set_attention_slice_wrangler(None)
|
||||
module.set_slicing_strategy_getter(None)
|
||||
except AttributeError as e:
|
||||
if is_attribute_error_about(e, 'set_attention_slice_wrangler'):
|
||||
print(f"TODO: implement set_attention_slice_wrangler for {type(module)}")
|
||||
else:
|
||||
raise
|
||||
|
||||
|
||||
def is_attribute_error_about(error: AttributeError, attribute: str):
|
||||
if hasattr(error, 'name'): # Python 3.10
|
||||
return error.name == attribute
|
||||
else: # Python 3.9
|
||||
return attribute in str(error)
|
||||
|
||||
|
||||
|
||||
def get_mem_free_total(device):
|
||||
#only on cuda
|
||||
if not torch.cuda.is_available():
|
||||
return None
|
||||
stats = torch.cuda.memory_stats(device)
|
||||
mem_active = stats['active_bytes.all.current']
|
||||
mem_reserved = stats['reserved_bytes.all.current']
|
||||
mem_free_cuda, _ = torch.cuda.mem_get_info(device)
|
||||
mem_free_torch = mem_reserved - mem_active
|
||||
mem_free_total = mem_free_cuda + mem_free_torch
|
||||
return mem_free_total
|
||||
|
||||
|
||||
|
||||
class InvokeAIDiffusersCrossAttention(diffusers.models.attention.CrossAttention, InvokeAICrossAttentionMixin):
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
InvokeAICrossAttentionMixin.__init__(self)
|
||||
|
||||
def _attention(self, query, key, value, attention_mask=None):
|
||||
#default_result = super()._attention(query, key, value)
|
||||
if attention_mask is not None:
|
||||
print(f"{type(self).__name__} ignoring passed-in attention_mask")
|
||||
attention_result = self.get_invokeai_attention_mem_efficient(query, key, value)
|
||||
|
||||
hidden_states = self.reshape_batch_dim_to_heads(attention_result)
|
||||
return hidden_states
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
## 🧨diffusers implementation follows
|
||||
|
||||
|
||||
"""
|
||||
# base implementation
|
||||
|
||||
class CrossAttnProcessor:
|
||||
def __call__(self, attn: CrossAttention, hidden_states, encoder_hidden_states=None, attention_mask=None):
|
||||
batch_size, sequence_length, _ = hidden_states.shape
|
||||
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length)
|
||||
|
||||
query = attn.to_q(hidden_states)
|
||||
query = attn.head_to_batch_dim(query)
|
||||
|
||||
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
|
||||
key = attn.to_k(encoder_hidden_states)
|
||||
value = attn.to_v(encoder_hidden_states)
|
||||
key = attn.head_to_batch_dim(key)
|
||||
value = attn.head_to_batch_dim(value)
|
||||
|
||||
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
||||
hidden_states = torch.bmm(attention_probs, value)
|
||||
hidden_states = attn.batch_to_head_dim(hidden_states)
|
||||
|
||||
# linear proj
|
||||
hidden_states = attn.to_out[0](hidden_states)
|
||||
# dropout
|
||||
hidden_states = attn.to_out[1](hidden_states)
|
||||
|
||||
return hidden_states
|
||||
|
||||
"""
|
||||
from dataclasses import field, dataclass
|
||||
|
||||
import torch
|
||||
|
||||
from diffusers.models.cross_attention import CrossAttention, CrossAttnProcessor, SlicedAttnProcessor
|
||||
|
||||
|
||||
@dataclass
|
||||
class SwapCrossAttnContext:
|
||||
modified_text_embeddings: torch.Tensor
|
||||
index_map: torch.Tensor # maps from original prompt token indices to the equivalent tokens in the modified prompt
|
||||
mask: torch.Tensor # in the target space of the index_map
|
||||
cross_attention_types_to_do: list[CrossAttentionType] = field(default_factory=list)
|
||||
|
||||
def __int__(self,
|
||||
cac_types_to_do: [CrossAttentionType],
|
||||
modified_text_embeddings: torch.Tensor,
|
||||
index_map: torch.Tensor,
|
||||
mask: torch.Tensor):
|
||||
self.cross_attention_types_to_do = cac_types_to_do
|
||||
self.modified_text_embeddings = modified_text_embeddings
|
||||
self.index_map = index_map
|
||||
self.mask = mask
|
||||
|
||||
def wants_cross_attention_control(self, attn_type: CrossAttentionType) -> bool:
|
||||
return attn_type in self.cross_attention_types_to_do
|
||||
|
||||
@classmethod
|
||||
def make_mask_and_index_map(cls, edit_opcodes: list[tuple[str, int, int, int, int]], max_length: int) \
|
||||
-> tuple[torch.Tensor, torch.Tensor]:
|
||||
|
||||
# mask=1 means use original prompt attention, mask=0 means use modified prompt attention
|
||||
mask = torch.zeros(max_length)
|
||||
indices_target = torch.arange(max_length, dtype=torch.long)
|
||||
indices = torch.arange(max_length, dtype=torch.long)
|
||||
for name, a0, a1, b0, b1 in edit_opcodes:
|
||||
if b0 < max_length:
|
||||
if name == "equal":
|
||||
# these tokens remain the same as in the original prompt
|
||||
indices[b0:b1] = indices_target[a0:a1]
|
||||
mask[b0:b1] = 1
|
||||
|
||||
return mask, indices
|
||||
|
||||
|
||||
class SlicedSwapCrossAttnProcesser(SlicedAttnProcessor):
|
||||
|
||||
# TODO: dynamically pick slice size based on memory conditions
|
||||
|
||||
def __call__(self, attn: CrossAttention, hidden_states, encoder_hidden_states=None, attention_mask=None,
|
||||
# kwargs
|
||||
swap_cross_attn_context: SwapCrossAttnContext=None):
|
||||
|
||||
attention_type = CrossAttentionType.SELF if encoder_hidden_states is None else CrossAttentionType.TOKENS
|
||||
|
||||
# if cross-attention control is not in play, just call through to the base implementation.
|
||||
if attention_type is CrossAttentionType.SELF or \
|
||||
swap_cross_attn_context is None or \
|
||||
not swap_cross_attn_context.wants_cross_attention_control(attention_type):
|
||||
#print(f"SwapCrossAttnContext for {attention_type} not active - passing request to superclass")
|
||||
return super().__call__(attn, hidden_states, encoder_hidden_states, attention_mask)
|
||||
#else:
|
||||
# print(f"SwapCrossAttnContext for {attention_type} active")
|
||||
|
||||
batch_size, sequence_length, _ = hidden_states.shape
|
||||
attention_mask = attn.prepare_attention_mask(
|
||||
attention_mask=attention_mask, target_length=sequence_length,
|
||||
batch_size=batch_size)
|
||||
|
||||
query = attn.to_q(hidden_states)
|
||||
dim = query.shape[-1]
|
||||
query = attn.head_to_batch_dim(query)
|
||||
|
||||
original_text_embeddings = encoder_hidden_states
|
||||
modified_text_embeddings = swap_cross_attn_context.modified_text_embeddings
|
||||
original_text_key = attn.to_k(original_text_embeddings)
|
||||
modified_text_key = attn.to_k(modified_text_embeddings)
|
||||
original_value = attn.to_v(original_text_embeddings)
|
||||
modified_value = attn.to_v(modified_text_embeddings)
|
||||
|
||||
original_text_key = attn.head_to_batch_dim(original_text_key)
|
||||
modified_text_key = attn.head_to_batch_dim(modified_text_key)
|
||||
original_value = attn.head_to_batch_dim(original_value)
|
||||
modified_value = attn.head_to_batch_dim(modified_value)
|
||||
|
||||
# compute slices and prepare output tensor
|
||||
batch_size_attention = query.shape[0]
|
||||
hidden_states = torch.zeros(
|
||||
(batch_size_attention, sequence_length, dim // attn.heads), device=query.device, dtype=query.dtype
|
||||
)
|
||||
|
||||
# do slices
|
||||
for i in range(max(1,hidden_states.shape[0] // self.slice_size)):
|
||||
start_idx = i * self.slice_size
|
||||
end_idx = (i + 1) * self.slice_size
|
||||
|
||||
query_slice = query[start_idx:end_idx]
|
||||
original_key_slice = original_text_key[start_idx:end_idx]
|
||||
modified_key_slice = modified_text_key[start_idx:end_idx]
|
||||
attn_mask_slice = attention_mask[start_idx:end_idx] if attention_mask is not None else None
|
||||
|
||||
original_attn_slice = attn.get_attention_scores(query_slice, original_key_slice, attn_mask_slice)
|
||||
modified_attn_slice = attn.get_attention_scores(query_slice, modified_key_slice, attn_mask_slice)
|
||||
|
||||
# because the prompt modifications may result in token sequences shifted forwards or backwards,
|
||||
# the original attention probabilities must be remapped to account for token index changes in the
|
||||
# modified prompt
|
||||
remapped_original_attn_slice = torch.index_select(original_attn_slice, -1,
|
||||
swap_cross_attn_context.index_map)
|
||||
|
||||
# only some tokens taken from the original attention probabilities. this is controlled by the mask.
|
||||
mask = swap_cross_attn_context.mask
|
||||
inverse_mask = 1 - mask
|
||||
attn_slice = \
|
||||
remapped_original_attn_slice * mask + \
|
||||
modified_attn_slice * inverse_mask
|
||||
|
||||
del remapped_original_attn_slice, modified_attn_slice
|
||||
|
||||
attn_slice = torch.bmm(attn_slice, modified_value[start_idx:end_idx])
|
||||
hidden_states[start_idx:end_idx] = attn_slice
|
||||
|
||||
|
||||
# done
|
||||
hidden_states = attn.batch_to_head_dim(hidden_states)
|
||||
|
||||
# linear proj
|
||||
hidden_states = attn.to_out[0](hidden_states)
|
||||
# dropout
|
||||
hidden_states = attn.to_out[1](hidden_states)
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
class SwapCrossAttnProcessor(SlicedSwapCrossAttnProcesser):
|
||||
|
||||
def __init__(self):
|
||||
super(SwapCrossAttnProcessor, self).__init__(slice_size=int(1e9)) # massive slice size = don't slice
|
||||
|
@ -1,95 +0,0 @@
|
||||
import math
|
||||
|
||||
import PIL
|
||||
import torch
|
||||
from torchvision.transforms.functional import resize as tv_resize, InterpolationMode
|
||||
|
||||
from ldm.models.diffusion.cross_attention_control import get_cross_attention_modules, CrossAttentionType
|
||||
|
||||
|
||||
class AttentionMapSaver():
|
||||
|
||||
def __init__(self, token_ids: range, latents_shape: torch.Size):
|
||||
self.token_ids = token_ids
|
||||
self.latents_shape = latents_shape
|
||||
#self.collated_maps = #torch.zeros([len(token_ids), latents_shape[0], latents_shape[1]])
|
||||
self.collated_maps = {}
|
||||
|
||||
def clear_maps(self):
|
||||
self.collated_maps = {}
|
||||
|
||||
def add_attention_maps(self, maps: torch.Tensor, key: str):
|
||||
"""
|
||||
Accumulate the given attention maps and store by summing with existing maps at the passed-in key (if any).
|
||||
:param maps: Attention maps to store. Expected shape [A, (H*W), N] where A is attention heads count, H and W are the map size (fixed per-key) and N is the number of tokens (typically 77).
|
||||
:param key: Storage key. If a map already exists for this key it will be summed with the incoming data. In this case the maps sizes (H and W) should match.
|
||||
:return: None
|
||||
"""
|
||||
key_and_size = f'{key}_{maps.shape[1]}'
|
||||
|
||||
# extract desired tokens
|
||||
maps = maps[:, :, self.token_ids]
|
||||
|
||||
# merge attention heads to a single map per token
|
||||
maps = torch.sum(maps, 0)
|
||||
|
||||
# store
|
||||
if key_and_size not in self.collated_maps:
|
||||
self.collated_maps[key_and_size] = torch.zeros_like(maps, device='cpu')
|
||||
self.collated_maps[key_and_size] += maps.cpu()
|
||||
|
||||
def write_maps_to_disk(self, path: str):
|
||||
pil_image = self.get_stacked_maps_image()
|
||||
pil_image.save(path, 'PNG')
|
||||
|
||||
def get_stacked_maps_image(self) -> PIL.Image:
|
||||
"""
|
||||
Scale all collected attention maps to the same size, blend them together and return as an image.
|
||||
:return: An image containing a vertical stack of blended attention maps, one for each requested token.
|
||||
"""
|
||||
num_tokens = len(self.token_ids)
|
||||
if num_tokens == 0:
|
||||
return None
|
||||
|
||||
latents_height = self.latents_shape[0]
|
||||
latents_width = self.latents_shape[1]
|
||||
|
||||
merged = None
|
||||
|
||||
for key, maps in self.collated_maps.items():
|
||||
|
||||
# maps has shape [(H*W), N] for N tokens
|
||||
# but we want [N, H, W]
|
||||
this_scale_factor = math.sqrt(maps.shape[0] / (latents_width * latents_height))
|
||||
this_maps_height = int(float(latents_height) * this_scale_factor)
|
||||
this_maps_width = int(float(latents_width) * this_scale_factor)
|
||||
# and we need to do some dimension juggling
|
||||
maps = torch.reshape(torch.swapdims(maps, 0, 1), [num_tokens, this_maps_height, this_maps_width])
|
||||
|
||||
# scale to output size if necessary
|
||||
if this_scale_factor != 1:
|
||||
maps = tv_resize(maps, [latents_height, latents_width], InterpolationMode.BICUBIC)
|
||||
|
||||
# normalize
|
||||
maps_min = torch.min(maps)
|
||||
maps_range = torch.max(maps) - maps_min
|
||||
#print(f"map {key} size {[this_maps_width, this_maps_height]} range {[maps_min, maps_min + maps_range]}")
|
||||
maps_normalized = (maps - maps_min) / maps_range
|
||||
# expand to (-0.1, 1.1) and clamp
|
||||
maps_normalized_expanded = maps_normalized * 1.1 - 0.05
|
||||
maps_normalized_expanded_clamped = torch.clamp(maps_normalized_expanded, 0, 1)
|
||||
|
||||
# merge together, producing a vertical stack
|
||||
maps_stacked = torch.reshape(maps_normalized_expanded_clamped, [num_tokens * latents_height, latents_width])
|
||||
|
||||
if merged is None:
|
||||
merged = maps_stacked
|
||||
else:
|
||||
# screen blend
|
||||
merged = 1 - (1 - maps_stacked)*(1 - merged)
|
||||
|
||||
if merged is None:
|
||||
return None
|
||||
|
||||
merged_bytes = merged.mul(0xff).byte()
|
||||
return PIL.Image.fromarray(merged_bytes.numpy(), mode='L')
|
@ -1,111 +0,0 @@
|
||||
"""SAMPLING ONLY."""
|
||||
|
||||
import torch
|
||||
from ldm.models.diffusion.shared_invokeai_diffusion import InvokeAIDiffuserComponent
|
||||
from ldm.models.diffusion.sampler import Sampler
|
||||
from ldm.modules.diffusionmodules.util import noise_like
|
||||
|
||||
class DDIMSampler(Sampler):
|
||||
def __init__(self, model, schedule='linear', device=None, **kwargs):
|
||||
super().__init__(model,schedule,model.num_timesteps,device)
|
||||
|
||||
self.invokeai_diffuser = InvokeAIDiffuserComponent(self.model,
|
||||
model_forward_callback = lambda x, sigma, cond: self.model.apply_model(x, sigma, cond))
|
||||
|
||||
def prepare_to_sample(self, t_enc, **kwargs):
|
||||
super().prepare_to_sample(t_enc, **kwargs)
|
||||
|
||||
extra_conditioning_info = kwargs.get('extra_conditioning_info', None)
|
||||
all_timesteps_count = kwargs.get('all_timesteps_count', t_enc)
|
||||
|
||||
if extra_conditioning_info is not None and extra_conditioning_info.wants_cross_attention_control:
|
||||
self.invokeai_diffuser.override_cross_attention(extra_conditioning_info, step_count = all_timesteps_count)
|
||||
else:
|
||||
self.invokeai_diffuser.restore_default_cross_attention()
|
||||
|
||||
|
||||
# This is the central routine
|
||||
@torch.no_grad()
|
||||
def p_sample(
|
||||
self,
|
||||
x,
|
||||
c,
|
||||
t,
|
||||
index,
|
||||
repeat_noise=False,
|
||||
use_original_steps=False,
|
||||
quantize_denoised=False,
|
||||
temperature=1.0,
|
||||
noise_dropout=0.0,
|
||||
score_corrector=None,
|
||||
corrector_kwargs=None,
|
||||
unconditional_guidance_scale=1.0,
|
||||
unconditional_conditioning=None,
|
||||
step_count:int=1000, # total number of steps
|
||||
**kwargs,
|
||||
):
|
||||
b, *_, device = *x.shape, x.device
|
||||
|
||||
if (
|
||||
unconditional_conditioning is None
|
||||
or unconditional_guidance_scale == 1.0
|
||||
):
|
||||
# damian0815 would like to know when/if this code path is used
|
||||
e_t = self.model.apply_model(x, t, c)
|
||||
else:
|
||||
# step_index counts in the opposite direction to index
|
||||
step_index = step_count-(index+1)
|
||||
e_t = self.invokeai_diffuser.do_diffusion_step(
|
||||
x, t,
|
||||
unconditional_conditioning, c,
|
||||
unconditional_guidance_scale,
|
||||
step_index=step_index
|
||||
)
|
||||
if score_corrector is not None:
|
||||
assert self.model.parameterization == 'eps'
|
||||
e_t = score_corrector.modify_score(
|
||||
self.model, e_t, x, t, c, **corrector_kwargs
|
||||
)
|
||||
|
||||
alphas = (
|
||||
self.model.alphas_cumprod
|
||||
if use_original_steps
|
||||
else self.ddim_alphas
|
||||
)
|
||||
alphas_prev = (
|
||||
self.model.alphas_cumprod_prev
|
||||
if use_original_steps
|
||||
else self.ddim_alphas_prev
|
||||
)
|
||||
sqrt_one_minus_alphas = (
|
||||
self.model.sqrt_one_minus_alphas_cumprod
|
||||
if use_original_steps
|
||||
else self.ddim_sqrt_one_minus_alphas
|
||||
)
|
||||
sigmas = (
|
||||
self.model.ddim_sigmas_for_original_num_steps
|
||||
if use_original_steps
|
||||
else self.ddim_sigmas
|
||||
)
|
||||
# select parameters corresponding to the currently considered timestep
|
||||
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
|
||||
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
|
||||
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
|
||||
sqrt_one_minus_at = torch.full(
|
||||
(b, 1, 1, 1), sqrt_one_minus_alphas[index], device=device
|
||||
)
|
||||
|
||||
# current prediction for x_0
|
||||
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
||||
if quantize_denoised:
|
||||
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
||||
# direction pointing to x_t
|
||||
dir_xt = (1.0 - a_prev - sigma_t**2).sqrt() * e_t
|
||||
noise = (
|
||||
sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
||||
)
|
||||
if noise_dropout > 0.0:
|
||||
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
||||
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
||||
return x_prev, pred_x0, None
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -1,312 +0,0 @@
|
||||
"""wrapper around part of Katherine Crowson's k-diffusion library, making it call compatible with other Samplers"""
|
||||
|
||||
import k_diffusion as K
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from .cross_attention_map_saving import AttentionMapSaver
|
||||
from .sampler import Sampler
|
||||
from .shared_invokeai_diffusion import InvokeAIDiffuserComponent
|
||||
|
||||
|
||||
# at this threshold, the scheduler will stop using the Karras
|
||||
# noise schedule and start using the model's schedule
|
||||
STEP_THRESHOLD = 30
|
||||
|
||||
def cfg_apply_threshold(result, threshold = 0.0, scale = 0.7):
|
||||
if threshold <= 0.0:
|
||||
return result
|
||||
maxval = 0.0 + torch.max(result).cpu().numpy()
|
||||
minval = 0.0 + torch.min(result).cpu().numpy()
|
||||
if maxval < threshold and minval > -threshold:
|
||||
return result
|
||||
if maxval > threshold:
|
||||
maxval = min(max(1, scale*maxval), threshold)
|
||||
if minval < -threshold:
|
||||
minval = max(min(-1, scale*minval), -threshold)
|
||||
return torch.clamp(result, min=minval, max=maxval)
|
||||
|
||||
|
||||
class CFGDenoiser(nn.Module):
|
||||
def __init__(self, model, threshold = 0, warmup = 0):
|
||||
super().__init__()
|
||||
self.inner_model = model
|
||||
self.threshold = threshold
|
||||
self.warmup_max = warmup
|
||||
self.warmup = max(warmup / 10, 1)
|
||||
self.invokeai_diffuser = InvokeAIDiffuserComponent(model,
|
||||
model_forward_callback=lambda x, sigma, cond: self.inner_model(x, sigma, cond=cond))
|
||||
|
||||
|
||||
def prepare_to_sample(self, t_enc, **kwargs):
|
||||
|
||||
extra_conditioning_info = kwargs.get('extra_conditioning_info', None)
|
||||
|
||||
if extra_conditioning_info is not None and extra_conditioning_info.wants_cross_attention_control:
|
||||
self.invokeai_diffuser.override_cross_attention(extra_conditioning_info, step_count = t_enc)
|
||||
else:
|
||||
self.invokeai_diffuser.restore_default_cross_attention()
|
||||
|
||||
|
||||
def forward(self, x, sigma, uncond, cond, cond_scale):
|
||||
next_x = self.invokeai_diffuser.do_diffusion_step(x, sigma, uncond, cond, cond_scale)
|
||||
if self.warmup < self.warmup_max:
|
||||
thresh = max(1, 1 + (self.threshold - 1) * (self.warmup / self.warmup_max))
|
||||
self.warmup += 1
|
||||
else:
|
||||
thresh = self.threshold
|
||||
if thresh > self.threshold:
|
||||
thresh = self.threshold
|
||||
return cfg_apply_threshold(next_x, thresh)
|
||||
|
||||
class KSampler(Sampler):
|
||||
def __init__(self, model, schedule='lms', device=None, **kwargs):
|
||||
denoiser = K.external.CompVisDenoiser(model)
|
||||
super().__init__(
|
||||
denoiser,
|
||||
schedule,
|
||||
steps=model.num_timesteps,
|
||||
)
|
||||
self.sigmas = None
|
||||
self.ds = None
|
||||
self.s_in = None
|
||||
self.karras_max = kwargs.get('karras_max',STEP_THRESHOLD)
|
||||
if self.karras_max is None:
|
||||
self.karras_max = STEP_THRESHOLD
|
||||
|
||||
def make_schedule(
|
||||
self,
|
||||
ddim_num_steps,
|
||||
ddim_discretize='uniform',
|
||||
ddim_eta=0.0,
|
||||
verbose=False,
|
||||
):
|
||||
outer_model = self.model
|
||||
self.model = outer_model.inner_model
|
||||
super().make_schedule(
|
||||
ddim_num_steps,
|
||||
ddim_discretize='uniform',
|
||||
ddim_eta=0.0,
|
||||
verbose=False,
|
||||
)
|
||||
self.model = outer_model
|
||||
self.ddim_num_steps = ddim_num_steps
|
||||
# we don't need both of these sigmas, but storing them here to make
|
||||
# comparison easier later on
|
||||
self.model_sigmas = self.model.get_sigmas(ddim_num_steps)
|
||||
self.karras_sigmas = K.sampling.get_sigmas_karras(
|
||||
n=ddim_num_steps,
|
||||
sigma_min=self.model.sigmas[0].item(),
|
||||
sigma_max=self.model.sigmas[-1].item(),
|
||||
rho=7.,
|
||||
device=self.device,
|
||||
)
|
||||
|
||||
if ddim_num_steps >= self.karras_max:
|
||||
print(f'>> Ksampler using model noise schedule (steps >= {self.karras_max})')
|
||||
self.sigmas = self.model_sigmas
|
||||
else:
|
||||
print(f'>> Ksampler using karras noise schedule (steps < {self.karras_max})')
|
||||
self.sigmas = self.karras_sigmas
|
||||
|
||||
# ALERT: We are completely overriding the sample() method in the base class, which
|
||||
# means that inpainting will not work. To get this to work we need to be able to
|
||||
# modify the inner loop of k_heun, k_lms, etc, as is done in an ugly way
|
||||
# in the lstein/k-diffusion branch.
|
||||
|
||||
@torch.no_grad()
|
||||
def decode(
|
||||
self,
|
||||
z_enc,
|
||||
cond,
|
||||
t_enc,
|
||||
img_callback=None,
|
||||
unconditional_guidance_scale=1.0,
|
||||
unconditional_conditioning=None,
|
||||
use_original_steps=False,
|
||||
init_latent = None,
|
||||
mask = None,
|
||||
**kwargs
|
||||
):
|
||||
samples,_ = self.sample(
|
||||
batch_size = 1,
|
||||
S = t_enc,
|
||||
x_T = z_enc,
|
||||
shape = z_enc.shape[1:],
|
||||
conditioning = cond,
|
||||
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||
unconditional_conditioning = unconditional_conditioning,
|
||||
img_callback = img_callback,
|
||||
x0 = init_latent,
|
||||
mask = mask,
|
||||
**kwargs
|
||||
)
|
||||
return samples
|
||||
|
||||
# this is a no-op, provided here for compatibility with ddim and plms samplers
|
||||
@torch.no_grad()
|
||||
def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
|
||||
return x0
|
||||
|
||||
# Most of these arguments are ignored and are only present for compatibility with
|
||||
# other samples
|
||||
@torch.no_grad()
|
||||
def sample(
|
||||
self,
|
||||
S,
|
||||
batch_size,
|
||||
shape,
|
||||
conditioning=None,
|
||||
callback=None,
|
||||
normals_sequence=None,
|
||||
img_callback=None,
|
||||
attention_maps_callback=None,
|
||||
quantize_x0=False,
|
||||
eta=0.0,
|
||||
mask=None,
|
||||
x0=None,
|
||||
temperature=1.0,
|
||||
noise_dropout=0.0,
|
||||
score_corrector=None,
|
||||
corrector_kwargs=None,
|
||||
verbose=True,
|
||||
x_T=None,
|
||||
log_every_t=100,
|
||||
unconditional_guidance_scale=1.0,
|
||||
unconditional_conditioning=None,
|
||||
extra_conditioning_info: InvokeAIDiffuserComponent.ExtraConditioningInfo=None,
|
||||
threshold = 0,
|
||||
perlin = 0,
|
||||
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
||||
**kwargs,
|
||||
):
|
||||
def route_callback(k_callback_values):
|
||||
if img_callback is not None:
|
||||
img_callback(k_callback_values['x'],k_callback_values['i'])
|
||||
|
||||
# if make_schedule() hasn't been called, we do it now
|
||||
if self.sigmas is None:
|
||||
self.make_schedule(
|
||||
ddim_num_steps=S,
|
||||
ddim_eta = eta,
|
||||
verbose = False,
|
||||
)
|
||||
|
||||
# sigmas are set up in make_schedule - we take the last steps items
|
||||
sigmas = self.sigmas[-S-1:]
|
||||
|
||||
# x_T is variation noise. When an init image is provided (in x0) we need to add
|
||||
# more randomness to the starting image.
|
||||
if x_T is not None:
|
||||
if x0 is not None:
|
||||
x = x_T + torch.randn_like(x0, device=self.device) * sigmas[0]
|
||||
else:
|
||||
x = x_T * sigmas[0]
|
||||
else:
|
||||
x = torch.randn([batch_size, *shape], device=self.device) * sigmas[0]
|
||||
|
||||
model_wrap_cfg = CFGDenoiser(self.model, threshold=threshold, warmup=max(0.8*S,S-10))
|
||||
model_wrap_cfg.prepare_to_sample(S, extra_conditioning_info=extra_conditioning_info)
|
||||
|
||||
# setup attention maps saving. checks for None are because there are multiple code paths to get here.
|
||||
attention_map_saver = None
|
||||
if attention_maps_callback is not None and extra_conditioning_info is not None:
|
||||
eos_token_index = extra_conditioning_info.tokens_count_including_eos_bos - 1
|
||||
attention_map_token_ids = range(1, eos_token_index)
|
||||
attention_map_saver = AttentionMapSaver(token_ids = attention_map_token_ids, latents_shape=x.shape[-2:])
|
||||
model_wrap_cfg.invokeai_diffuser.setup_attention_map_saving(attention_map_saver)
|
||||
|
||||
extra_args = {
|
||||
'cond': conditioning,
|
||||
'uncond': unconditional_conditioning,
|
||||
'cond_scale': unconditional_guidance_scale,
|
||||
}
|
||||
print(f'>> Sampling with k_{self.schedule} starting at step {len(self.sigmas)-S-1} of {len(self.sigmas)-1} ({S} new sampling steps)')
|
||||
sampling_result = (
|
||||
K.sampling.__dict__[f'sample_{self.schedule}'](
|
||||
model_wrap_cfg, x, sigmas, extra_args=extra_args,
|
||||
callback=route_callback
|
||||
),
|
||||
None,
|
||||
)
|
||||
if attention_map_saver is not None:
|
||||
attention_maps_callback(attention_map_saver)
|
||||
return sampling_result
|
||||
|
||||
# this code will support inpainting if and when ksampler API modified or
|
||||
# a workaround is found.
|
||||
@torch.no_grad()
|
||||
def p_sample(
|
||||
self,
|
||||
img,
|
||||
cond,
|
||||
ts,
|
||||
index,
|
||||
unconditional_guidance_scale=1.0,
|
||||
unconditional_conditioning=None,
|
||||
extra_conditioning_info=None,
|
||||
**kwargs,
|
||||
):
|
||||
if self.model_wrap is None:
|
||||
self.model_wrap = CFGDenoiser(self.model)
|
||||
extra_args = {
|
||||
'cond': cond,
|
||||
'uncond': unconditional_conditioning,
|
||||
'cond_scale': unconditional_guidance_scale,
|
||||
}
|
||||
if self.s_in is None:
|
||||
self.s_in = img.new_ones([img.shape[0]])
|
||||
if self.ds is None:
|
||||
self.ds = []
|
||||
|
||||
# terrible, confusing names here
|
||||
steps = self.ddim_num_steps
|
||||
t_enc = self.t_enc
|
||||
|
||||
# sigmas is a full steps in length, but t_enc might
|
||||
# be less. We start in the middle of the sigma array
|
||||
# and work our way to the end after t_enc steps.
|
||||
# index starts at t_enc and works its way to zero,
|
||||
# so the actual formula for indexing into sigmas:
|
||||
# sigma_index = (steps-index)
|
||||
s_index = t_enc - index - 1
|
||||
self.model_wrap.prepare_to_sample(s_index, extra_conditioning_info=extra_conditioning_info)
|
||||
img = K.sampling.__dict__[f'_{self.schedule}'](
|
||||
self.model_wrap,
|
||||
img,
|
||||
self.sigmas,
|
||||
s_index,
|
||||
s_in = self.s_in,
|
||||
ds = self.ds,
|
||||
extra_args=extra_args,
|
||||
)
|
||||
|
||||
return img, None, None
|
||||
|
||||
# REVIEW THIS METHOD: it has never been tested. In particular,
|
||||
# we should not be multiplying by self.sigmas[0] if we
|
||||
# are at an intermediate step in img2img. See similar in
|
||||
# sample() which does work.
|
||||
def get_initial_image(self,x_T,shape,steps):
|
||||
print(f'WARNING: ksampler.get_initial_image(): get_initial_image needs testing')
|
||||
x = (torch.randn(shape, device=self.device) * self.sigmas[0])
|
||||
if x_T is not None:
|
||||
return x_T + x
|
||||
else:
|
||||
return x
|
||||
|
||||
def prepare_to_sample(self,t_enc,**kwargs):
|
||||
self.t_enc = t_enc
|
||||
self.model_wrap = None
|
||||
self.ds = None
|
||||
self.s_in = None
|
||||
|
||||
def q_sample(self,x0,ts):
|
||||
'''
|
||||
Overrides parent method to return the q_sample of the inner model.
|
||||
'''
|
||||
return self.model.inner_model.q_sample(x0,ts)
|
||||
|
||||
def conditioning_key(self)->str:
|
||||
return self.model.inner_model.model.conditioning_key
|
||||
|
@ -1,146 +0,0 @@
|
||||
"""SAMPLING ONLY."""
|
||||
|
||||
import torch
|
||||
import numpy as np
|
||||
from tqdm import tqdm
|
||||
from functools import partial
|
||||
from ldm.invoke.devices import choose_torch_device
|
||||
from ldm.models.diffusion.shared_invokeai_diffusion import InvokeAIDiffuserComponent
|
||||
from ldm.models.diffusion.sampler import Sampler
|
||||
from ldm.modules.diffusionmodules.util import noise_like
|
||||
|
||||
|
||||
class PLMSSampler(Sampler):
|
||||
def __init__(self, model, schedule='linear', device=None, **kwargs):
|
||||
super().__init__(model,schedule,model.num_timesteps, device)
|
||||
|
||||
def prepare_to_sample(self, t_enc, **kwargs):
|
||||
super().prepare_to_sample(t_enc, **kwargs)
|
||||
|
||||
extra_conditioning_info = kwargs.get('extra_conditioning_info', None)
|
||||
all_timesteps_count = kwargs.get('all_timesteps_count', t_enc)
|
||||
|
||||
if extra_conditioning_info is not None and extra_conditioning_info.wants_cross_attention_control:
|
||||
self.invokeai_diffuser.override_cross_attention(extra_conditioning_info, step_count = all_timesteps_count)
|
||||
else:
|
||||
self.invokeai_diffuser.restore_default_cross_attention()
|
||||
|
||||
|
||||
# this is the essential routine
|
||||
@torch.no_grad()
|
||||
def p_sample(
|
||||
self,
|
||||
x, # image, called 'img' elsewhere
|
||||
c, # conditioning, called 'cond' elsewhere
|
||||
t, # timesteps, called 'ts' elsewhere
|
||||
index,
|
||||
repeat_noise=False,
|
||||
use_original_steps=False,
|
||||
quantize_denoised=False,
|
||||
temperature=1.0,
|
||||
noise_dropout=0.0,
|
||||
score_corrector=None,
|
||||
corrector_kwargs=None,
|
||||
unconditional_guidance_scale=1.0,
|
||||
unconditional_conditioning=None,
|
||||
old_eps=[],
|
||||
t_next=None,
|
||||
step_count:int=1000, # total number of steps
|
||||
**kwargs,
|
||||
):
|
||||
b, *_, device = *x.shape, x.device
|
||||
|
||||
def get_model_output(x, t):
|
||||
if (
|
||||
unconditional_conditioning is None
|
||||
or unconditional_guidance_scale == 1.0
|
||||
):
|
||||
# damian0815 would like to know when/if this code path is used
|
||||
e_t = self.model.apply_model(x, t, c)
|
||||
else:
|
||||
# step_index counts in the opposite direction to index
|
||||
step_index = step_count-(index+1)
|
||||
e_t = self.invokeai_diffuser.do_diffusion_step(x, t,
|
||||
unconditional_conditioning, c,
|
||||
unconditional_guidance_scale,
|
||||
step_index=step_index)
|
||||
if score_corrector is not None:
|
||||
assert self.model.parameterization == 'eps'
|
||||
e_t = score_corrector.modify_score(
|
||||
self.model, e_t, x, t, c, **corrector_kwargs
|
||||
)
|
||||
|
||||
return e_t
|
||||
|
||||
alphas = (
|
||||
self.model.alphas_cumprod
|
||||
if use_original_steps
|
||||
else self.ddim_alphas
|
||||
)
|
||||
alphas_prev = (
|
||||
self.model.alphas_cumprod_prev
|
||||
if use_original_steps
|
||||
else self.ddim_alphas_prev
|
||||
)
|
||||
sqrt_one_minus_alphas = (
|
||||
self.model.sqrt_one_minus_alphas_cumprod
|
||||
if use_original_steps
|
||||
else self.ddim_sqrt_one_minus_alphas
|
||||
)
|
||||
sigmas = (
|
||||
self.model.ddim_sigmas_for_original_num_steps
|
||||
if use_original_steps
|
||||
else self.ddim_sigmas
|
||||
)
|
||||
|
||||
def get_x_prev_and_pred_x0(e_t, index):
|
||||
# select parameters corresponding to the currently considered timestep
|
||||
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
|
||||
a_prev = torch.full(
|
||||
(b, 1, 1, 1), alphas_prev[index], device=device
|
||||
)
|
||||
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
|
||||
sqrt_one_minus_at = torch.full(
|
||||
(b, 1, 1, 1), sqrt_one_minus_alphas[index], device=device
|
||||
)
|
||||
|
||||
# current prediction for x_0
|
||||
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
||||
if quantize_denoised:
|
||||
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
||||
# direction pointing to x_t
|
||||
dir_xt = (1.0 - a_prev - sigma_t**2).sqrt() * e_t
|
||||
noise = (
|
||||
sigma_t
|
||||
* noise_like(x.shape, device, repeat_noise)
|
||||
* temperature
|
||||
)
|
||||
if noise_dropout > 0.0:
|
||||
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
||||
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
||||
return x_prev, pred_x0
|
||||
|
||||
e_t = get_model_output(x, t)
|
||||
if len(old_eps) == 0:
|
||||
# Pseudo Improved Euler (2nd order)
|
||||
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index)
|
||||
e_t_next = get_model_output(x_prev, t_next)
|
||||
e_t_prime = (e_t + e_t_next) / 2
|
||||
elif len(old_eps) == 1:
|
||||
# 2nd order Pseudo Linear Multistep (Adams-Bashforth)
|
||||
e_t_prime = (3 * e_t - old_eps[-1]) / 2
|
||||
elif len(old_eps) == 2:
|
||||
# 3nd order Pseudo Linear Multistep (Adams-Bashforth)
|
||||
e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
|
||||
elif len(old_eps) >= 3:
|
||||
# 4nd order Pseudo Linear Multistep (Adams-Bashforth)
|
||||
e_t_prime = (
|
||||
55 * e_t
|
||||
- 59 * old_eps[-1]
|
||||
+ 37 * old_eps[-2]
|
||||
- 9 * old_eps[-3]
|
||||
) / 24
|
||||
|
||||
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)
|
||||
|
||||
return x_prev, pred_x0, e_t
|
@ -1,450 +0,0 @@
|
||||
'''
|
||||
ldm.models.diffusion.sampler
|
||||
|
||||
Base class for ldm.models.diffusion.ddim, ldm.models.diffusion.ksampler, etc
|
||||
'''
|
||||
import torch
|
||||
import numpy as np
|
||||
from tqdm import tqdm
|
||||
from functools import partial
|
||||
from ldm.invoke.devices import choose_torch_device
|
||||
from ldm.models.diffusion.shared_invokeai_diffusion import InvokeAIDiffuserComponent
|
||||
|
||||
from ldm.modules.diffusionmodules.util import (
|
||||
make_ddim_sampling_parameters,
|
||||
make_ddim_timesteps,
|
||||
noise_like,
|
||||
extract_into_tensor,
|
||||
)
|
||||
|
||||
class Sampler(object):
|
||||
def __init__(self, model, schedule='linear', steps=None, device=None, **kwargs):
|
||||
self.model = model
|
||||
self.ddim_timesteps = None
|
||||
self.ddpm_num_timesteps = steps
|
||||
self.schedule = schedule
|
||||
self.device = device or choose_torch_device()
|
||||
self.invokeai_diffuser = InvokeAIDiffuserComponent(self.model,
|
||||
model_forward_callback = lambda x, sigma, cond: self.model.apply_model(x, sigma, cond))
|
||||
|
||||
def register_buffer(self, name, attr):
|
||||
if type(attr) == torch.Tensor:
|
||||
if attr.device != torch.device(self.device):
|
||||
attr = attr.to(torch.float32).to(torch.device(self.device))
|
||||
setattr(self, name, attr)
|
||||
|
||||
# This method was copied over from ddim.py and probably does stuff that is
|
||||
# ddim-specific. Disentangle at some point.
|
||||
def make_schedule(
|
||||
self,
|
||||
ddim_num_steps,
|
||||
ddim_discretize='uniform',
|
||||
ddim_eta=0.0,
|
||||
verbose=False,
|
||||
):
|
||||
self.total_steps = ddim_num_steps
|
||||
self.ddim_timesteps = make_ddim_timesteps(
|
||||
ddim_discr_method=ddim_discretize,
|
||||
num_ddim_timesteps=ddim_num_steps,
|
||||
num_ddpm_timesteps=self.ddpm_num_timesteps,
|
||||
verbose=verbose,
|
||||
)
|
||||
alphas_cumprod = self.model.alphas_cumprod
|
||||
assert (
|
||||
alphas_cumprod.shape[0] == self.ddpm_num_timesteps
|
||||
), 'alphas have to be defined for each timestep'
|
||||
to_torch = (
|
||||
lambda x: x.clone()
|
||||
.detach()
|
||||
.to(torch.float32)
|
||||
.to(self.model.device)
|
||||
)
|
||||
|
||||
self.register_buffer('betas', to_torch(self.model.betas))
|
||||
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
||||
self.register_buffer(
|
||||
'alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev)
|
||||
)
|
||||
|
||||
# calculations for diffusion q(x_t | x_{t-1}) and others
|
||||
self.register_buffer(
|
||||
'sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu()))
|
||||
)
|
||||
self.register_buffer(
|
||||
'sqrt_one_minus_alphas_cumprod',
|
||||
to_torch(np.sqrt(1.0 - alphas_cumprod.cpu())),
|
||||
)
|
||||
self.register_buffer(
|
||||
'log_one_minus_alphas_cumprod',
|
||||
to_torch(np.log(1.0 - alphas_cumprod.cpu())),
|
||||
)
|
||||
self.register_buffer(
|
||||
'sqrt_recip_alphas_cumprod',
|
||||
to_torch(np.sqrt(1.0 / alphas_cumprod.cpu())),
|
||||
)
|
||||
self.register_buffer(
|
||||
'sqrt_recipm1_alphas_cumprod',
|
||||
to_torch(np.sqrt(1.0 / alphas_cumprod.cpu() - 1)),
|
||||
)
|
||||
|
||||
# ddim sampling parameters
|
||||
(
|
||||
ddim_sigmas,
|
||||
ddim_alphas,
|
||||
ddim_alphas_prev,
|
||||
) = make_ddim_sampling_parameters(
|
||||
alphacums=alphas_cumprod.cpu(),
|
||||
ddim_timesteps=self.ddim_timesteps,
|
||||
eta=ddim_eta,
|
||||
verbose=verbose,
|
||||
)
|
||||
self.register_buffer('ddim_sigmas', ddim_sigmas)
|
||||
self.register_buffer('ddim_alphas', ddim_alphas)
|
||||
self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
|
||||
self.register_buffer(
|
||||
'ddim_sqrt_one_minus_alphas', np.sqrt(1.0 - ddim_alphas)
|
||||
)
|
||||
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
|
||||
(1 - self.alphas_cumprod_prev)
|
||||
/ (1 - self.alphas_cumprod)
|
||||
* (1 - self.alphas_cumprod / self.alphas_cumprod_prev)
|
||||
)
|
||||
self.register_buffer(
|
||||
'ddim_sigmas_for_original_num_steps',
|
||||
sigmas_for_original_sampling_steps,
|
||||
)
|
||||
|
||||
@torch.no_grad()
|
||||
def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
|
||||
# fast, but does not allow for exact reconstruction
|
||||
# t serves as an index to gather the correct alphas
|
||||
if use_original_steps:
|
||||
sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
|
||||
sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
|
||||
else:
|
||||
sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
|
||||
sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
|
||||
|
||||
if noise is None:
|
||||
noise = torch.randn_like(x0)
|
||||
return (
|
||||
extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0
|
||||
+ extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape)
|
||||
* noise
|
||||
)
|
||||
|
||||
@torch.no_grad()
|
||||
def sample(
|
||||
self,
|
||||
S, # S is steps
|
||||
batch_size,
|
||||
shape,
|
||||
conditioning=None,
|
||||
callback=None,
|
||||
normals_sequence=None,
|
||||
img_callback=None, # TODO: this is very confusing because it is called "step_callback" elsewhere. Change.
|
||||
quantize_x0=False,
|
||||
eta=0.0,
|
||||
mask=None,
|
||||
x0=None,
|
||||
temperature=1.0,
|
||||
noise_dropout=0.0,
|
||||
score_corrector=None,
|
||||
corrector_kwargs=None,
|
||||
verbose=False,
|
||||
x_T=None,
|
||||
log_every_t=100,
|
||||
unconditional_guidance_scale=1.0,
|
||||
unconditional_conditioning=None,
|
||||
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
||||
**kwargs,
|
||||
):
|
||||
|
||||
if conditioning is not None:
|
||||
if isinstance(conditioning, dict):
|
||||
ctmp = conditioning[list(conditioning.keys())[0]]
|
||||
while isinstance(ctmp, list):
|
||||
ctmp = ctmp[0]
|
||||
cbs = ctmp.shape[0]
|
||||
if cbs != batch_size:
|
||||
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
||||
else:
|
||||
if conditioning.shape[0] != batch_size:
|
||||
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
|
||||
|
||||
# check to see if make_schedule() has run, and if not, run it
|
||||
if self.ddim_timesteps is None:
|
||||
self.make_schedule(
|
||||
ddim_num_steps=S,
|
||||
ddim_eta = eta,
|
||||
verbose = False,
|
||||
)
|
||||
|
||||
ts = self.get_timesteps(S)
|
||||
|
||||
# sampling
|
||||
C, H, W = shape
|
||||
shape = (batch_size, C, H, W)
|
||||
samples, intermediates = self.do_sampling(
|
||||
conditioning,
|
||||
shape,
|
||||
timesteps=ts,
|
||||
callback=callback,
|
||||
img_callback=img_callback,
|
||||
quantize_denoised=quantize_x0,
|
||||
mask=mask,
|
||||
x0=x0,
|
||||
ddim_use_original_steps=False,
|
||||
noise_dropout=noise_dropout,
|
||||
temperature=temperature,
|
||||
score_corrector=score_corrector,
|
||||
corrector_kwargs=corrector_kwargs,
|
||||
x_T=x_T,
|
||||
log_every_t=log_every_t,
|
||||
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||
unconditional_conditioning=unconditional_conditioning,
|
||||
steps=S,
|
||||
**kwargs
|
||||
)
|
||||
return samples, intermediates
|
||||
|
||||
@torch.no_grad()
|
||||
def do_sampling(
|
||||
self,
|
||||
cond,
|
||||
shape,
|
||||
timesteps=None,
|
||||
x_T=None,
|
||||
ddim_use_original_steps=False,
|
||||
callback=None,
|
||||
quantize_denoised=False,
|
||||
mask=None,
|
||||
x0=None,
|
||||
img_callback=None,
|
||||
log_every_t=100,
|
||||
temperature=1.0,
|
||||
noise_dropout=0.0,
|
||||
score_corrector=None,
|
||||
corrector_kwargs=None,
|
||||
unconditional_guidance_scale=1.0,
|
||||
unconditional_conditioning=None,
|
||||
steps=None,
|
||||
**kwargs
|
||||
):
|
||||
b = shape[0]
|
||||
time_range = (
|
||||
list(reversed(range(0, timesteps)))
|
||||
if ddim_use_original_steps
|
||||
else np.flip(timesteps)
|
||||
)
|
||||
|
||||
total_steps=steps
|
||||
|
||||
iterator = tqdm(
|
||||
time_range,
|
||||
desc=f'{self.__class__.__name__}',
|
||||
total=total_steps,
|
||||
dynamic_ncols=True,
|
||||
)
|
||||
old_eps = []
|
||||
self.prepare_to_sample(t_enc=total_steps,all_timesteps_count=steps,**kwargs)
|
||||
img = self.get_initial_image(x_T,shape,total_steps)
|
||||
|
||||
# probably don't need this at all
|
||||
intermediates = {'x_inter': [img], 'pred_x0': [img]}
|
||||
|
||||
for i, step in enumerate(iterator):
|
||||
index = total_steps - i - 1
|
||||
ts = torch.full(
|
||||
(b,),
|
||||
step,
|
||||
device=self.device,
|
||||
dtype=torch.long
|
||||
)
|
||||
ts_next = torch.full(
|
||||
(b,),
|
||||
time_range[min(i + 1, len(time_range) - 1)],
|
||||
device=self.device,
|
||||
dtype=torch.long,
|
||||
)
|
||||
|
||||
if mask is not None:
|
||||
assert x0 is not None
|
||||
img_orig = self.model.q_sample(
|
||||
x0, ts
|
||||
) # TODO: deterministic forward pass?
|
||||
img = img_orig * mask + (1.0 - mask) * img
|
||||
|
||||
outs = self.p_sample(
|
||||
img,
|
||||
cond,
|
||||
ts,
|
||||
index=index,
|
||||
use_original_steps=ddim_use_original_steps,
|
||||
quantize_denoised=quantize_denoised,
|
||||
temperature=temperature,
|
||||
noise_dropout=noise_dropout,
|
||||
score_corrector=score_corrector,
|
||||
corrector_kwargs=corrector_kwargs,
|
||||
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||
unconditional_conditioning=unconditional_conditioning,
|
||||
old_eps=old_eps,
|
||||
t_next=ts_next,
|
||||
step_count=steps
|
||||
)
|
||||
img, pred_x0, e_t = outs
|
||||
|
||||
old_eps.append(e_t)
|
||||
if len(old_eps) >= 4:
|
||||
old_eps.pop(0)
|
||||
if callback:
|
||||
callback(i)
|
||||
if img_callback:
|
||||
img_callback(img,i)
|
||||
|
||||
if index % log_every_t == 0 or index == total_steps - 1:
|
||||
intermediates['x_inter'].append(img)
|
||||
intermediates['pred_x0'].append(pred_x0)
|
||||
|
||||
return img, intermediates
|
||||
|
||||
# NOTE that decode() and sample() are almost the same code, and do the same thing.
|
||||
# The variable names are changed in order to be confusing.
|
||||
@torch.no_grad()
|
||||
def decode(
|
||||
self,
|
||||
x_latent,
|
||||
cond,
|
||||
t_start,
|
||||
img_callback=None,
|
||||
unconditional_guidance_scale=1.0,
|
||||
unconditional_conditioning=None,
|
||||
use_original_steps=False,
|
||||
init_latent = None,
|
||||
mask = None,
|
||||
all_timesteps_count = None,
|
||||
**kwargs
|
||||
):
|
||||
timesteps = (
|
||||
np.arange(self.ddpm_num_timesteps)
|
||||
if use_original_steps
|
||||
else self.ddim_timesteps
|
||||
)
|
||||
timesteps = timesteps[:t_start]
|
||||
|
||||
time_range = np.flip(timesteps)
|
||||
total_steps = timesteps.shape[0]
|
||||
print(f'>> Running {self.__class__.__name__} sampling starting at step {self.total_steps - t_start} of {self.total_steps} ({total_steps} new sampling steps)')
|
||||
|
||||
iterator = tqdm(time_range, desc='Decoding image', total=total_steps)
|
||||
x_dec = x_latent
|
||||
x0 = init_latent
|
||||
self.prepare_to_sample(t_enc=total_steps, all_timesteps_count=all_timesteps_count, **kwargs)
|
||||
|
||||
for i, step in enumerate(iterator):
|
||||
index = total_steps - i - 1
|
||||
ts = torch.full(
|
||||
(x_latent.shape[0],),
|
||||
step,
|
||||
device=x_latent.device,
|
||||
dtype=torch.long,
|
||||
)
|
||||
|
||||
ts_next = torch.full(
|
||||
(x_latent.shape[0],),
|
||||
time_range[min(i + 1, len(time_range) - 1)],
|
||||
device=self.device,
|
||||
dtype=torch.long,
|
||||
)
|
||||
|
||||
if mask is not None:
|
||||
assert x0 is not None
|
||||
xdec_orig = self.q_sample(x0, ts) # TODO: deterministic forward pass?
|
||||
x_dec = xdec_orig * mask + (1.0 - mask) * x_dec
|
||||
|
||||
outs = self.p_sample(
|
||||
x_dec,
|
||||
cond,
|
||||
ts,
|
||||
index=index,
|
||||
use_original_steps=use_original_steps,
|
||||
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||
unconditional_conditioning=unconditional_conditioning,
|
||||
t_next = ts_next,
|
||||
step_count=len(self.ddim_timesteps)
|
||||
)
|
||||
|
||||
x_dec, pred_x0, e_t = outs
|
||||
if img_callback:
|
||||
img_callback(x_dec,i)
|
||||
|
||||
return x_dec
|
||||
|
||||
def get_initial_image(self,x_T,shape,timesteps=None):
|
||||
if x_T is None:
|
||||
return torch.randn(shape, device=self.device)
|
||||
else:
|
||||
return x_T
|
||||
|
||||
def p_sample(
|
||||
self,
|
||||
img,
|
||||
cond,
|
||||
ts,
|
||||
index,
|
||||
repeat_noise=False,
|
||||
use_original_steps=False,
|
||||
quantize_denoised=False,
|
||||
temperature=1.0,
|
||||
noise_dropout=0.0,
|
||||
score_corrector=None,
|
||||
corrector_kwargs=None,
|
||||
unconditional_guidance_scale=1.0,
|
||||
unconditional_conditioning=None,
|
||||
old_eps=None,
|
||||
t_next=None,
|
||||
steps=None,
|
||||
):
|
||||
raise NotImplementedError("p_sample() must be implemented in a descendent class")
|
||||
|
||||
def prepare_to_sample(self,t_enc,**kwargs):
|
||||
'''
|
||||
Hook that will be called right before the very first invocation of p_sample()
|
||||
to allow subclass to do additional initialization. t_enc corresponds to the actual
|
||||
number of steps that will be run, and may be less than total steps if img2img is
|
||||
active.
|
||||
'''
|
||||
pass
|
||||
|
||||
def get_timesteps(self,ddim_steps):
|
||||
'''
|
||||
The ddim and plms samplers work on timesteps. This method is called after
|
||||
ddim_timesteps are created in make_schedule(), and selects the portion of
|
||||
timesteps that will be used for sampling, depending on the t_enc in img2img.
|
||||
'''
|
||||
return self.ddim_timesteps[:ddim_steps]
|
||||
|
||||
def q_sample(self,x0,ts):
|
||||
'''
|
||||
Returns self.model.q_sample(x0,ts). Is overridden in the k* samplers to
|
||||
return self.model.inner_model.q_sample(x0,ts)
|
||||
'''
|
||||
return self.model.q_sample(x0,ts)
|
||||
|
||||
def conditioning_key(self)->str:
|
||||
return self.model.model.conditioning_key
|
||||
|
||||
def uses_inpainting_model(self)->bool:
|
||||
return self.conditioning_key() in ('hybrid','concat')
|
||||
|
||||
def adjust_settings(self,**kwargs):
|
||||
'''
|
||||
This is a catch-all method for adjusting any instance variables
|
||||
after the sampler is instantiated. No type-checking performed
|
||||
here, so use with care!
|
||||
'''
|
||||
for k in kwargs.keys():
|
||||
try:
|
||||
setattr(self,k,kwargs[k])
|
||||
except AttributeError:
|
||||
print(f'** Warning: attempt to set unknown attribute {k} in sampler of type {type(self)}')
|
@ -1,491 +0,0 @@
|
||||
from contextlib import contextmanager
|
||||
from dataclasses import dataclass
|
||||
from math import ceil
|
||||
from typing import Callable, Optional, Union, Any, Dict
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from diffusers.models.cross_attention import AttnProcessor
|
||||
from typing_extensions import TypeAlias
|
||||
|
||||
from ldm.invoke.globals import Globals
|
||||
from ldm.models.diffusion.cross_attention_control import Arguments, \
|
||||
restore_default_cross_attention, override_cross_attention, Context, get_cross_attention_modules, \
|
||||
CrossAttentionType, SwapCrossAttnContext
|
||||
from ldm.models.diffusion.cross_attention_map_saving import AttentionMapSaver
|
||||
|
||||
ModelForwardCallback: TypeAlias = Union[
|
||||
# x, t, conditioning, Optional[cross-attention kwargs]
|
||||
Callable[[torch.Tensor, torch.Tensor, torch.Tensor, Optional[dict[str, Any]]], torch.Tensor],
|
||||
Callable[[torch.Tensor, torch.Tensor, torch.Tensor], torch.Tensor]
|
||||
]
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class PostprocessingSettings:
|
||||
threshold: float
|
||||
warmup: float
|
||||
h_symmetry_time_pct: Optional[float]
|
||||
v_symmetry_time_pct: Optional[float]
|
||||
|
||||
|
||||
class InvokeAIDiffuserComponent:
|
||||
'''
|
||||
The aim of this component is to provide a single place for code that can be applied identically to
|
||||
all InvokeAI diffusion procedures.
|
||||
|
||||
At the moment it includes the following features:
|
||||
* Cross attention control ("prompt2prompt")
|
||||
* Hybrid conditioning (used for inpainting)
|
||||
'''
|
||||
debug_thresholding = False
|
||||
sequential_guidance = False
|
||||
|
||||
@dataclass
|
||||
class ExtraConditioningInfo:
|
||||
|
||||
tokens_count_including_eos_bos: int
|
||||
cross_attention_control_args: Optional[Arguments] = None
|
||||
|
||||
@property
|
||||
def wants_cross_attention_control(self):
|
||||
return self.cross_attention_control_args is not None
|
||||
|
||||
|
||||
def __init__(self, model, model_forward_callback: ModelForwardCallback,
|
||||
is_running_diffusers: bool=False,
|
||||
):
|
||||
"""
|
||||
:param model: the unet model to pass through to cross attention control
|
||||
:param model_forward_callback: a lambda with arguments (x, sigma, conditioning_to_apply). will be called repeatedly. most likely, this should simply call model.forward(x, sigma, conditioning)
|
||||
"""
|
||||
self.conditioning = None
|
||||
self.model = model
|
||||
self.is_running_diffusers = is_running_diffusers
|
||||
self.model_forward_callback = model_forward_callback
|
||||
self.cross_attention_control_context = None
|
||||
self.sequential_guidance = Globals.sequential_guidance
|
||||
|
||||
@contextmanager
|
||||
def custom_attention_context(self,
|
||||
extra_conditioning_info: Optional[ExtraConditioningInfo],
|
||||
step_count: int):
|
||||
do_swap = extra_conditioning_info is not None and extra_conditioning_info.wants_cross_attention_control
|
||||
old_attn_processor = None
|
||||
if do_swap:
|
||||
old_attn_processor = self.override_cross_attention(extra_conditioning_info,
|
||||
step_count=step_count)
|
||||
try:
|
||||
yield None
|
||||
finally:
|
||||
if old_attn_processor is not None:
|
||||
self.restore_default_cross_attention(old_attn_processor)
|
||||
# TODO resuscitate attention map saving
|
||||
#self.remove_attention_map_saving()
|
||||
|
||||
def override_cross_attention(self, conditioning: ExtraConditioningInfo, step_count: int) -> Dict[str, AttnProcessor]:
|
||||
"""
|
||||
setup cross attention .swap control. for diffusers this replaces the attention processor, so
|
||||
the previous attention processor is returned so that the caller can restore it later.
|
||||
"""
|
||||
self.conditioning = conditioning
|
||||
self.cross_attention_control_context = Context(
|
||||
arguments=self.conditioning.cross_attention_control_args,
|
||||
step_count=step_count
|
||||
)
|
||||
return override_cross_attention(self.model,
|
||||
self.cross_attention_control_context,
|
||||
is_running_diffusers=self.is_running_diffusers)
|
||||
|
||||
def restore_default_cross_attention(self, restore_attention_processor: Optional['AttnProcessor']=None):
|
||||
self.conditioning = None
|
||||
self.cross_attention_control_context = None
|
||||
restore_default_cross_attention(self.model,
|
||||
is_running_diffusers=self.is_running_diffusers,
|
||||
restore_attention_processor=restore_attention_processor)
|
||||
|
||||
def setup_attention_map_saving(self, saver: AttentionMapSaver):
|
||||
def callback(slice, dim, offset, slice_size, key):
|
||||
if dim is not None:
|
||||
# sliced tokens attention map saving is not implemented
|
||||
return
|
||||
saver.add_attention_maps(slice, key)
|
||||
|
||||
tokens_cross_attention_modules = get_cross_attention_modules(self.model, CrossAttentionType.TOKENS)
|
||||
for identifier, module in tokens_cross_attention_modules:
|
||||
key = ('down' if identifier.startswith('down') else
|
||||
'up' if identifier.startswith('up') else
|
||||
'mid')
|
||||
module.set_attention_slice_calculated_callback(
|
||||
lambda slice, dim, offset, slice_size, key=key: callback(slice, dim, offset, slice_size, key))
|
||||
|
||||
def remove_attention_map_saving(self):
|
||||
tokens_cross_attention_modules = get_cross_attention_modules(self.model, CrossAttentionType.TOKENS)
|
||||
for _, module in tokens_cross_attention_modules:
|
||||
module.set_attention_slice_calculated_callback(None)
|
||||
|
||||
def do_diffusion_step(self, x: torch.Tensor, sigma: torch.Tensor,
|
||||
unconditioning: Union[torch.Tensor,dict],
|
||||
conditioning: Union[torch.Tensor,dict],
|
||||
unconditional_guidance_scale: float,
|
||||
step_index: Optional[int]=None,
|
||||
total_step_count: Optional[int]=None,
|
||||
):
|
||||
"""
|
||||
:param x: current latents
|
||||
:param sigma: aka t, passed to the internal model to control how much denoising will occur
|
||||
:param unconditioning: embeddings for unconditioned output. for hybrid conditioning this is a dict of tensors [B x 77 x 768], otherwise a single tensor [B x 77 x 768]
|
||||
:param conditioning: embeddings for conditioned output. for hybrid conditioning this is a dict of tensors [B x 77 x 768], otherwise a single tensor [B x 77 x 768]
|
||||
:param unconditional_guidance_scale: aka CFG scale, controls how much effect the conditioning tensor has
|
||||
:param step_index: counts upwards from 0 to (step_count-1) (as passed to setup_cross_attention_control, if using). May be called multiple times for a single step, therefore do not assume that its value will monotically increase. If None, will be estimated by comparing sigma against self.model.sigmas .
|
||||
:return: the new latents after applying the model to x using unscaled unconditioning and CFG-scaled conditioning.
|
||||
"""
|
||||
|
||||
|
||||
cross_attention_control_types_to_do = []
|
||||
context: Context = self.cross_attention_control_context
|
||||
if self.cross_attention_control_context is not None:
|
||||
percent_through = self.calculate_percent_through(sigma, step_index, total_step_count)
|
||||
cross_attention_control_types_to_do = context.get_active_cross_attention_control_types_for_step(percent_through)
|
||||
|
||||
wants_cross_attention_control = (len(cross_attention_control_types_to_do) > 0)
|
||||
wants_hybrid_conditioning = isinstance(conditioning, dict)
|
||||
|
||||
if wants_hybrid_conditioning:
|
||||
unconditioned_next_x, conditioned_next_x = self._apply_hybrid_conditioning(x, sigma, unconditioning,
|
||||
conditioning)
|
||||
elif wants_cross_attention_control:
|
||||
unconditioned_next_x, conditioned_next_x = self._apply_cross_attention_controlled_conditioning(x, sigma,
|
||||
unconditioning,
|
||||
conditioning,
|
||||
cross_attention_control_types_to_do)
|
||||
elif self.sequential_guidance:
|
||||
unconditioned_next_x, conditioned_next_x = self._apply_standard_conditioning_sequentially(
|
||||
x, sigma, unconditioning, conditioning)
|
||||
|
||||
else:
|
||||
unconditioned_next_x, conditioned_next_x = self._apply_standard_conditioning(
|
||||
x, sigma, unconditioning, conditioning)
|
||||
|
||||
combined_next_x = self._combine(unconditioned_next_x, conditioned_next_x, unconditional_guidance_scale)
|
||||
|
||||
return combined_next_x
|
||||
|
||||
def do_latent_postprocessing(
|
||||
self,
|
||||
postprocessing_settings: PostprocessingSettings,
|
||||
latents: torch.Tensor,
|
||||
sigma,
|
||||
step_index,
|
||||
total_step_count
|
||||
) -> torch.Tensor:
|
||||
if postprocessing_settings is not None:
|
||||
percent_through = self.calculate_percent_through(sigma, step_index, total_step_count)
|
||||
latents = self.apply_threshold(postprocessing_settings, latents, percent_through)
|
||||
latents = self.apply_symmetry(postprocessing_settings, latents, percent_through)
|
||||
return latents
|
||||
|
||||
def calculate_percent_through(self, sigma, step_index, total_step_count):
|
||||
if step_index is not None and total_step_count is not None:
|
||||
# 🧨diffusers codepath
|
||||
percent_through = step_index / total_step_count # will never reach 1.0 - this is deliberate
|
||||
else:
|
||||
# legacy compvis codepath
|
||||
# TODO remove when compvis codepath support is dropped
|
||||
if step_index is None and sigma is None:
|
||||
raise ValueError(
|
||||
f"Either step_index or sigma is required when doing cross attention control, but both are None.")
|
||||
percent_through = self.estimate_percent_through(step_index, sigma)
|
||||
return percent_through
|
||||
|
||||
# methods below are called from do_diffusion_step and should be considered private to this class.
|
||||
|
||||
def _apply_standard_conditioning(self, x, sigma, unconditioning, conditioning):
|
||||
# fast batched path
|
||||
x_twice = torch.cat([x] * 2)
|
||||
sigma_twice = torch.cat([sigma] * 2)
|
||||
both_conditionings = torch.cat([unconditioning, conditioning])
|
||||
both_results = self.model_forward_callback(x_twice, sigma_twice, both_conditionings)
|
||||
unconditioned_next_x, conditioned_next_x = both_results.chunk(2)
|
||||
if conditioned_next_x.device.type == 'mps':
|
||||
# prevent a result filled with zeros. seems to be a torch bug.
|
||||
conditioned_next_x = conditioned_next_x.clone()
|
||||
return unconditioned_next_x, conditioned_next_x
|
||||
|
||||
|
||||
def _apply_standard_conditioning_sequentially(self, x: torch.Tensor, sigma, unconditioning: torch.Tensor, conditioning: torch.Tensor):
|
||||
# low-memory sequential path
|
||||
unconditioned_next_x = self.model_forward_callback(x, sigma, unconditioning)
|
||||
conditioned_next_x = self.model_forward_callback(x, sigma, conditioning)
|
||||
if conditioned_next_x.device.type == 'mps':
|
||||
# prevent a result filled with zeros. seems to be a torch bug.
|
||||
conditioned_next_x = conditioned_next_x.clone()
|
||||
return unconditioned_next_x, conditioned_next_x
|
||||
|
||||
|
||||
def _apply_hybrid_conditioning(self, x, sigma, unconditioning, conditioning):
|
||||
assert isinstance(conditioning, dict)
|
||||
assert isinstance(unconditioning, dict)
|
||||
x_twice = torch.cat([x] * 2)
|
||||
sigma_twice = torch.cat([sigma] * 2)
|
||||
both_conditionings = dict()
|
||||
for k in conditioning:
|
||||
if isinstance(conditioning[k], list):
|
||||
both_conditionings[k] = [
|
||||
torch.cat([unconditioning[k][i], conditioning[k][i]])
|
||||
for i in range(len(conditioning[k]))
|
||||
]
|
||||
else:
|
||||
both_conditionings[k] = torch.cat([unconditioning[k], conditioning[k]])
|
||||
unconditioned_next_x, conditioned_next_x = self.model_forward_callback(x_twice, sigma_twice, both_conditionings).chunk(2)
|
||||
return unconditioned_next_x, conditioned_next_x
|
||||
|
||||
|
||||
def _apply_cross_attention_controlled_conditioning(self,
|
||||
x: torch.Tensor,
|
||||
sigma,
|
||||
unconditioning,
|
||||
conditioning,
|
||||
cross_attention_control_types_to_do):
|
||||
if self.is_running_diffusers:
|
||||
return self._apply_cross_attention_controlled_conditioning__diffusers(x, sigma, unconditioning,
|
||||
conditioning,
|
||||
cross_attention_control_types_to_do)
|
||||
else:
|
||||
return self._apply_cross_attention_controlled_conditioning__compvis(x, sigma, unconditioning, conditioning,
|
||||
cross_attention_control_types_to_do)
|
||||
|
||||
def _apply_cross_attention_controlled_conditioning__diffusers(self,
|
||||
x: torch.Tensor,
|
||||
sigma,
|
||||
unconditioning,
|
||||
conditioning,
|
||||
cross_attention_control_types_to_do):
|
||||
context: Context = self.cross_attention_control_context
|
||||
|
||||
cross_attn_processor_context = SwapCrossAttnContext(modified_text_embeddings=context.arguments.edited_conditioning,
|
||||
index_map=context.cross_attention_index_map,
|
||||
mask=context.cross_attention_mask,
|
||||
cross_attention_types_to_do=[])
|
||||
# no cross attention for unconditioning (negative prompt)
|
||||
unconditioned_next_x = self.model_forward_callback(x, sigma, unconditioning,
|
||||
{"swap_cross_attn_context": cross_attn_processor_context})
|
||||
|
||||
# do requested cross attention types for conditioning (positive prompt)
|
||||
cross_attn_processor_context.cross_attention_types_to_do = cross_attention_control_types_to_do
|
||||
conditioned_next_x = self.model_forward_callback(x, sigma, conditioning,
|
||||
{"swap_cross_attn_context": cross_attn_processor_context})
|
||||
return unconditioned_next_x, conditioned_next_x
|
||||
|
||||
|
||||
def _apply_cross_attention_controlled_conditioning__compvis(self, x:torch.Tensor, sigma, unconditioning, conditioning, cross_attention_control_types_to_do):
|
||||
# print('pct', percent_through, ': doing cross attention control on', cross_attention_control_types_to_do)
|
||||
# slower non-batched path (20% slower on mac MPS)
|
||||
# We are only interested in using attention maps for conditioned_next_x, but batching them with generation of
|
||||
# unconditioned_next_x causes attention maps to *also* be saved for the unconditioned_next_x.
|
||||
# This messes app their application later, due to mismatched shape of dim 0 (seems to be 16 for batched vs. 8)
|
||||
# (For the batched invocation the `wrangler` function gets attention tensor with shape[0]=16,
|
||||
# representing batched uncond + cond, but then when it comes to applying the saved attention, the
|
||||
# wrangler gets an attention tensor which only has shape[0]=8, representing just self.edited_conditionings.)
|
||||
# todo: give CrossAttentionControl's `wrangler` function more info so it can work with a batched call as well.
|
||||
context:Context = self.cross_attention_control_context
|
||||
|
||||
try:
|
||||
unconditioned_next_x = self.model_forward_callback(x, sigma, unconditioning)
|
||||
|
||||
# process x using the original prompt, saving the attention maps
|
||||
#print("saving attention maps for", cross_attention_control_types_to_do)
|
||||
for ca_type in cross_attention_control_types_to_do:
|
||||
context.request_save_attention_maps(ca_type)
|
||||
_ = self.model_forward_callback(x, sigma, conditioning)
|
||||
context.clear_requests(cleanup=False)
|
||||
|
||||
# process x again, using the saved attention maps to control where self.edited_conditioning will be applied
|
||||
#print("applying saved attention maps for", cross_attention_control_types_to_do)
|
||||
for ca_type in cross_attention_control_types_to_do:
|
||||
context.request_apply_saved_attention_maps(ca_type)
|
||||
edited_conditioning = self.conditioning.cross_attention_control_args.edited_conditioning
|
||||
conditioned_next_x = self.model_forward_callback(x, sigma, edited_conditioning)
|
||||
context.clear_requests(cleanup=True)
|
||||
|
||||
except:
|
||||
context.clear_requests(cleanup=True)
|
||||
raise
|
||||
|
||||
return unconditioned_next_x, conditioned_next_x
|
||||
|
||||
def _combine(self, unconditioned_next_x, conditioned_next_x, guidance_scale):
|
||||
# to scale how much effect conditioning has, calculate the changes it does and then scale that
|
||||
scaled_delta = (conditioned_next_x - unconditioned_next_x) * guidance_scale
|
||||
combined_next_x = unconditioned_next_x + scaled_delta
|
||||
return combined_next_x
|
||||
|
||||
def apply_threshold(
|
||||
self,
|
||||
postprocessing_settings: PostprocessingSettings,
|
||||
latents: torch.Tensor,
|
||||
percent_through: float
|
||||
) -> torch.Tensor:
|
||||
|
||||
if postprocessing_settings.threshold is None or postprocessing_settings.threshold == 0.0:
|
||||
return latents
|
||||
|
||||
threshold = postprocessing_settings.threshold
|
||||
warmup = postprocessing_settings.warmup
|
||||
|
||||
if percent_through < warmup:
|
||||
current_threshold = threshold + threshold * 5 * (1 - (percent_through / warmup))
|
||||
else:
|
||||
current_threshold = threshold
|
||||
|
||||
if current_threshold <= 0:
|
||||
return latents
|
||||
|
||||
maxval = latents.max().item()
|
||||
minval = latents.min().item()
|
||||
|
||||
scale = 0.7 # default value from #395
|
||||
|
||||
if self.debug_thresholding:
|
||||
std, mean = [i.item() for i in torch.std_mean(latents)]
|
||||
outside = torch.count_nonzero((latents < -current_threshold) | (latents > current_threshold))
|
||||
print(f"\nThreshold: %={percent_through} threshold={current_threshold:.3f} (of {threshold:.3f})\n"
|
||||
f" | min, mean, max = {minval:.3f}, {mean:.3f}, {maxval:.3f}\tstd={std}\n"
|
||||
f" | {outside / latents.numel() * 100:.2f}% values outside threshold")
|
||||
|
||||
if maxval < current_threshold and minval > -current_threshold:
|
||||
return latents
|
||||
|
||||
num_altered = 0
|
||||
|
||||
# MPS torch.rand_like is fine because torch.rand_like is wrapped in generate.py!
|
||||
|
||||
if maxval > current_threshold:
|
||||
latents = torch.clone(latents)
|
||||
maxval = np.clip(maxval * scale, 1, current_threshold)
|
||||
num_altered += torch.count_nonzero(latents > maxval)
|
||||
latents[latents > maxval] = torch.rand_like(latents[latents > maxval]) * maxval
|
||||
|
||||
if minval < -current_threshold:
|
||||
latents = torch.clone(latents)
|
||||
minval = np.clip(minval * scale, -current_threshold, -1)
|
||||
num_altered += torch.count_nonzero(latents < minval)
|
||||
latents[latents < minval] = torch.rand_like(latents[latents < minval]) * minval
|
||||
|
||||
if self.debug_thresholding:
|
||||
print(f" | min, , max = {minval:.3f}, , {maxval:.3f}\t(scaled by {scale})\n"
|
||||
f" | {num_altered / latents.numel() * 100:.2f}% values altered")
|
||||
|
||||
return latents
|
||||
|
||||
def apply_symmetry(
|
||||
self,
|
||||
postprocessing_settings: PostprocessingSettings,
|
||||
latents: torch.Tensor,
|
||||
percent_through: float
|
||||
) -> torch.Tensor:
|
||||
|
||||
# Reset our last percent through if this is our first step.
|
||||
if percent_through == 0.0:
|
||||
self.last_percent_through = 0.0
|
||||
|
||||
if postprocessing_settings is None:
|
||||
return latents
|
||||
|
||||
# Check for out of bounds
|
||||
h_symmetry_time_pct = postprocessing_settings.h_symmetry_time_pct
|
||||
if (h_symmetry_time_pct is not None and (h_symmetry_time_pct <= 0.0 or h_symmetry_time_pct > 1.0)):
|
||||
h_symmetry_time_pct = None
|
||||
|
||||
v_symmetry_time_pct = postprocessing_settings.v_symmetry_time_pct
|
||||
if (v_symmetry_time_pct is not None and (v_symmetry_time_pct <= 0.0 or v_symmetry_time_pct > 1.0)):
|
||||
v_symmetry_time_pct = None
|
||||
|
||||
dev = latents.device.type
|
||||
|
||||
latents.to(device='cpu')
|
||||
|
||||
if (
|
||||
h_symmetry_time_pct != None and
|
||||
self.last_percent_through < h_symmetry_time_pct and
|
||||
percent_through >= h_symmetry_time_pct
|
||||
):
|
||||
# Horizontal symmetry occurs on the 3rd dimension of the latent
|
||||
width = latents.shape[3]
|
||||
x_flipped = torch.flip(latents, dims=[3])
|
||||
latents = torch.cat([latents[:, :, :, 0:int(width/2)], x_flipped[:, :, :, int(width/2):int(width)]], dim=3)
|
||||
|
||||
if (
|
||||
v_symmetry_time_pct != None and
|
||||
self.last_percent_through < v_symmetry_time_pct and
|
||||
percent_through >= v_symmetry_time_pct
|
||||
):
|
||||
# Vertical symmetry occurs on the 2nd dimension of the latent
|
||||
height = latents.shape[2]
|
||||
y_flipped = torch.flip(latents, dims=[2])
|
||||
latents = torch.cat([latents[:, :, 0:int(height / 2)], y_flipped[:, :, int(height / 2):int(height)]], dim=2)
|
||||
|
||||
self.last_percent_through = percent_through
|
||||
return latents.to(device=dev)
|
||||
|
||||
def estimate_percent_through(self, step_index, sigma):
|
||||
if step_index is not None and self.cross_attention_control_context is not None:
|
||||
# percent_through will never reach 1.0 (but this is intended)
|
||||
return float(step_index) / float(self.cross_attention_control_context.step_count)
|
||||
# find the best possible index of the current sigma in the sigma sequence
|
||||
smaller_sigmas = torch.nonzero(self.model.sigmas <= sigma)
|
||||
sigma_index = smaller_sigmas[-1].item() if smaller_sigmas.shape[0] > 0 else 0
|
||||
# flip because sigmas[0] is for the fully denoised image
|
||||
# percent_through must be <1
|
||||
return 1.0 - float(sigma_index + 1) / float(self.model.sigmas.shape[0])
|
||||
# print('estimated percent_through', percent_through, 'from sigma', sigma.item())
|
||||
|
||||
|
||||
# todo: make this work
|
||||
@classmethod
|
||||
def apply_conjunction(cls, x, t, forward_func, uc, c_or_weighted_c_list, global_guidance_scale):
|
||||
x_in = torch.cat([x] * 2)
|
||||
t_in = torch.cat([t] * 2) # aka sigmas
|
||||
|
||||
deltas = None
|
||||
uncond_latents = None
|
||||
weighted_cond_list = c_or_weighted_c_list if type(c_or_weighted_c_list) is list else [(c_or_weighted_c_list, 1)]
|
||||
|
||||
# below is fugly omg
|
||||
num_actual_conditionings = len(c_or_weighted_c_list)
|
||||
conditionings = [uc] + [c for c,weight in weighted_cond_list]
|
||||
weights = [1] + [weight for c,weight in weighted_cond_list]
|
||||
chunk_count = ceil(len(conditionings)/2)
|
||||
deltas = None
|
||||
for chunk_index in range(chunk_count):
|
||||
offset = chunk_index*2
|
||||
chunk_size = min(2, len(conditionings)-offset)
|
||||
|
||||
if chunk_size == 1:
|
||||
c_in = conditionings[offset]
|
||||
latents_a = forward_func(x_in[:-1], t_in[:-1], c_in)
|
||||
latents_b = None
|
||||
else:
|
||||
c_in = torch.cat(conditionings[offset:offset+2])
|
||||
latents_a, latents_b = forward_func(x_in, t_in, c_in).chunk(2)
|
||||
|
||||
# first chunk is guaranteed to be 2 entries: uncond_latents + first conditioining
|
||||
if chunk_index == 0:
|
||||
uncond_latents = latents_a
|
||||
deltas = latents_b - uncond_latents
|
||||
else:
|
||||
deltas = torch.cat((deltas, latents_a - uncond_latents))
|
||||
if latents_b is not None:
|
||||
deltas = torch.cat((deltas, latents_b - uncond_latents))
|
||||
|
||||
# merge the weighted deltas together into a single merged delta
|
||||
per_delta_weights = torch.tensor(weights[1:], dtype=deltas.dtype, device=deltas.device)
|
||||
normalize = False
|
||||
if normalize:
|
||||
per_delta_weights /= torch.sum(per_delta_weights)
|
||||
reshaped_weights = per_delta_weights.reshape(per_delta_weights.shape + (1, 1, 1))
|
||||
deltas_merged = torch.sum(deltas * reshaped_weights, dim=0, keepdim=True)
|
||||
|
||||
# old_return_value = super().forward(x, sigma, uncond, cond, cond_scale)
|
||||
# assert(0 == len(torch.nonzero(old_return_value - (uncond_latents + deltas_merged * cond_scale))))
|
||||
|
||||
return uncond_latents + deltas_merged * global_guidance_scale
|
@ -7,7 +7,7 @@ import torch.nn.functional as F
|
||||
from torch import nn, einsum
|
||||
from einops import rearrange, repeat
|
||||
|
||||
from ldm.models.diffusion.cross_attention_control import InvokeAICrossAttentionMixin
|
||||
from invokeai.models.diffusion.cross_attention_control import InvokeAICrossAttentionMixin
|
||||
from ldm.modules.diffusionmodules.util import checkpoint
|
||||
|
||||
def exists(val):
|
||||
|
@ -129,7 +129,12 @@ version = { attr = "ldm.invoke.__version__" }
|
||||
|
||||
[tool.setuptools.packages.find]
|
||||
"where" = ["."]
|
||||
"include" = ["invokeai.assets.web*", "invokeai.backend*", "invokeai.frontend.dist*", "invokeai.configs*", "ldm*"]
|
||||
"include" = [
|
||||
"invokeai.assets.web*", "invokeai.models*",
|
||||
"invokeai.generator*","invokeai.backend*",
|
||||
"invokeai.frontend.dist*", "invokeai.configs*",
|
||||
"ldm*"
|
||||
]
|
||||
|
||||
[tool.setuptools.package-data]
|
||||
"invokeai.assets.web" = ["**.png"]
|
||||
|
Loading…
Reference in New Issue
Block a user