InvokeAI/invokeai/app/services/model_manager_service.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

654 lines
24 KiB
Python
Raw Normal View History

# Copyright (c) 2023 Lincoln D. Stein and the InvokeAI Team
from __future__ import annotations
from abc import ABC, abstractmethod
from pathlib import Path
2023-07-06 17:15:15 +00:00
from pydantic import Field
from typing import Optional, Union, Callable, List, Tuple, TYPE_CHECKING
2023-07-05 10:07:10 +00:00
from types import ModuleType
2023-07-06 17:15:15 +00:00
from invokeai.backend.model_management import (
ModelManager,
2023-06-11 03:12:21 +00:00
BaseModelType,
ModelType,
SubModelType,
2023-06-12 02:52:30 +00:00
ModelInfo,
2023-07-05 13:05:05 +00:00
AddModelResult,
SchedulerPredictionType,
2023-07-06 17:15:15 +00:00
ModelMerger,
MergeInterpolationMethod,
ModelNotFoundException,
)
2023-07-14 15:14:33 +00:00
from invokeai.backend.model_management.model_search import FindModels
2023-07-06 17:15:15 +00:00
import torch
2023-05-12 04:14:56 +00:00
from invokeai.app.models.exceptions import CanceledException
2023-05-12 01:24:29 +00:00
from ...backend.util import choose_precision, choose_torch_device
2023-07-05 10:07:10 +00:00
from .config import InvokeAIAppConfig
if TYPE_CHECKING:
from ..invocations.baseinvocation import BaseInvocation, InvocationContext
class ModelManagerServiceBase(ABC):
"""Responsible for managing models on disk and in memory"""
2023-05-12 01:24:29 +00:00
@abstractmethod
def __init__(
self,
2023-05-18 21:17:45 +00:00
config: InvokeAIAppConfig,
2023-07-05 10:07:10 +00:00
logger: ModuleType,
2023-05-12 01:24:29 +00:00
):
"""
2023-07-04 21:05:35 +00:00
Initialize with the path to the models.yaml config file.
2023-05-12 01:24:29 +00:00
Optional parameters are the torch device type, precision, max_models,
and sequential_offload boolean. Note that the default device
type and precision are set up for a CUDA system running at half precision.
"""
pass
2023-07-04 21:05:35 +00:00
@abstractmethod
def get_model(
self,
model_name: str,
2023-06-11 03:12:21 +00:00
base_model: BaseModelType,
model_type: ModelType,
submodel: Optional[SubModelType] = None,
node: Optional[BaseInvocation] = None,
context: Optional[InvocationContext] = None,
2023-06-12 02:52:30 +00:00
) -> ModelInfo:
2023-07-04 21:05:35 +00:00
"""Retrieve the indicated model with name and type.
submodel can be used to get a part (such as the vae)
of a diffusers pipeline."""
pass
@property
@abstractmethod
def logger(self):
pass
@abstractmethod
def model_exists(
self,
model_name: str,
2023-06-11 03:12:21 +00:00
base_model: BaseModelType,
model_type: ModelType,
) -> bool:
pass
@abstractmethod
2023-06-11 03:12:21 +00:00
def model_info(self, model_name: str, base_model: BaseModelType, model_type: ModelType) -> dict:
"""
Given a model name returns a dict-like (OmegaConf) object describing it.
Uses the exact format as the omegaconf stanza.
"""
pass
@abstractmethod
2023-06-11 03:12:21 +00:00
def list_models(self, base_model: Optional[BaseModelType] = None, model_type: Optional[ModelType] = None) -> dict:
"""
Return a dict of models in the format:
{ model_type1:
{ model_name1: {'status': 'active'|'cached'|'not loaded',
'model_name' : name,
'model_type' : SDModelType,
'description': description,
'format': 'folder'|'safetensors'|'ckpt'
},
model_name2: { etc }
},
model_type2:
{ model_name_n: etc
}
"""
pass
@abstractmethod
def list_model(self, model_name: str, base_model: BaseModelType, model_type: ModelType) -> dict:
"""
Return information about the model using the same format as list_models()
"""
pass
@abstractmethod
def model_names(self) -> List[Tuple[str, BaseModelType, ModelType]]:
"""
Returns a list of all the model names known.
"""
pass
@abstractmethod
def add_model(
self,
model_name: str,
2023-06-11 03:12:21 +00:00
base_model: BaseModelType,
model_type: ModelType,
model_attributes: dict,
clobber: bool = False
2023-07-05 13:05:05 +00:00
) -> AddModelResult:
"""
Update the named model with a dictionary of attributes. Will fail with an
assertion error if the name already exists. Pass clobber=True to overwrite.
2023-07-04 21:05:35 +00:00
On a successful update, the config will be changed in memory. Will fail
with an assertion error if provided attributes are incorrect or
the model name is missing. Call commit() to write changes to disk.
"""
pass
@abstractmethod
def update_model(
self,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
model_attributes: dict,
) -> AddModelResult:
"""
Update the named model with a dictionary of attributes. Will fail with a
ModelNotFoundException if the name does not already exist.
On a successful update, the config will be changed in memory. Will fail
with an assertion error if provided attributes are incorrect or
the model name is missing. Call commit() to write changes to disk.
"""
pass
@abstractmethod
def del_model(
self,
model_name: str,
2023-06-11 03:12:21 +00:00
base_model: BaseModelType,
model_type: ModelType,
):
"""
2023-07-04 21:05:35 +00:00
Delete the named model from configuration. If delete_files is true,
then the underlying weight file or diffusers directory will be deleted
as well. Call commit() to write to disk.
"""
pass
2023-07-15 03:03:18 +00:00
@abstractmethod
def rename_model(self,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
new_name: str,
):
"""
Rename the indicated model.
"""
pass
@abstractmethod
def list_checkpoint_configs(
self
)->List[Path]:
"""
List the checkpoint config paths from ROOT/configs/stable-diffusion.
"""
pass
2023-07-05 13:05:05 +00:00
@abstractmethod
def convert_model(
self,
model_name: str,
base_model: BaseModelType,
model_type: Union[ModelType.Main,ModelType.Vae],
) -> AddModelResult:
"""
Convert a checkpoint file into a diffusers folder, deleting the cached
version and deleting the original checkpoint file if it is in the models
directory.
:param model_name: Name of the model to convert
:param base_model: Base model type
:param model_type: Type of model ['vae' or 'main']
This will raise a ValueError unless the model is not a checkpoint. It will
also raise a ValueError in the event that there is a similarly-named diffusers
directory already in place.
"""
pass
2023-07-03 23:32:54 +00:00
@abstractmethod
def heuristic_import(self,
2023-07-05 10:07:10 +00:00
items_to_import: set[str],
prediction_type_helper: Optional[Callable[[Path],SchedulerPredictionType]]=None,
)->dict[str, AddModelResult]:
2023-07-03 23:32:54 +00:00
'''Import a list of paths, repo_ids or URLs. Returns the set of
successfully imported items.
:param items_to_import: Set of strings corresponding to models to be imported.
:param prediction_type_helper: A callback that receives the Path of a Stable Diffusion 2 checkpoint model and returns a SchedulerPredictionType.
The prediction type helper is necessary to distinguish between
models based on Stable Diffusion 2 Base (requiring
SchedulerPredictionType.Epsilson) and Stable Diffusion 768
(requiring SchedulerPredictionType.VPrediction). It is
generally impossible to do this programmatically, so the
prediction_type_helper usually asks the user to choose.
The result is a set of successfully installed models. Each element
of the set is a dict corresponding to the newly-created OmegaConf stanza for
that model.
'''
pass
@abstractmethod
2023-07-06 17:15:15 +00:00
def merge_models(
self,
model_names: List[str] = Field(default=None, min_items=2, max_items=3, description="List of model names to merge"),
base_model: Union[BaseModelType,str] = Field(default=None, description="Base model shared by all models to be merged"),
merged_model_name: str = Field(default=None, description="Name of destination model after merging"),
alpha: Optional[float] = 0.5,
interp: Optional[MergeInterpolationMethod] = None,
force: Optional[bool] = False,
merge_dest_directory: Optional[Path] = None
2023-07-06 17:15:15 +00:00
) -> AddModelResult:
"""
Merge two to three diffusrs pipeline models and save as a new model.
:param model_names: List of 2-3 models to merge
:param base_model: Base model to use for all models
:param merged_model_name: Name of destination merged model
:param alpha: Alpha strength to apply to 2d and 3d model
:param interp: Interpolation method. None (default)
:param merge_dest_directory: Save the merged model to the designated directory (with 'merged_model_name' appended)
2023-07-06 17:15:15 +00:00
"""
pass
2023-07-14 15:14:33 +00:00
@abstractmethod
def search_for_models(self, directory: Path)->List[Path]:
"""
Return list of all models found in the designated directory.
"""
pass
@abstractmethod
def sync_to_config(self):
"""
Re-read models.yaml, rescan the models directory, and reimport models
in the autoimport directories. Call after making changes outside the
model manager API.
"""
pass
@abstractmethod
2023-07-05 10:07:10 +00:00
def commit(self, conf_file: Optional[Path] = None) -> None:
"""
Write current configuration out to the indicated file.
If no conf_file is provided, then replaces the
original file/database used to initialize the object.
"""
pass
# simple implementation
class ModelManagerService(ModelManagerServiceBase):
"""Responsible for managing models on disk and in memory"""
def __init__(
self,
2023-05-18 21:17:45 +00:00
config: InvokeAIAppConfig,
2023-07-05 10:07:10 +00:00
logger: ModuleType,
):
"""
2023-07-04 21:05:35 +00:00
Initialize with the path to the models.yaml config file.
Optional parameters are the torch device type, precision, max_models,
and sequential_offload boolean. Note that the default device
type and precision are set up for a CUDA system running at half precision.
"""
2023-05-18 21:17:45 +00:00
if config.model_conf_path and config.model_conf_path.exists():
config_file = config.model_conf_path
2023-05-12 01:24:29 +00:00
else:
2023-05-18 21:17:45 +00:00
config_file = config.root_dir / "configs/models.yaml"
2023-05-12 01:24:29 +00:00
logger.debug(f'config file={config_file}')
device = torch.device(choose_torch_device())
2023-07-02 00:47:11 +00:00
logger.debug(f'GPU device = {device}')
2023-05-23 00:48:22 +00:00
precision = config.precision
if precision == "auto":
2023-05-12 01:24:29 +00:00
precision = choose_precision(device)
2023-05-23 00:48:22 +00:00
dtype = torch.float32 if precision == 'float32' else torch.float16
2023-05-12 01:24:29 +00:00
# this is transitional backward compatibility
# support for the deprecated `max_loaded_models`
# configuration value. If present, then the
# cache size is set to 2.5 GB times
# the number of max_loaded_models. Otherwise
# use new `max_cache_size` config setting
max_cache_size = config.max_cache_size \
if hasattr(config,'max_cache_size') \
else config.max_loaded_models * 2.5
2023-07-04 21:05:35 +00:00
logger.debug(f"Maximum RAM cache size: {max_cache_size} GiB")
2023-05-12 01:24:29 +00:00
sequential_offload = config.sequential_guidance
self.mgr = ModelManager(
config=config_file,
device_type=device,
precision=dtype,
max_cache_size=max_cache_size,
sequential_offload=sequential_offload,
logger=logger,
)
2023-05-12 01:24:29 +00:00
logger.info('Model manager service initialized')
def get_model(
self,
model_name: str,
2023-06-11 03:12:21 +00:00
base_model: BaseModelType,
model_type: ModelType,
submodel: Optional[SubModelType] = None,
node: Optional[BaseInvocation] = None,
context: Optional[InvocationContext] = None,
2023-06-12 02:52:30 +00:00
) -> ModelInfo:
"""
Retrieve the indicated model. submodel can be used to get a
part (such as the vae) of a diffusers mode.
"""
2023-05-12 04:14:56 +00:00
# if we are called from within a node, then we get to emit
# load start and complete events
if node and context:
self._emit_load_event(
node=node,
context=context,
model_name=model_name,
2023-06-11 03:12:21 +00:00
base_model=base_model,
2023-05-12 04:14:56 +00:00
model_type=model_type,
2023-06-11 03:12:21 +00:00
submodel=submodel,
2023-05-12 04:14:56 +00:00
)
model_info = self.mgr.get_model(
model_name,
2023-06-11 03:12:21 +00:00
base_model,
model_type,
submodel,
)
2023-05-12 04:14:56 +00:00
if node and context:
self._emit_load_event(
node=node,
context=context,
model_name=model_name,
2023-06-11 03:12:21 +00:00
base_model=base_model,
2023-05-12 04:14:56 +00:00
model_type=model_type,
submodel=submodel,
model_info=model_info
)
2023-07-04 21:05:35 +00:00
2023-05-12 04:14:56 +00:00
return model_info
def model_exists(
self,
model_name: str,
2023-06-11 03:12:21 +00:00
base_model: BaseModelType,
model_type: ModelType,
) -> bool:
"""
Given a model name, returns True if it is a valid
identifier.
"""
return self.mgr.model_exists(
2023-05-11 04:19:20 +00:00
model_name,
2023-06-11 03:12:21 +00:00
base_model,
model_type,
)
2023-06-11 03:12:21 +00:00
def model_info(self, model_name: str, base_model: BaseModelType, model_type: ModelType) -> dict:
"""
Given a model name returns a dict-like (OmegaConf) object describing it.
"""
2023-06-11 03:12:21 +00:00
return self.mgr.model_info(model_name, base_model, model_type)
2023-06-11 03:12:21 +00:00
def model_names(self) -> List[Tuple[str, BaseModelType, ModelType]]:
"""
Returns a list of all the model names known.
"""
return self.mgr.model_names()
2023-06-11 03:12:21 +00:00
def list_models(
self,
base_model: Optional[BaseModelType] = None,
model_type: Optional[ModelType] = None
) -> list[dict]:
"""
Return a list of models.
"""
2023-06-11 03:12:21 +00:00
return self.mgr.list_models(base_model, model_type)
def list_model(self, model_name: str, base_model: BaseModelType, model_type: ModelType) -> dict:
"""
Return information about the model using the same format as list_models()
"""
return self.mgr.list_model(model_name=model_name,
base_model=base_model,
model_type=model_type)
def add_model(
self,
model_name: str,
2023-06-11 03:12:21 +00:00
base_model: BaseModelType,
model_type: ModelType,
model_attributes: dict,
clobber: bool = False,
)->None:
"""
Update the named model with a dictionary of attributes. Will fail with an
assertion error if the name already exists. Pass clobber=True to overwrite.
2023-07-04 21:05:35 +00:00
On a successful update, the config will be changed in memory. Will fail
with an assertion error if provided attributes are incorrect or
the model name is missing. Call commit() to write changes to disk.
"""
2023-07-04 21:26:57 +00:00
self.logger.debug(f'add/update model {model_name}')
2023-06-11 03:12:21 +00:00
return self.mgr.add_model(model_name, base_model, model_type, model_attributes, clobber)
def update_model(
self,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
model_attributes: dict,
) -> AddModelResult:
"""
Update the named model with a dictionary of attributes. Will fail with a
ModelNotFoundException exception if the name does not already exist.
On a successful update, the config will be changed in memory. Will fail
with an assertion error if provided attributes are incorrect or
the model name is missing. Call commit() to write changes to disk.
"""
self.logger.debug(f'update model {model_name}')
if not self.model_exists(model_name, base_model, model_type):
raise ModelNotFoundException(f"Unknown model {model_name}")
return self.add_model(model_name, base_model, model_type, model_attributes, clobber=True)
def del_model(
self,
model_name: str,
2023-06-11 03:12:21 +00:00
base_model: BaseModelType,
model_type: ModelType,
):
"""
2023-07-04 21:05:35 +00:00
Delete the named model from configuration. If delete_files is true,
then the underlying weight file or diffusers directory will be deleted
as well.
"""
2023-07-04 21:26:57 +00:00
self.logger.debug(f'delete model {model_name}')
self.mgr.del_model(model_name, base_model, model_type)
self.mgr.commit()
2023-07-05 13:05:05 +00:00
def convert_model(
self,
model_name: str,
base_model: BaseModelType,
model_type: Union[ModelType.Main,ModelType.Vae],
convert_dest_directory: Optional[Path] = Field(default=None, description="Optional directory location for merged model"),
2023-07-05 13:05:05 +00:00
) -> AddModelResult:
"""
Convert a checkpoint file into a diffusers folder, deleting the cached
version and deleting the original checkpoint file if it is in the models
directory.
:param model_name: Name of the model to convert
:param base_model: Base model type
:param model_type: Type of model ['vae' or 'main']
:param convert_dest_directory: Save the converted model to the designated directory (`models/etc/etc` by default)
2023-07-05 13:05:05 +00:00
This will raise a ValueError unless the model is not a checkpoint. It will
also raise a ValueError in the event that there is a similarly-named diffusers
directory already in place.
"""
self.logger.debug(f'convert model {model_name}')
return self.mgr.convert_model(model_name, base_model, model_type, convert_dest_directory)
def commit(self, conf_file: Optional[Path]=None):
"""
Write current configuration out to the indicated file.
If no conf_file is provided, then replaces the
original file/database used to initialize the object.
"""
return self.mgr.commit(conf_file)
2023-05-12 04:14:56 +00:00
def _emit_load_event(
self,
node,
context,
model_name: str,
2023-06-11 03:12:21 +00:00
base_model: BaseModelType,
model_type: ModelType,
submodel: SubModelType,
2023-06-12 02:52:30 +00:00
model_info: Optional[ModelInfo] = None,
2023-05-12 04:14:56 +00:00
):
if context.services.queue.is_canceled(context.graph_execution_state_id):
raise CanceledException()
2023-05-12 04:14:56 +00:00
graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id)
source_node_id = graph_execution_state.prepared_source_mapping[node.id]
2023-05-26 03:28:15 +00:00
if model_info:
context.services.events.emit_model_load_completed(
2023-05-12 04:14:56 +00:00
graph_execution_state_id=context.graph_execution_state_id,
node=node.dict(),
source_node_id=source_node_id,
model_name=model_name,
2023-06-11 03:12:21 +00:00
base_model=base_model,
2023-05-12 04:14:56 +00:00
model_type=model_type,
submodel=submodel,
2023-05-26 03:28:15 +00:00
model_info=model_info
2023-05-12 04:14:56 +00:00
)
else:
2023-05-26 03:28:15 +00:00
context.services.events.emit_model_load_started(
2023-05-12 04:14:56 +00:00
graph_execution_state_id=context.graph_execution_state_id,
node=node.dict(),
source_node_id=source_node_id,
model_name=model_name,
2023-06-11 03:12:21 +00:00
base_model=base_model,
2023-05-12 04:14:56 +00:00
model_type=model_type,
submodel=submodel,
)
2023-05-26 03:28:15 +00:00
@property
def logger(self):
return self.mgr.logger
2023-07-04 21:05:35 +00:00
2023-07-03 23:32:54 +00:00
def heuristic_import(self,
2023-07-05 10:07:10 +00:00
items_to_import: set[str],
prediction_type_helper: Optional[Callable[[Path],SchedulerPredictionType]]=None,
)->dict[str, AddModelResult]:
2023-07-03 23:32:54 +00:00
'''Import a list of paths, repo_ids or URLs. Returns the set of
successfully imported items.
:param items_to_import: Set of strings corresponding to models to be imported.
:param prediction_type_helper: A callback that receives the Path of a Stable Diffusion 2 checkpoint model and returns a SchedulerPredictionType.
The prediction type helper is necessary to distinguish between
models based on Stable Diffusion 2 Base (requiring
SchedulerPredictionType.Epsilson) and Stable Diffusion 768
(requiring SchedulerPredictionType.VPrediction). It is
generally impossible to do this programmatically, so the
prediction_type_helper usually asks the user to choose.
The result is a set of successfully installed models. Each element
of the set is a dict corresponding to the newly-created OmegaConf stanza for
that model.
'''
return self.mgr.heuristic_import(items_to_import, prediction_type_helper)
2023-07-06 17:15:15 +00:00
def merge_models(
self,
model_names: List[str] = Field(default=None, min_items=2, max_items=3, description="List of model names to merge"),
base_model: Union[BaseModelType,str] = Field(default=None, description="Base model shared by all models to be merged"),
merged_model_name: str = Field(default=None, description="Name of destination model after merging"),
alpha: Optional[float] = 0.5,
interp: Optional[MergeInterpolationMethod] = None,
force: Optional[bool] = False,
merge_dest_directory: Optional[Path] = Field(default=None, description="Optional directory location for merged model"),
2023-07-06 17:15:15 +00:00
) -> AddModelResult:
"""
Merge two to three diffusrs pipeline models and save as a new model.
:param model_names: List of 2-3 models to merge
:param base_model: Base model to use for all models
:param merged_model_name: Name of destination merged model
:param alpha: Alpha strength to apply to 2d and 3d model
:param interp: Interpolation method. None (default)
:param merge_dest_directory: Save the merged model to the designated directory (with 'merged_model_name' appended)
2023-07-06 17:15:15 +00:00
"""
merger = ModelMerger(self.mgr)
2023-07-06 19:12:34 +00:00
try:
result = merger.merge_diffusion_models_and_save(
model_names = model_names,
base_model = base_model,
merged_model_name = merged_model_name,
alpha = alpha,
interp = interp,
force = force,
merge_dest_directory=merge_dest_directory,
2023-07-06 19:12:34 +00:00
)
except AssertionError as e:
raise ValueError(e)
return result
2023-07-14 15:14:33 +00:00
def search_for_models(self, directory: Path)->List[Path]:
"""
Return list of all models found in the designated directory.
"""
search = FindModels(directory,self.logger)
return search.list_models()
def sync_to_config(self):
"""
Re-read models.yaml, rescan the models directory, and reimport models
in the autoimport directories. Call after making changes outside the
model manager API.
"""
return self.mgr.sync_to_config()
def list_checkpoint_configs(self)->List[Path]:
"""
List the checkpoint config paths from ROOT/configs/stable-diffusion.
"""
config = self.mgr.app_config
conf_path = config.legacy_conf_path
root_path = config.root_path
return [(conf_path / x).relative_to(root_path) for x in conf_path.glob('**/*.yaml')]
2023-07-15 03:03:18 +00:00
def rename_model(self,
model_name: str,
base_model: BaseModelType,
model_type: ModelType,
new_name: str = None,
new_base: BaseModelType = None,
):
"""
Rename the indicated model. Can provide a new name and/or a new base.
:param model_name: Current name of the model
:param base_model: Current base of the model
:param model_type: Model type (can't be changed)
:param new_name: New name for the model
:param new_base: New base for the model
"""
self.mgr.rename_model(base_model = base_model,
model_type = model_type,
model_name = model_name,
new_name = new_name,
new_base = new_base,
)