mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
fix crash in txt2img and img2img w/ inpainting models and perlin > 0
- get_perlin_noise() was returning 9 channels; fixed code to return noise for just the 4 image channels and not the mask ones. - Closes Issue #2541
This commit is contained in:
parent
05bb9e444b
commit
0240656361
@ -240,7 +240,12 @@ class Generator:
|
||||
|
||||
def get_perlin_noise(self,width,height):
|
||||
fixdevice = 'cpu' if (self.model.device.type == 'mps') else self.model.device
|
||||
noise = torch.stack([rand_perlin_2d((height, width), (8, 8), device = self.model.device).to(fixdevice) for _ in range(self.latent_channels)], dim=0).to(self.model.device)
|
||||
# limit noise to only the diffusion image channels, not the mask channels
|
||||
input_channels = min(self.latent_channels, 4)
|
||||
noise = torch.stack([
|
||||
rand_perlin_2d((height, width),
|
||||
(8, 8),
|
||||
device = self.model.device).to(fixdevice) for _ in range(input_channels)], dim=0).to(self.model.device)
|
||||
return noise
|
||||
|
||||
def new_seed(self):
|
||||
@ -341,3 +346,27 @@ class Generator:
|
||||
|
||||
def torch_dtype(self)->torch.dtype:
|
||||
return torch.float16 if self.precision == 'float16' else torch.float32
|
||||
|
||||
# returns a tensor filled with random numbers from a normal distribution
|
||||
def get_noise(self,width,height):
|
||||
device = self.model.device
|
||||
# limit noise to only the diffusion image channels, not the mask channels
|
||||
input_channels = min(self.latent_channels, 4)
|
||||
if self.use_mps_noise or device.type == 'mps':
|
||||
x = torch.randn([1,
|
||||
input_channels,
|
||||
height // self.downsampling_factor,
|
||||
width // self.downsampling_factor],
|
||||
dtype=self.torch_dtype(),
|
||||
device='cpu').to(device)
|
||||
else:
|
||||
x = torch.randn([1,
|
||||
input_channels,
|
||||
height // self.downsampling_factor,
|
||||
width // self.downsampling_factor],
|
||||
dtype=self.torch_dtype(),
|
||||
device=device)
|
||||
if self.perlin > 0.0:
|
||||
perlin_noise = self.get_perlin_noise(width // self.downsampling_factor, height // self.downsampling_factor)
|
||||
x = (1-self.perlin)*x + self.perlin*perlin_noise
|
||||
return x
|
||||
|
@ -63,22 +63,3 @@ class Img2Img(Generator):
|
||||
shape = like.shape
|
||||
x = (1-self.perlin)*x + self.perlin*self.get_perlin_noise(shape[3], shape[2])
|
||||
return x
|
||||
|
||||
def get_noise(self,width,height):
|
||||
# copy of the Txt2Img.get_noise
|
||||
device = self.model.device
|
||||
if self.use_mps_noise or device.type == 'mps':
|
||||
x = torch.randn([1,
|
||||
self.latent_channels,
|
||||
height // self.downsampling_factor,
|
||||
width // self.downsampling_factor],
|
||||
device='cpu').to(device)
|
||||
else:
|
||||
x = torch.randn([1,
|
||||
self.latent_channels,
|
||||
height // self.downsampling_factor,
|
||||
width // self.downsampling_factor],
|
||||
device=device)
|
||||
if self.perlin > 0.0:
|
||||
x = (1-self.perlin)*x + self.perlin*self.get_perlin_noise(width // self.downsampling_factor, height // self.downsampling_factor)
|
||||
return x
|
||||
|
@ -51,26 +51,4 @@ class Txt2Img(Generator):
|
||||
return make_image
|
||||
|
||||
|
||||
# returns a tensor filled with random numbers from a normal distribution
|
||||
def get_noise(self,width,height):
|
||||
device = self.model.device
|
||||
# limit noise to only the diffusion image channels, not the mask channels
|
||||
input_channels = min(self.latent_channels, 4)
|
||||
if self.use_mps_noise or device.type == 'mps':
|
||||
x = torch.randn([1,
|
||||
input_channels,
|
||||
height // self.downsampling_factor,
|
||||
width // self.downsampling_factor],
|
||||
dtype=self.torch_dtype(),
|
||||
device='cpu').to(device)
|
||||
else:
|
||||
x = torch.randn([1,
|
||||
input_channels,
|
||||
height // self.downsampling_factor,
|
||||
width // self.downsampling_factor],
|
||||
dtype=self.torch_dtype(),
|
||||
device=device)
|
||||
if self.perlin > 0.0:
|
||||
x = (1-self.perlin)*x + self.perlin*self.get_perlin_noise(width // self.downsampling_factor, height // self.downsampling_factor)
|
||||
return x
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user