mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Merge branch 'main' into fix_typos
This commit is contained in:
commit
062f58209b
@ -28,7 +28,7 @@ from ldm.invoke.args import Args, APP_ID, APP_VERSION, calculate_init_img_hash
|
||||
from ldm.invoke.conditioning import get_tokens_for_prompt, get_prompt_structure
|
||||
from ldm.invoke.generator.diffusers_pipeline import PipelineIntermediateState
|
||||
from ldm.invoke.generator.inpaint import infill_methods
|
||||
from ldm.invoke.globals import Globals
|
||||
from ldm.invoke.globals import Globals, global_converted_ckpts_dir
|
||||
from ldm.invoke.pngwriter import PngWriter, retrieve_metadata
|
||||
from ldm.invoke.prompt_parser import split_weighted_subprompts, Blend
|
||||
|
||||
@ -43,7 +43,8 @@ if not os.path.isabs(args.outdir):
|
||||
|
||||
# normalize the config directory relative to root
|
||||
if not os.path.isabs(opt.conf):
|
||||
opt.conf = os.path.normpath(os.path.join(Globals.root,opt.conf))
|
||||
opt.conf = os.path.normpath(os.path.join(Globals.root, opt.conf))
|
||||
|
||||
|
||||
class InvokeAIWebServer:
|
||||
def __init__(self, generate: Generate, gfpgan, codeformer, esrgan) -> None:
|
||||
@ -189,7 +190,8 @@ class InvokeAIWebServer:
|
||||
(width, height) = pil_image.size
|
||||
|
||||
thumbnail_path = save_thumbnail(
|
||||
pil_image, os.path.basename(file_path), self.thumbnail_image_path
|
||||
pil_image, os.path.basename(
|
||||
file_path), self.thumbnail_image_path
|
||||
)
|
||||
|
||||
response = {
|
||||
@ -264,14 +266,16 @@ class InvokeAIWebServer:
|
||||
# location for "finished" images
|
||||
self.result_path = args.outdir
|
||||
# temporary path for intermediates
|
||||
self.intermediate_path = os.path.join(self.result_path, "intermediates/")
|
||||
self.intermediate_path = os.path.join(
|
||||
self.result_path, "intermediates/")
|
||||
# path for user-uploaded init images and masks
|
||||
self.init_image_path = os.path.join(self.result_path, "init-images/")
|
||||
self.mask_image_path = os.path.join(self.result_path, "mask-images/")
|
||||
# path for temp images e.g. gallery generations which are not committed
|
||||
self.temp_image_path = os.path.join(self.result_path, "temp-images/")
|
||||
# path for thumbnail images
|
||||
self.thumbnail_image_path = os.path.join(self.result_path, "thumbnails/")
|
||||
self.thumbnail_image_path = os.path.join(
|
||||
self.result_path, "thumbnails/")
|
||||
# txt log
|
||||
self.log_path = os.path.join(self.result_path, "invoke_log.txt")
|
||||
# make all output paths
|
||||
@ -290,7 +294,7 @@ class InvokeAIWebServer:
|
||||
def load_socketio_listeners(self, socketio):
|
||||
@socketio.on("requestSystemConfig")
|
||||
def handle_request_capabilities():
|
||||
print(f">> System config requested")
|
||||
print(">> System config requested")
|
||||
config = self.get_system_config()
|
||||
config["model_list"] = self.generate.model_manager.list_models()
|
||||
config["infill_methods"] = infill_methods()
|
||||
@ -301,14 +305,16 @@ class InvokeAIWebServer:
|
||||
try:
|
||||
if not search_folder:
|
||||
socketio.emit(
|
||||
"foundModels",
|
||||
{'search_folder': None, 'found_models': None},
|
||||
)
|
||||
"foundModels",
|
||||
{'search_folder': None, 'found_models': None},
|
||||
)
|
||||
else:
|
||||
search_folder, found_models = self.generate.model_manager.search_models(search_folder)
|
||||
search_folder, found_models = self.generate.model_manager.search_models(
|
||||
search_folder)
|
||||
socketio.emit(
|
||||
"foundModels",
|
||||
{'search_folder': search_folder, 'found_models': found_models},
|
||||
{'search_folder': search_folder,
|
||||
'found_models': found_models},
|
||||
)
|
||||
except Exception as e:
|
||||
self.socketio.emit("error", {"message": (str(e))})
|
||||
@ -393,6 +399,67 @@ class InvokeAIWebServer:
|
||||
traceback.print_exc()
|
||||
print("\n")
|
||||
|
||||
@socketio.on('convertToDiffusers')
|
||||
def convert_to_diffusers(model_to_convert: dict):
|
||||
try:
|
||||
if (model_info := self.generate.model_manager.model_info(model_name=model_to_convert['model_name'])):
|
||||
if 'weights' in model_info:
|
||||
ckpt_path = Path(model_info['weights'])
|
||||
original_config_file = Path(model_info['config'])
|
||||
model_name = model_to_convert['model_name']
|
||||
model_description = model_info['description']
|
||||
else:
|
||||
self.socketio.emit(
|
||||
"error", {"message": "Model is not a valid checkpoint file"})
|
||||
else:
|
||||
self.socketio.emit(
|
||||
"error", {"message": "Could not retrieve model info."})
|
||||
|
||||
if not ckpt_path.is_absolute():
|
||||
ckpt_path = Path(Globals.root, ckpt_path)
|
||||
|
||||
if original_config_file and not original_config_file.is_absolute():
|
||||
original_config_file = Path(
|
||||
Globals.root, original_config_file)
|
||||
|
||||
diffusers_path = Path(
|
||||
ckpt_path.parent.absolute(),
|
||||
f'{model_name}_diffusers'
|
||||
)
|
||||
|
||||
if model_to_convert['save_location'] == 'root':
|
||||
diffusers_path = Path(global_converted_ckpts_dir(), f'{model_name}_diffusers')
|
||||
|
||||
if model_to_convert['save_location'] == 'custom' and model_to_convert['custom_location'] is not None:
|
||||
diffusers_path = Path(model_to_convert['custom_location'], f'{model_name}_diffusers')
|
||||
|
||||
if diffusers_path.exists():
|
||||
shutil.rmtree(diffusers_path)
|
||||
|
||||
self.generate.model_manager.convert_and_import(
|
||||
ckpt_path,
|
||||
diffusers_path,
|
||||
model_name=model_name,
|
||||
model_description=model_description,
|
||||
vae=None,
|
||||
original_config_file=original_config_file,
|
||||
commit_to_conf=opt.conf,
|
||||
)
|
||||
|
||||
new_model_list = self.generate.model_manager.list_models()
|
||||
socketio.emit(
|
||||
"modelConverted",
|
||||
{"new_model_name": model_name,
|
||||
"model_list": new_model_list, 'update': True},
|
||||
)
|
||||
print(f">> Model Converted: {model_name}")
|
||||
except Exception as e:
|
||||
self.socketio.emit("error", {"message": (str(e))})
|
||||
print("\n")
|
||||
|
||||
traceback.print_exc()
|
||||
print("\n")
|
||||
|
||||
@socketio.on("requestEmptyTempFolder")
|
||||
def empty_temp_folder():
|
||||
try:
|
||||
@ -406,7 +473,8 @@ class InvokeAIWebServer:
|
||||
)
|
||||
os.remove(thumbnail_path)
|
||||
except Exception as e:
|
||||
socketio.emit("error", {"message": f"Unable to delete {f}: {str(e)}"})
|
||||
socketio.emit(
|
||||
"error", {"message": f"Unable to delete {f}: {str(e)}"})
|
||||
pass
|
||||
|
||||
socketio.emit("tempFolderEmptied")
|
||||
@ -421,7 +489,8 @@ class InvokeAIWebServer:
|
||||
def save_temp_image_to_gallery(url):
|
||||
try:
|
||||
image_path = self.get_image_path_from_url(url)
|
||||
new_path = os.path.join(self.result_path, os.path.basename(image_path))
|
||||
new_path = os.path.join(
|
||||
self.result_path, os.path.basename(image_path))
|
||||
shutil.copy2(image_path, new_path)
|
||||
|
||||
if os.path.splitext(new_path)[1] == ".png":
|
||||
@ -434,7 +503,8 @@ class InvokeAIWebServer:
|
||||
(width, height) = pil_image.size
|
||||
|
||||
thumbnail_path = save_thumbnail(
|
||||
pil_image, os.path.basename(new_path), self.thumbnail_image_path
|
||||
pil_image, os.path.basename(
|
||||
new_path), self.thumbnail_image_path
|
||||
)
|
||||
|
||||
image_array = [
|
||||
@ -497,7 +567,8 @@ class InvokeAIWebServer:
|
||||
(width, height) = pil_image.size
|
||||
|
||||
thumbnail_path = save_thumbnail(
|
||||
pil_image, os.path.basename(path), self.thumbnail_image_path
|
||||
pil_image, os.path.basename(
|
||||
path), self.thumbnail_image_path
|
||||
)
|
||||
|
||||
image_array.append(
|
||||
@ -515,7 +586,8 @@ class InvokeAIWebServer:
|
||||
}
|
||||
)
|
||||
except Exception as e:
|
||||
socketio.emit("error", {"message": f"Unable to load {path}: {str(e)}"})
|
||||
socketio.emit(
|
||||
"error", {"message": f"Unable to load {path}: {str(e)}"})
|
||||
pass
|
||||
|
||||
socketio.emit(
|
||||
@ -569,7 +641,8 @@ class InvokeAIWebServer:
|
||||
(width, height) = pil_image.size
|
||||
|
||||
thumbnail_path = save_thumbnail(
|
||||
pil_image, os.path.basename(path), self.thumbnail_image_path
|
||||
pil_image, os.path.basename(
|
||||
path), self.thumbnail_image_path
|
||||
)
|
||||
|
||||
image_array.append(
|
||||
@ -588,7 +661,8 @@ class InvokeAIWebServer:
|
||||
)
|
||||
except Exception as e:
|
||||
print(f">> Unable to load {path}")
|
||||
socketio.emit("error", {"message": f"Unable to load {path}: {str(e)}"})
|
||||
socketio.emit(
|
||||
"error", {"message": f"Unable to load {path}: {str(e)}"})
|
||||
pass
|
||||
|
||||
socketio.emit(
|
||||
@ -626,7 +700,8 @@ class InvokeAIWebServer:
|
||||
printable_parameters["init_mask"][:64] + "..."
|
||||
)
|
||||
|
||||
print(f'\n>> Image Generation Parameters:\n\n{printable_parameters}\n')
|
||||
print(
|
||||
f'\n>> Image Generation Parameters:\n\n{printable_parameters}\n')
|
||||
print(f'>> ESRGAN Parameters: {esrgan_parameters}')
|
||||
print(f'>> Facetool Parameters: {facetool_parameters}')
|
||||
|
||||
@ -662,16 +737,18 @@ class InvokeAIWebServer:
|
||||
|
||||
try:
|
||||
seed = original_image["metadata"]["image"]["seed"]
|
||||
except (KeyError) as e:
|
||||
except KeyError:
|
||||
seed = "unknown_seed"
|
||||
pass
|
||||
|
||||
if postprocessing_parameters["type"] == "esrgan":
|
||||
progress.set_current_status("common:statusUpscalingESRGAN")
|
||||
elif postprocessing_parameters["type"] == "gfpgan":
|
||||
progress.set_current_status("common:statusRestoringFacesGFPGAN")
|
||||
progress.set_current_status(
|
||||
"common:statusRestoringFacesGFPGAN")
|
||||
elif postprocessing_parameters["type"] == "codeformer":
|
||||
progress.set_current_status("common:statusRestoringFacesCodeFormer")
|
||||
progress.set_current_status(
|
||||
"common:statusRestoringFacesCodeFormer")
|
||||
|
||||
socketio.emit("progressUpdate", progress.to_formatted_dict())
|
||||
eventlet.sleep(0)
|
||||
@ -760,7 +837,7 @@ class InvokeAIWebServer:
|
||||
|
||||
@socketio.on("cancel")
|
||||
def handle_cancel():
|
||||
print(f">> Cancel processing requested")
|
||||
print(">> Cancel processing requested")
|
||||
self.canceled.set()
|
||||
|
||||
# TODO: I think this needs a safety mechanism.
|
||||
@ -842,12 +919,10 @@ class InvokeAIWebServer:
|
||||
So we need to convert each into a PIL Image.
|
||||
"""
|
||||
|
||||
truncated_outpaint_image_b64 = generation_parameters["init_img"][:64]
|
||||
truncated_outpaint_mask_b64 = generation_parameters["init_mask"][:64]
|
||||
|
||||
init_img_url = generation_parameters["init_img"]
|
||||
|
||||
original_bounding_box = generation_parameters["bounding_box"].copy()
|
||||
original_bounding_box = generation_parameters["bounding_box"].copy(
|
||||
)
|
||||
|
||||
initial_image = dataURL_to_image(
|
||||
generation_parameters["init_img"]
|
||||
@ -924,7 +999,8 @@ class InvokeAIWebServer:
|
||||
elif generation_parameters["generation_mode"] == "img2img":
|
||||
init_img_url = generation_parameters["init_img"]
|
||||
init_img_path = self.get_image_path_from_url(init_img_url)
|
||||
generation_parameters["init_img"] = Image.open(init_img_path).convert('RGB')
|
||||
generation_parameters["init_img"] = Image.open(
|
||||
init_img_path).convert('RGB')
|
||||
|
||||
def image_progress(sample, step):
|
||||
if self.canceled.is_set():
|
||||
@ -983,9 +1059,9 @@ class InvokeAIWebServer:
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
if generation_parameters["progress_latents"]:
|
||||
image = self.generate.sample_to_lowres_estimated_image(sample)
|
||||
image = self.generate.sample_to_lowres_estimated_image(
|
||||
sample)
|
||||
(width, height) = image.size
|
||||
width *= 8
|
||||
height *= 8
|
||||
@ -1004,7 +1080,8 @@ class InvokeAIWebServer:
|
||||
},
|
||||
)
|
||||
|
||||
self.socketio.emit("progressUpdate", progress.to_formatted_dict())
|
||||
self.socketio.emit(
|
||||
"progressUpdate", progress.to_formatted_dict())
|
||||
eventlet.sleep(0)
|
||||
|
||||
def image_done(image, seed, first_seed, attention_maps_image=None):
|
||||
@ -1016,7 +1093,6 @@ class InvokeAIWebServer:
|
||||
nonlocal facetool_parameters
|
||||
nonlocal progress
|
||||
|
||||
step_index = 1
|
||||
nonlocal prior_variations
|
||||
|
||||
"""
|
||||
@ -1032,7 +1108,8 @@ class InvokeAIWebServer:
|
||||
|
||||
progress.set_current_status("common:statusGenerationComplete")
|
||||
|
||||
self.socketio.emit("progressUpdate", progress.to_formatted_dict())
|
||||
self.socketio.emit(
|
||||
"progressUpdate", progress.to_formatted_dict())
|
||||
eventlet.sleep(0)
|
||||
|
||||
all_parameters = generation_parameters
|
||||
@ -1043,7 +1120,8 @@ class InvokeAIWebServer:
|
||||
and all_parameters["variation_amount"] > 0
|
||||
):
|
||||
first_seed = first_seed or seed
|
||||
this_variation = [[seed, all_parameters["variation_amount"]]]
|
||||
this_variation = [
|
||||
[seed, all_parameters["variation_amount"]]]
|
||||
all_parameters["with_variations"] = (
|
||||
prior_variations + this_variation
|
||||
)
|
||||
@ -1059,7 +1137,8 @@ class InvokeAIWebServer:
|
||||
if esrgan_parameters:
|
||||
progress.set_current_status("common:statusUpscaling")
|
||||
progress.set_current_status_has_steps(False)
|
||||
self.socketio.emit("progressUpdate", progress.to_formatted_dict())
|
||||
self.socketio.emit(
|
||||
"progressUpdate", progress.to_formatted_dict())
|
||||
eventlet.sleep(0)
|
||||
|
||||
image = self.esrgan.process(
|
||||
@ -1082,12 +1161,15 @@ class InvokeAIWebServer:
|
||||
|
||||
if facetool_parameters:
|
||||
if facetool_parameters["type"] == "gfpgan":
|
||||
progress.set_current_status("common:statusRestoringFacesGFPGAN")
|
||||
progress.set_current_status(
|
||||
"common:statusRestoringFacesGFPGAN")
|
||||
elif facetool_parameters["type"] == "codeformer":
|
||||
progress.set_current_status("common:statusRestoringFacesCodeFormer")
|
||||
progress.set_current_status(
|
||||
"common:statusRestoringFacesCodeFormer")
|
||||
|
||||
progress.set_current_status_has_steps(False)
|
||||
self.socketio.emit("progressUpdate", progress.to_formatted_dict())
|
||||
self.socketio.emit(
|
||||
"progressUpdate", progress.to_formatted_dict())
|
||||
eventlet.sleep(0)
|
||||
|
||||
if facetool_parameters["type"] == "gfpgan":
|
||||
@ -1117,7 +1199,8 @@ class InvokeAIWebServer:
|
||||
all_parameters["facetool_type"] = facetool_parameters["type"]
|
||||
|
||||
progress.set_current_status("common:statusSavingImage")
|
||||
self.socketio.emit("progressUpdate", progress.to_formatted_dict())
|
||||
self.socketio.emit(
|
||||
"progressUpdate", progress.to_formatted_dict())
|
||||
eventlet.sleep(0)
|
||||
|
||||
# restore the stashed URLS and discard the paths, we are about to send the result to client
|
||||
@ -1128,12 +1211,14 @@ class InvokeAIWebServer:
|
||||
)
|
||||
|
||||
if "init_mask" in all_parameters:
|
||||
all_parameters["init_mask"] = "" # TODO: store the mask in metadata
|
||||
# TODO: store the mask in metadata
|
||||
all_parameters["init_mask"] = ""
|
||||
|
||||
if generation_parameters["generation_mode"] == "unifiedCanvas":
|
||||
all_parameters["bounding_box"] = original_bounding_box
|
||||
|
||||
metadata = self.parameters_to_generated_image_metadata(all_parameters)
|
||||
metadata = self.parameters_to_generated_image_metadata(
|
||||
all_parameters)
|
||||
|
||||
command = parameters_to_command(all_parameters)
|
||||
|
||||
@ -1163,15 +1248,18 @@ class InvokeAIWebServer:
|
||||
|
||||
if progress.total_iterations > progress.current_iteration:
|
||||
progress.set_current_step(1)
|
||||
progress.set_current_status("common:statusIterationComplete")
|
||||
progress.set_current_status(
|
||||
"common:statusIterationComplete")
|
||||
progress.set_current_status_has_steps(False)
|
||||
else:
|
||||
progress.mark_complete()
|
||||
|
||||
self.socketio.emit("progressUpdate", progress.to_formatted_dict())
|
||||
self.socketio.emit(
|
||||
"progressUpdate", progress.to_formatted_dict())
|
||||
eventlet.sleep(0)
|
||||
|
||||
parsed_prompt, _ = get_prompt_structure(generation_parameters["prompt"])
|
||||
parsed_prompt, _ = get_prompt_structure(
|
||||
generation_parameters["prompt"])
|
||||
tokens = None if type(parsed_prompt) is Blend else \
|
||||
get_tokens_for_prompt(self.generate.model, parsed_prompt)
|
||||
attention_maps_image_base64_url = None if attention_maps_image is None \
|
||||
@ -1345,7 +1433,8 @@ class InvokeAIWebServer:
|
||||
self, parameters, original_image_path
|
||||
):
|
||||
try:
|
||||
current_metadata = retrieve_metadata(original_image_path)["sd-metadata"]
|
||||
current_metadata = retrieve_metadata(
|
||||
original_image_path)["sd-metadata"]
|
||||
postprocessing_metadata = {}
|
||||
|
||||
"""
|
||||
@ -1385,7 +1474,8 @@ class InvokeAIWebServer:
|
||||
postprocessing_metadata
|
||||
)
|
||||
else:
|
||||
current_metadata["image"]["postprocessing"] = [postprocessing_metadata]
|
||||
current_metadata["image"]["postprocessing"] = [
|
||||
postprocessing_metadata]
|
||||
|
||||
return current_metadata
|
||||
|
||||
@ -1424,7 +1514,7 @@ class InvokeAIWebServer:
|
||||
if step_index:
|
||||
filename += f".{step_index}"
|
||||
if postprocessing:
|
||||
filename += f".postprocessed"
|
||||
filename += ".postprocessed"
|
||||
|
||||
filename += ".png"
|
||||
|
||||
@ -1497,7 +1587,8 @@ class InvokeAIWebServer:
|
||||
)
|
||||
elif "thumbnails" in url:
|
||||
return os.path.abspath(
|
||||
os.path.join(self.thumbnail_image_path, os.path.basename(url))
|
||||
os.path.join(self.thumbnail_image_path,
|
||||
os.path.basename(url))
|
||||
)
|
||||
else:
|
||||
return os.path.abspath(
|
||||
@ -1666,10 +1757,12 @@ def dataURL_to_image(dataURL: str) -> ImageType:
|
||||
)
|
||||
return image
|
||||
|
||||
|
||||
"""
|
||||
Converts an image into a base64 image dataURL.
|
||||
"""
|
||||
|
||||
|
||||
def image_to_dataURL(image: ImageType) -> str:
|
||||
buffered = io.BytesIO()
|
||||
image.save(buffered, format="PNG")
|
||||
@ -1679,7 +1772,6 @@ def image_to_dataURL(image: ImageType) -> str:
|
||||
return image_base64
|
||||
|
||||
|
||||
|
||||
"""
|
||||
Converts a base64 image dataURL into bytes.
|
||||
The dataURL is split on the first commma.
|
||||
|
638
invokeai/frontend/dist/assets/index-6b9f1e33.js
vendored
Normal file
638
invokeai/frontend/dist/assets/index-6b9f1e33.js
vendored
Normal file
File diff suppressed because one or more lines are too long
638
invokeai/frontend/dist/assets/index-a93d4500.js
vendored
638
invokeai/frontend/dist/assets/index-a93d4500.js
vendored
File diff suppressed because one or more lines are too long
2
invokeai/frontend/dist/index.html
vendored
2
invokeai/frontend/dist/index.html
vendored
@ -5,7 +5,7 @@
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
|
||||
<title>InvokeAI - A Stable Diffusion Toolkit</title>
|
||||
<link rel="shortcut icon" type="icon" href="./assets/favicon-0d253ced.ico" />
|
||||
<script type="module" crossorigin src="./assets/index-a93d4500.js"></script>
|
||||
<script type="module" crossorigin src="./assets/index-6b9f1e33.js"></script>
|
||||
<link rel="stylesheet" href="./assets/index-fecb6dd4.css">
|
||||
</head>
|
||||
|
||||
|
@ -58,5 +58,7 @@
|
||||
"statusUpscaling": "Upscaling",
|
||||
"statusUpscalingESRGAN": "Upscaling (ESRGAN)",
|
||||
"statusLoadingModel": "Loading Model",
|
||||
"statusModelChanged": "Model Changed"
|
||||
"statusModelChanged": "Model Changed",
|
||||
"statusConvertingModel": "Converting Model",
|
||||
"statusModelConverted": "Model Converted"
|
||||
}
|
||||
|
@ -63,5 +63,23 @@
|
||||
"formMessageDiffusersModelLocation": "Diffusers Model Location",
|
||||
"formMessageDiffusersModelLocationDesc": "Please enter at least one.",
|
||||
"formMessageDiffusersVAELocation": "VAE Location",
|
||||
"formMessageDiffusersVAELocationDesc": "If not provided, InvokeAI will look for the VAE file inside the model location given above."
|
||||
"formMessageDiffusersVAELocationDesc": "If not provided, InvokeAI will look for the VAE file inside the model location given above.",
|
||||
"convert": "Convert",
|
||||
"convertToDiffusers": "Convert To Diffusers",
|
||||
"convertToDiffusersHelpText1": "This model will be converted to the 🧨 Diffusers format.",
|
||||
"convertToDiffusersHelpText2": "This process will replace your Model Manager entry with the Diffusers version of the same model.",
|
||||
"convertToDiffusersHelpText3": "Your checkpoint file on the disk will NOT be deleted or modified in anyway. You can add your checkpoint to the Model Manager again if you want to.",
|
||||
"convertToDiffusersHelpText4": "This is a one time process only. It might take around 30s-60s depending on the specifications of your computer.",
|
||||
"convertToDiffusersHelpText5": "Please make sure you have enough disk space. Models generally vary between 4GB-7GB in size.",
|
||||
"convertToDiffusersHelpText6": "Do you wish to convert this model?",
|
||||
"v1": "v1",
|
||||
"v2": "v2",
|
||||
"inpainting": "v1 Inpainting",
|
||||
"customConfig": "Custom Config",
|
||||
"pathToCustomConfig": "Path To Custom Config",
|
||||
"statusConverting": "Converting",
|
||||
"sameFolder": "Same Folder",
|
||||
"invokeRoot": "Invoke Models",
|
||||
"custom": "Custom",
|
||||
"customSaveLocation": "Custom Save Location"
|
||||
}
|
||||
|
@ -63,5 +63,25 @@
|
||||
"formMessageDiffusersModelLocation": "Diffusers Model Location",
|
||||
"formMessageDiffusersModelLocationDesc": "Please enter at least one.",
|
||||
"formMessageDiffusersVAELocation": "VAE Location",
|
||||
"formMessageDiffusersVAELocationDesc": "If not provided, InvokeAI will look for the VAE file inside the model location given above."
|
||||
"formMessageDiffusersVAELocationDesc": "If not provided, InvokeAI will look for the VAE file inside the model location given above.",
|
||||
"convert": "Convert",
|
||||
"convertToDiffusers": "Convert To Diffusers",
|
||||
"convertToDiffusersHelpText1": "This model will be converted to the 🧨 Diffusers format.",
|
||||
"convertToDiffusersHelpText2": "This process will replace your Model Manager entry with the Diffusers version of the same model.",
|
||||
"convertToDiffusersHelpText3": "Your checkpoint file on the disk will NOT be deleted or modified in anyway. You can add your checkpoint to the Model Manager again if you want to.",
|
||||
"convertToDiffusersHelpText4": "This is a one time process only. It might take around 30s-60s depending on the specifications of your computer.",
|
||||
"convertToDiffusersHelpText5": "Please make sure you have enough disk space. Models generally vary between 4GB-7GB in size.",
|
||||
"convertToDiffusersHelpText6": "Do you wish to convert this model?",
|
||||
"convertToDiffusersSaveLocation": "Save Location",
|
||||
"v1": "v1",
|
||||
"v2": "v2",
|
||||
"inpainting": "v1 Inpainting",
|
||||
"customConfig": "Custom Config",
|
||||
"pathToCustomConfig": "Path To Custom Config",
|
||||
"statusConverting": "Converting",
|
||||
"modelConverted": "Model Converted",
|
||||
"sameFolder": "Same folder",
|
||||
"invokeRoot": "InvokeAI folder",
|
||||
"custom": "Custom",
|
||||
"customSaveLocation": "Custom Save Location"
|
||||
}
|
||||
|
@ -57,6 +57,6 @@
|
||||
"useInitImg": "Use Initial Image",
|
||||
"info": "Info",
|
||||
"deleteImage": "Delete Image",
|
||||
"initialImage": "Inital Image",
|
||||
"initialImage": "Initial Image",
|
||||
"showOptionsPanel": "Show Options Panel"
|
||||
}
|
||||
|
@ -60,6 +60,6 @@
|
||||
"useInitImg": "Use Initial Image",
|
||||
"info": "Info",
|
||||
"deleteImage": "Delete Image",
|
||||
"initialImage": "Inital Image",
|
||||
"initialImage": "Initial Image",
|
||||
"showOptionsPanel": "Show Options Panel"
|
||||
}
|
||||
|
@ -56,7 +56,7 @@
|
||||
"useInitImg": "Use Initial Image",
|
||||
"info": "情報",
|
||||
"deleteImage": "画像を削除",
|
||||
"initialImage": "Inital Image",
|
||||
"initialImage": "Initial Image",
|
||||
"showOptionsPanel": "オプションパネルを表示"
|
||||
}
|
||||
|
@ -58,5 +58,7 @@
|
||||
"statusUpscaling": "Upscaling",
|
||||
"statusUpscalingESRGAN": "Upscaling (ESRGAN)",
|
||||
"statusLoadingModel": "Loading Model",
|
||||
"statusModelChanged": "Model Changed"
|
||||
"statusModelChanged": "Model Changed",
|
||||
"statusConvertingModel": "Converting Model",
|
||||
"statusModelConverted": "Model Converted"
|
||||
}
|
||||
|
@ -63,5 +63,23 @@
|
||||
"formMessageDiffusersModelLocation": "Diffusers Model Location",
|
||||
"formMessageDiffusersModelLocationDesc": "Please enter at least one.",
|
||||
"formMessageDiffusersVAELocation": "VAE Location",
|
||||
"formMessageDiffusersVAELocationDesc": "If not provided, InvokeAI will look for the VAE file inside the model location given above."
|
||||
"formMessageDiffusersVAELocationDesc": "If not provided, InvokeAI will look for the VAE file inside the model location given above.",
|
||||
"convert": "Convert",
|
||||
"convertToDiffusers": "Convert To Diffusers",
|
||||
"convertToDiffusersHelpText1": "This model will be converted to the 🧨 Diffusers format.",
|
||||
"convertToDiffusersHelpText2": "This process will replace your Model Manager entry with the Diffusers version of the same model.",
|
||||
"convertToDiffusersHelpText3": "Your checkpoint file on the disk will NOT be deleted or modified in anyway. You can add your checkpoint to the Model Manager again if you want to.",
|
||||
"convertToDiffusersHelpText4": "This is a one time process only. It might take around 30s-60s depending on the specifications of your computer.",
|
||||
"convertToDiffusersHelpText5": "Please make sure you have enough disk space. Models generally vary between 4GB-7GB in size.",
|
||||
"convertToDiffusersHelpText6": "Do you wish to convert this model?",
|
||||
"v1": "v1",
|
||||
"v2": "v2",
|
||||
"inpainting": "v1 Inpainting",
|
||||
"customConfig": "Custom Config",
|
||||
"pathToCustomConfig": "Path To Custom Config",
|
||||
"statusConverting": "Converting",
|
||||
"sameFolder": "Same Folder",
|
||||
"invokeRoot": "Invoke Models",
|
||||
"custom": "Custom",
|
||||
"customSaveLocation": "Custom Save Location"
|
||||
}
|
||||
|
@ -63,5 +63,25 @@
|
||||
"formMessageDiffusersModelLocation": "Diffusers Model Location",
|
||||
"formMessageDiffusersModelLocationDesc": "Please enter at least one.",
|
||||
"formMessageDiffusersVAELocation": "VAE Location",
|
||||
"formMessageDiffusersVAELocationDesc": "If not provided, InvokeAI will look for the VAE file inside the model location given above."
|
||||
"formMessageDiffusersVAELocationDesc": "If not provided, InvokeAI will look for the VAE file inside the model location given above.",
|
||||
"convert": "Convert",
|
||||
"convertToDiffusers": "Convert To Diffusers",
|
||||
"convertToDiffusersHelpText1": "This model will be converted to the 🧨 Diffusers format.",
|
||||
"convertToDiffusersHelpText2": "This process will replace your Model Manager entry with the Diffusers version of the same model.",
|
||||
"convertToDiffusersHelpText3": "Your checkpoint file on the disk will NOT be deleted or modified in anyway. You can add your checkpoint to the Model Manager again if you want to.",
|
||||
"convertToDiffusersHelpText4": "This is a one time process only. It might take around 30s-60s depending on the specifications of your computer.",
|
||||
"convertToDiffusersHelpText5": "Please make sure you have enough disk space. Models generally vary between 4GB-7GB in size.",
|
||||
"convertToDiffusersHelpText6": "Do you wish to convert this model?",
|
||||
"convertToDiffusersSaveLocation": "Save Location",
|
||||
"v1": "v1",
|
||||
"v2": "v2",
|
||||
"inpainting": "v1 Inpainting",
|
||||
"customConfig": "Custom Config",
|
||||
"pathToCustomConfig": "Path To Custom Config",
|
||||
"statusConverting": "Converting",
|
||||
"modelConverted": "Model Converted",
|
||||
"sameFolder": "Same folder",
|
||||
"invokeRoot": "InvokeAI folder",
|
||||
"custom": "Custom",
|
||||
"customSaveLocation": "Custom Save Location"
|
||||
}
|
||||
|
@ -57,6 +57,6 @@
|
||||
"useInitImg": "Use Initial Image",
|
||||
"info": "Info",
|
||||
"deleteImage": "Delete Image",
|
||||
"initialImage": "Inital Image",
|
||||
"initialImage": "Initial Image",
|
||||
"showOptionsPanel": "Show Options Panel"
|
||||
}
|
||||
|
@ -60,6 +60,6 @@
|
||||
"useInitImg": "Use Initial Image",
|
||||
"info": "Info",
|
||||
"deleteImage": "Delete Image",
|
||||
"initialImage": "Inital Image",
|
||||
"initialImage": "Initial Image",
|
||||
"showOptionsPanel": "Show Options Panel"
|
||||
}
|
||||
|
@ -56,7 +56,7 @@
|
||||
"useInitImg": "Use Initial Image",
|
||||
"info": "情報",
|
||||
"deleteImage": "画像を削除",
|
||||
"initialImage": "Inital Image",
|
||||
"initialImage": "Initial Image",
|
||||
"showOptionsPanel": "オプションパネルを表示"
|
||||
}
|
||||
|
11
invokeai/frontend/src/app/invokeai.d.ts
vendored
11
invokeai/frontend/src/app/invokeai.d.ts
vendored
@ -219,6 +219,12 @@ export declare type InvokeDiffusersModelConfigProps = {
|
||||
};
|
||||
};
|
||||
|
||||
export declare type InvokeModelConversionProps = {
|
||||
model_name: string;
|
||||
save_location: string;
|
||||
custom_location: string | null;
|
||||
};
|
||||
|
||||
/**
|
||||
* These types type data received from the server via socketio.
|
||||
*/
|
||||
@ -228,6 +234,11 @@ export declare type ModelChangeResponse = {
|
||||
model_list: ModelList;
|
||||
};
|
||||
|
||||
export declare type ModelConvertedResponse = {
|
||||
converted_model_name: string;
|
||||
model_list: ModelList;
|
||||
};
|
||||
|
||||
export declare type ModelAddedResponse = {
|
||||
new_model_name: string;
|
||||
model_list: ModelList;
|
||||
|
@ -38,6 +38,11 @@ export const addNewModel = createAction<
|
||||
|
||||
export const deleteModel = createAction<string>('socketio/deleteModel');
|
||||
|
||||
export const convertToDiffusers =
|
||||
createAction<InvokeAI.InvokeModelConversionProps>(
|
||||
'socketio/convertToDiffusers'
|
||||
);
|
||||
|
||||
export const requestModelChange = createAction<string>(
|
||||
'socketio/requestModelChange'
|
||||
);
|
||||
|
@ -15,6 +15,7 @@ import {
|
||||
addLogEntry,
|
||||
generationRequested,
|
||||
modelChangeRequested,
|
||||
modelConvertRequested,
|
||||
setIsProcessing,
|
||||
} from 'features/system/store/systemSlice';
|
||||
import { InvokeTabName } from 'features/ui/store/tabMap';
|
||||
@ -178,6 +179,12 @@ const makeSocketIOEmitters = (
|
||||
emitDeleteModel: (modelName: string) => {
|
||||
socketio.emit('deleteModel', modelName);
|
||||
},
|
||||
emitConvertToDiffusers: (
|
||||
modelToConvert: InvokeAI.InvokeModelConversionProps
|
||||
) => {
|
||||
dispatch(modelConvertRequested());
|
||||
socketio.emit('convertToDiffusers', modelToConvert);
|
||||
},
|
||||
emitRequestModelChange: (modelName: string) => {
|
||||
dispatch(modelChangeRequested());
|
||||
socketio.emit('requestModelChange', modelName);
|
||||
|
@ -365,6 +365,7 @@ const makeSocketIOListeners = (
|
||||
const { new_model_name, model_list, update } = data;
|
||||
dispatch(setModelList(model_list));
|
||||
dispatch(setIsProcessing(false));
|
||||
dispatch(setCurrentStatus(i18n.t('modelmanager:modelAdded')));
|
||||
dispatch(
|
||||
addLogEntry({
|
||||
timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
@ -407,6 +408,30 @@ const makeSocketIOListeners = (
|
||||
})
|
||||
);
|
||||
},
|
||||
onModelConverted: (data: InvokeAI.ModelConvertedResponse) => {
|
||||
const { converted_model_name, model_list } = data;
|
||||
dispatch(setModelList(model_list));
|
||||
dispatch(setCurrentStatus(i18n.t('common:statusModelConverted')));
|
||||
dispatch(setIsProcessing(false));
|
||||
dispatch(setIsCancelable(true));
|
||||
dispatch(
|
||||
addLogEntry({
|
||||
timestamp: dateFormat(new Date(), 'isoDateTime'),
|
||||
message: `Model converted: ${converted_model_name}`,
|
||||
level: 'info',
|
||||
})
|
||||
);
|
||||
dispatch(
|
||||
addToast({
|
||||
title: `${i18n.t(
|
||||
'modelmanager:modelConverted'
|
||||
)}: ${converted_model_name}`,
|
||||
status: 'success',
|
||||
duration: 2500,
|
||||
isClosable: true,
|
||||
})
|
||||
);
|
||||
},
|
||||
onModelChanged: (data: InvokeAI.ModelChangeResponse) => {
|
||||
const { model_name, model_list } = data;
|
||||
dispatch(setModelList(model_list));
|
||||
|
@ -48,6 +48,7 @@ export const socketioMiddleware = () => {
|
||||
onFoundModels,
|
||||
onNewModelAdded,
|
||||
onModelDeleted,
|
||||
onModelConverted,
|
||||
onModelChangeFailed,
|
||||
onTempFolderEmptied,
|
||||
} = makeSocketIOListeners(store);
|
||||
@ -64,6 +65,7 @@ export const socketioMiddleware = () => {
|
||||
emitSearchForModels,
|
||||
emitAddNewModel,
|
||||
emitDeleteModel,
|
||||
emitConvertToDiffusers,
|
||||
emitRequestModelChange,
|
||||
emitSaveStagingAreaImageToGallery,
|
||||
emitRequestEmptyTempFolder,
|
||||
@ -125,6 +127,10 @@ export const socketioMiddleware = () => {
|
||||
onModelDeleted(data);
|
||||
});
|
||||
|
||||
socketio.on('modelConverted', (data: InvokeAI.ModelConvertedResponse) => {
|
||||
onModelConverted(data);
|
||||
});
|
||||
|
||||
socketio.on('modelChanged', (data: InvokeAI.ModelChangeResponse) => {
|
||||
onModelChanged(data);
|
||||
});
|
||||
@ -199,6 +205,11 @@ export const socketioMiddleware = () => {
|
||||
break;
|
||||
}
|
||||
|
||||
case 'socketio/convertToDiffusers': {
|
||||
emitConvertToDiffusers(action.payload);
|
||||
break;
|
||||
}
|
||||
|
||||
case 'socketio/requestModelChange': {
|
||||
emitRequestModelChange(action.payload);
|
||||
break;
|
||||
|
@ -178,12 +178,16 @@ export const frontendToBackendParameters = (
|
||||
? randomInt(NUMPY_RAND_MIN, NUMPY_RAND_MAX)
|
||||
: seed;
|
||||
|
||||
// parameters common to txt2img and img2img
|
||||
if (['txt2img', 'img2img'].includes(generationMode)) {
|
||||
generationParameters.seamless = seamless;
|
||||
// txt2img exclusive parameters
|
||||
if (generationMode === 'txt2img') {
|
||||
generationParameters.hires_fix = hiresFix;
|
||||
|
||||
if (hiresFix) generationParameters.strength = hiresStrength;
|
||||
}
|
||||
|
||||
// parameters common to txt2img and img2img
|
||||
if (['txt2img', 'img2img'].includes(generationMode)) {
|
||||
generationParameters.seamless = seamless;
|
||||
|
||||
if (shouldRunESRGAN) {
|
||||
esrganParameters = {
|
||||
|
@ -27,6 +27,7 @@ import type { InvokeModelConfigProps } from 'app/invokeai';
|
||||
import type { RootState } from 'app/store';
|
||||
import type { FieldInputProps, FormikProps } from 'formik';
|
||||
import { isEqual, pickBy } from 'lodash';
|
||||
import ModelConvert from './ModelConvert';
|
||||
|
||||
const selector = createSelector(
|
||||
[systemSelector],
|
||||
@ -101,10 +102,11 @@ export default function CheckpointModelEdit() {
|
||||
|
||||
return openModel ? (
|
||||
<Flex flexDirection="column" rowGap="1rem" width="100%">
|
||||
<Flex alignItems="center">
|
||||
<Flex alignItems="center" gap={4} justifyContent="space-between">
|
||||
<Text fontSize="lg" fontWeight="bold">
|
||||
{openModel}
|
||||
</Text>
|
||||
<ModelConvert model={openModel} />
|
||||
</Flex>
|
||||
<Flex
|
||||
flexDirection="column"
|
||||
|
@ -0,0 +1,148 @@
|
||||
import {
|
||||
Flex,
|
||||
ListItem,
|
||||
Radio,
|
||||
RadioGroup,
|
||||
Text,
|
||||
UnorderedList,
|
||||
Tooltip,
|
||||
} from '@chakra-ui/react';
|
||||
import { convertToDiffusers } from 'app/socketio/actions';
|
||||
import { RootState } from 'app/store';
|
||||
import { useAppDispatch, useAppSelector } from 'app/storeHooks';
|
||||
import IAIAlertDialog from 'common/components/IAIAlertDialog';
|
||||
import IAIButton from 'common/components/IAIButton';
|
||||
import IAIInput from 'common/components/IAIInput';
|
||||
import { useState, useEffect } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
interface ModelConvertProps {
|
||||
model: string;
|
||||
}
|
||||
|
||||
export default function ModelConvert(props: ModelConvertProps) {
|
||||
const { model } = props;
|
||||
|
||||
const model_list = useAppSelector(
|
||||
(state: RootState) => state.system.model_list
|
||||
);
|
||||
|
||||
const retrievedModel = model_list[model];
|
||||
|
||||
const dispatch = useAppDispatch();
|
||||
const { t } = useTranslation();
|
||||
|
||||
const isProcessing = useAppSelector(
|
||||
(state: RootState) => state.system.isProcessing
|
||||
);
|
||||
|
||||
const isConnected = useAppSelector(
|
||||
(state: RootState) => state.system.isConnected
|
||||
);
|
||||
|
||||
const [saveLocation, setSaveLocation] = useState<string>('same');
|
||||
const [customSaveLocation, setCustomSaveLocation] = useState<string>('');
|
||||
|
||||
useEffect(() => {
|
||||
setSaveLocation('same');
|
||||
}, [model]);
|
||||
|
||||
const modelConvertCancelHandler = () => {
|
||||
setSaveLocation('same');
|
||||
};
|
||||
|
||||
const modelConvertHandler = () => {
|
||||
const modelToConvert = {
|
||||
model_name: model,
|
||||
save_location: saveLocation,
|
||||
custom_location:
|
||||
saveLocation === 'custom' && customSaveLocation !== ''
|
||||
? customSaveLocation
|
||||
: null,
|
||||
};
|
||||
dispatch(convertToDiffusers(modelToConvert));
|
||||
};
|
||||
|
||||
return (
|
||||
<IAIAlertDialog
|
||||
title={`${t('modelmanager:convert')} ${model}`}
|
||||
acceptCallback={modelConvertHandler}
|
||||
cancelCallback={modelConvertCancelHandler}
|
||||
acceptButtonText={`${t('modelmanager:convert')}`}
|
||||
triggerComponent={
|
||||
<IAIButton
|
||||
size={'sm'}
|
||||
aria-label={t('modelmanager:convertToDiffusers')}
|
||||
isDisabled={
|
||||
retrievedModel.status === 'active' || isProcessing || !isConnected
|
||||
}
|
||||
className=" modal-close-btn"
|
||||
marginRight="2rem"
|
||||
>
|
||||
🧨 {t('modelmanager:convertToDiffusers')}
|
||||
</IAIButton>
|
||||
}
|
||||
motionPreset="slideInBottom"
|
||||
>
|
||||
<Flex flexDirection="column" rowGap={4}>
|
||||
<Text>{t('modelmanager:convertToDiffusersHelpText1')}</Text>
|
||||
<UnorderedList>
|
||||
<ListItem>{t('modelmanager:convertToDiffusersHelpText2')}</ListItem>
|
||||
<ListItem>{t('modelmanager:convertToDiffusersHelpText3')}</ListItem>
|
||||
<ListItem>{t('modelmanager:convertToDiffusersHelpText4')}</ListItem>
|
||||
<ListItem>{t('modelmanager:convertToDiffusersHelpText5')}</ListItem>
|
||||
</UnorderedList>
|
||||
<Text>{t('modelmanager:convertToDiffusersHelpText6')}</Text>
|
||||
</Flex>
|
||||
|
||||
<Flex flexDir="column" gap={4}>
|
||||
<Flex marginTop="1rem" flexDir="column" gap={2}>
|
||||
<Text fontWeight="bold">
|
||||
{t('modelmanager:convertToDiffusersSaveLocation')}
|
||||
</Text>
|
||||
<RadioGroup value={saveLocation} onChange={(v) => setSaveLocation(v)}>
|
||||
<Flex gap={4}>
|
||||
<Radio value="same">
|
||||
<Tooltip label="Save converted model in the same folder">
|
||||
{t('modelmanager:sameFolder')}
|
||||
</Tooltip>
|
||||
</Radio>
|
||||
|
||||
<Radio value="root">
|
||||
<Tooltip label="Save converted model in the InvokeAI root folder">
|
||||
{t('modelmanager:invokeRoot')}
|
||||
</Tooltip>
|
||||
</Radio>
|
||||
|
||||
<Radio value="custom">
|
||||
<Tooltip label="Save converted model in a custom folder">
|
||||
{t('modelmanager:custom')}
|
||||
</Tooltip>
|
||||
</Radio>
|
||||
</Flex>
|
||||
</RadioGroup>
|
||||
</Flex>
|
||||
|
||||
{saveLocation === 'custom' && (
|
||||
<Flex flexDirection="column" rowGap={2}>
|
||||
<Text
|
||||
fontWeight="bold"
|
||||
fontSize="sm"
|
||||
color="var(--text-color-secondary)"
|
||||
>
|
||||
{t('modelmanager:customSaveLocation')}
|
||||
</Text>
|
||||
<IAIInput
|
||||
value={customSaveLocation}
|
||||
onChange={(e) => {
|
||||
if (e.target.value !== '')
|
||||
setCustomSaveLocation(e.target.value);
|
||||
}}
|
||||
width="25rem"
|
||||
/>
|
||||
</Flex>
|
||||
)}
|
||||
</Flex>
|
||||
</IAIAlertDialog>
|
||||
);
|
||||
}
|
@ -83,6 +83,7 @@ export default function ModelListItem(props: ModelListItemProps) {
|
||||
>
|
||||
{t('modelmanager:load')}
|
||||
</Button>
|
||||
|
||||
<IAIIconButton
|
||||
icon={<EditIcon />}
|
||||
size={'sm'}
|
||||
|
@ -3,7 +3,16 @@ import IAICheckbox from 'common/components/IAICheckbox';
|
||||
import IAIIconButton from 'common/components/IAIIconButton';
|
||||
import React from 'react';
|
||||
|
||||
import { Box, Flex, FormControl, HStack, Text, VStack } from '@chakra-ui/react';
|
||||
import {
|
||||
Box,
|
||||
Flex,
|
||||
FormControl,
|
||||
HStack,
|
||||
Radio,
|
||||
RadioGroup,
|
||||
Text,
|
||||
VStack,
|
||||
} from '@chakra-ui/react';
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { useAppDispatch, useAppSelector } from 'app/storeHooks';
|
||||
import { systemSelector } from 'features/system/store/systemSelectors';
|
||||
@ -135,6 +144,8 @@ export default function SearchModels() {
|
||||
);
|
||||
|
||||
const [modelsToAdd, setModelsToAdd] = React.useState<string[]>([]);
|
||||
const [modelType, setModelType] = React.useState<string>('v1');
|
||||
const [pathToConfig, setPathToConfig] = React.useState<string>('');
|
||||
|
||||
const resetSearchModelHandler = () => {
|
||||
dispatch(setSearchFolder(null));
|
||||
@ -167,11 +178,19 @@ export default function SearchModels() {
|
||||
const modelsToBeAdded = foundModels?.filter((foundModel) =>
|
||||
modelsToAdd.includes(foundModel.name)
|
||||
);
|
||||
|
||||
const configFiles = {
|
||||
v1: 'configs/stable-diffusion/v1-inference.yaml',
|
||||
v2: 'configs/stable-diffusion/v2-inference-v.yaml',
|
||||
inpainting: 'configs/stable-diffusion/v1-inpainting-inference.yaml',
|
||||
custom: pathToConfig,
|
||||
};
|
||||
|
||||
modelsToBeAdded?.forEach((model) => {
|
||||
const modelFormat = {
|
||||
name: model.name,
|
||||
description: '',
|
||||
config: 'configs/stable-diffusion/v1-inference.yaml',
|
||||
config: configFiles[modelType as keyof typeof configFiles],
|
||||
weights: model.location,
|
||||
vae: '',
|
||||
width: 512,
|
||||
@ -346,6 +365,55 @@ export default function SearchModels() {
|
||||
{t('modelmanager:addSelected')}
|
||||
</IAIButton>
|
||||
</Flex>
|
||||
|
||||
<Flex
|
||||
gap={4}
|
||||
backgroundColor="var(--background-color)"
|
||||
padding="1rem 1rem"
|
||||
borderRadius="0.2rem"
|
||||
flexDirection="column"
|
||||
>
|
||||
<Flex gap={4}>
|
||||
<Text fontWeight="bold" color="var(--text-color-secondary)">
|
||||
Pick Model Type:
|
||||
</Text>
|
||||
<RadioGroup
|
||||
value={modelType}
|
||||
onChange={(v) => setModelType(v)}
|
||||
defaultValue="v1"
|
||||
name="model_type"
|
||||
>
|
||||
<Flex gap={4}>
|
||||
<Radio value="v1">{t('modelmanager:v1')}</Radio>
|
||||
<Radio value="v2">{t('modelmanager:v2')}</Radio>
|
||||
<Radio value="inpainting">
|
||||
{t('modelmanager:inpainting')}
|
||||
</Radio>
|
||||
<Radio value="custom">{t('modelmanager:customConfig')}</Radio>
|
||||
</Flex>
|
||||
</RadioGroup>
|
||||
</Flex>
|
||||
|
||||
{modelType === 'custom' && (
|
||||
<Flex flexDirection="column" rowGap={2}>
|
||||
<Text
|
||||
fontWeight="bold"
|
||||
fontSize="sm"
|
||||
color="var(--text-color-secondary)"
|
||||
>
|
||||
{t('modelmanager:pathToCustomConfig')}
|
||||
</Text>
|
||||
<IAIInput
|
||||
value={pathToConfig}
|
||||
onChange={(e) => {
|
||||
if (e.target.value !== '') setPathToConfig(e.target.value);
|
||||
}}
|
||||
width="42.5rem"
|
||||
/>
|
||||
</Flex>
|
||||
)}
|
||||
</Flex>
|
||||
|
||||
<Flex
|
||||
rowGap="1rem"
|
||||
flexDirection="column"
|
||||
|
@ -214,6 +214,12 @@ export const systemSlice = createSlice({
|
||||
state.isProcessing = true;
|
||||
state.currentStatusHasSteps = false;
|
||||
},
|
||||
modelConvertRequested: (state) => {
|
||||
state.currentStatus = i18n.t('common:statusConvertingModel');
|
||||
state.isCancelable = false;
|
||||
state.isProcessing = true;
|
||||
state.currentStatusHasSteps = false;
|
||||
},
|
||||
setSaveIntermediatesInterval: (state, action: PayloadAction<number>) => {
|
||||
state.saveIntermediatesInterval = action.payload;
|
||||
},
|
||||
@ -265,6 +271,7 @@ export const {
|
||||
setModelList,
|
||||
setIsCancelable,
|
||||
modelChangeRequested,
|
||||
modelConvertRequested,
|
||||
setSaveIntermediatesInterval,
|
||||
setEnableImageDebugging,
|
||||
generationRequested,
|
||||
|
@ -1,6 +1,5 @@
|
||||
import { Flex } from '@chakra-ui/react';
|
||||
import { Feature } from 'app/features';
|
||||
import { useAppDispatch, useAppSelector } from 'app/storeHooks';
|
||||
import FaceRestoreSettings from 'features/parameters/components/AdvancedParameters/FaceRestore/FaceRestoreSettings';
|
||||
import FaceRestoreToggle from 'features/parameters/components/AdvancedParameters/FaceRestore/FaceRestoreToggle';
|
||||
import ImageFit from 'features/parameters/components/AdvancedParameters/ImageToImage/ImageFit';
|
||||
@ -16,10 +15,7 @@ import ParametersAccordion from 'features/parameters/components/ParametersAccord
|
||||
import ProcessButtons from 'features/parameters/components/ProcessButtons/ProcessButtons';
|
||||
import NegativePromptInput from 'features/parameters/components/PromptInput/NegativePromptInput';
|
||||
import PromptInput from 'features/parameters/components/PromptInput/PromptInput';
|
||||
import { setHiresFix } from 'features/parameters/store/postprocessingSlice';
|
||||
import InvokeOptionsPanel from 'features/ui/components/InvokeParametersPanel';
|
||||
import { activeTabNameSelector } from 'features/ui/store/uiSelectors';
|
||||
import { useEffect } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
export default function ImageToImagePanel() {
|
||||
@ -56,17 +52,6 @@ export default function ImageToImagePanel() {
|
||||
},
|
||||
};
|
||||
|
||||
const dispatch = useAppDispatch();
|
||||
|
||||
const activeTabName = useAppSelector(activeTabNameSelector);
|
||||
|
||||
useEffect(() => {
|
||||
if (activeTabName === 'img2img') {
|
||||
const handleChangeHiresFix = () => dispatch(setHiresFix(false));
|
||||
handleChangeHiresFix();
|
||||
}
|
||||
}, [activeTabName, dispatch]);
|
||||
|
||||
return (
|
||||
<InvokeOptionsPanel>
|
||||
<Flex flexDir="column" rowGap="0.5rem">
|
||||
|
File diff suppressed because one or more lines are too long
@ -247,11 +247,14 @@ class Generator:
|
||||
fixdevice = 'cpu' if (self.model.device.type == 'mps') else self.model.device
|
||||
# limit noise to only the diffusion image channels, not the mask channels
|
||||
input_channels = min(self.latent_channels, 4)
|
||||
# round up to the nearest block of 8
|
||||
temp_width = int((width + 7) / 8) * 8
|
||||
temp_height = int((height + 7) / 8) * 8
|
||||
noise = torch.stack([
|
||||
rand_perlin_2d((height, width),
|
||||
rand_perlin_2d((temp_height, temp_width),
|
||||
(8, 8),
|
||||
device = self.model.device).to(fixdevice) for _ in range(input_channels)], dim=0).to(self.model.device)
|
||||
return noise
|
||||
return noise[0:4, 0:height, 0:width]
|
||||
|
||||
def new_seed(self):
|
||||
self.seed = random.randrange(0, np.iinfo(np.uint32).max)
|
||||
|
@ -33,7 +33,7 @@ Globals.models_file = 'models.yaml'
|
||||
Globals.models_dir = 'models'
|
||||
Globals.config_dir = 'configs'
|
||||
Globals.autoscan_dir = 'weights'
|
||||
Globals.converted_ckpts_dir = 'converted-ckpts'
|
||||
Globals.converted_ckpts_dir = 'converted_ckpts'
|
||||
|
||||
# Try loading patchmatch
|
||||
Globals.try_patchmatch = True
|
||||
@ -66,6 +66,9 @@ def global_models_dir()->Path:
|
||||
def global_autoscan_dir()->Path:
|
||||
return Path(Globals.root, Globals.autoscan_dir)
|
||||
|
||||
def global_converted_ckpts_dir()->Path:
|
||||
return Path(global_models_dir(), Globals.converted_ckpts_dir)
|
||||
|
||||
def global_set_root(root_dir:Union[str,Path]):
|
||||
Globals.root = root_dir
|
||||
|
||||
|
@ -759,7 +759,7 @@ class ModelManager(object):
|
||||
return
|
||||
|
||||
model_name = model_name or diffusers_path.name
|
||||
model_description = model_description or "Optimized version of {model_name}"
|
||||
model_description = model_description or f"Optimized version of {model_name}"
|
||||
print(f">> Optimizing {model_name} (30-60s)")
|
||||
try:
|
||||
# By passing the specified VAE too the conversion function, the autoencoder
|
||||
@ -799,15 +799,17 @@ class ModelManager(object):
|
||||
models_folder_safetensors = Path(search_folder).glob("**/*.safetensors")
|
||||
|
||||
ckpt_files = [x for x in models_folder_ckpt if x.is_file()]
|
||||
safetensor_files = [x for x in models_folder_safetensors if x.is_file]
|
||||
safetensor_files = [x for x in models_folder_safetensors if x.is_file()]
|
||||
|
||||
files = ckpt_files + safetensor_files
|
||||
|
||||
found_models = []
|
||||
for file in files:
|
||||
found_models.append(
|
||||
{"name": file.stem, "location": str(file.resolve()).replace("\\", "/")}
|
||||
)
|
||||
location = str(file.resolve()).replace("\\", "/")
|
||||
if 'model.safetensors' not in location and 'diffusion_pytorch_model.safetensors' not in location:
|
||||
found_models.append(
|
||||
{"name": file.stem, "location": location}
|
||||
)
|
||||
|
||||
return search_folder, found_models
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user