Merge branch 'resolution-checker' of https://github.com/blessedcoolant/stable-diffusion into main

This commit is contained in:
Lincoln Stein 2022-08-31 14:43:17 -04:00
commit 0be2351c97
2 changed files with 61 additions and 29 deletions

View File

@ -50,6 +50,8 @@ class InitImageResizer():
new_image = Image.new('RGB',(width,height))
new_image.paste(resized_image,((width-rw)//2,(height-rh)//2))
print(f'>> Resized image size to {width}x{height}')
return new_image
def make_grid(image_list, rows=None, cols=None):

View File

@ -266,16 +266,9 @@ class T2I:
assert (
0.0 <= strength <= 1.0
), 'can only work with strength in [0.0, 1.0]'
w, h = map(
lambda x: x - x % 64, (width, height)
) # resize to integer multiple of 64
if h != height or w != width:
print(
f'Height and width must be multiples of 64. Resizing to {h}x{w}.'
)
height = h
width = w
if not(width == self.width and height == self.height):
width, height, _ = self._resolution_check(width, height, log=True)
scope = autocast if self.precision == 'autocast' else nullcontext
@ -353,8 +346,11 @@ class T2I:
f'Error running RealESRGAN - Your image was not upscaled.\n{e}'
)
if image_callback is not None:
image_callback(image, seed, upscaled=True)
else: # no callback passed, so we simply replace old image with rescaled one
if save_original:
image_callback(image, seed)
else:
image_callback(image, seed, upscaled=True)
else: # no callback passed, so we simply replace old image with rescaled one
result[0] = image
except KeyboardInterrupt:
@ -436,7 +432,7 @@ class T2I:
width,
height,
strength,
callback, # Currently not implemented for img2img
callback, # Currently not implemented for img2img
):
"""
An infinite iterator of images from the prompt and the initial image
@ -445,13 +441,13 @@ class T2I:
# PLMS sampler not supported yet, so ignore previous sampler
if self.sampler_name != 'ddim':
print(
f"sampler '{self.sampler_name}' is not yet supported. Using DDM sampler"
f"sampler '{self.sampler_name}' is not yet supported. Using DDIM sampler"
)
sampler = DDIMSampler(self.model, device=self.device)
else:
sampler = self.sampler
init_image = self._load_img(init_img,width,height).to(self.device)
init_image = self._load_img(init_img, width, height).to(self.device)
with precision_scope(self.device.type):
init_latent = self.model.get_first_stage_encoding(
self.model.encode_first_stage(init_image)
@ -514,7 +510,8 @@ class T2I:
x_samples = self.model.decode_first_stage(samples)
x_samples = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0)
if len(x_samples) != 1:
raise Exception(f'expected to get a single image, but got {len(x_samples)}')
raise Exception(
f'expected to get a single image, but got {len(x_samples)}')
x_sample = 255.0 * rearrange(
x_samples[0].cpu().numpy(), 'c h w -> h w c'
)
@ -545,8 +542,9 @@ class T2I:
self.model.cond_stage_model.device = self.device
except AttributeError:
import traceback
print('Error loading model. Only the CUDA backend is supported',file=sys.stderr)
print(traceback.format_exc(),file=sys.stderr)
print(
'Error loading model. Only the CUDA backend is supported', file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
raise SystemExit
self._set_sampler()
@ -606,10 +604,26 @@ class T2I:
print(f'image path = {path}, cwd = {os.getcwd()}')
with Image.open(path) as img:
image = img.convert('RGB')
print(f'loaded input image of size {image.width}x{image.height} from {path}')
print(
f'loaded input image of size {image.width}x{image.height} from {path}')
image = InitImageResizer(image).resize(width,height)
print(f'resized input image to size {image.width}x{image.height}')
from ldm.dream.image_util import InitImageResizer
if width == self.width and height == self.height:
new_image_width, new_image_height, resize_needed = self._resolution_check(
image.width, image.height)
else:
if height == self.height:
new_image_width, new_image_height, resize_needed = self._resolution_check(
width, image.height)
if width == self.width:
new_image_width, new_image_height, resize_needed = self._resolution_check(
image.width, height)
else:
image = InitImageResizer(image).resize(width, height)
resize_needed=False
if resize_needed:
image = InitImageResizer(image).resize(
new_image_width, new_image_height)
image = np.array(image).astype(np.float32) / 255.0
image = image[None].transpose(0, 3, 1, 2)
@ -633,7 +647,7 @@ class T2I:
prompt = text[:idx]
remaining -= idx
# remove from main text
text = text[idx + 1 :]
text = text[idx + 1:]
# find value for weight
if ' ' in text:
idx = text.index(' ') # first occurence
@ -651,7 +665,7 @@ class T2I:
weight = 1.0
# remove from main text
remaining -= idx
text = text[idx + 1 :]
text = text[idx + 1:]
# append the sub-prompt and its weight
prompts.append(prompt)
weights.append(weight)
@ -662,9 +676,9 @@ class T2I:
weights.append(1.0)
remaining = 0
return prompts, weights
# shows how the prompt is tokenized
# usually tokens have '</w>' to indicate end-of-word,
# shows how the prompt is tokenized
# usually tokens have '</w>' to indicate end-of-word,
# but for readability it has been replaced with ' '
def _log_tokenization(self, text):
if not self.log_tokenization:
@ -674,15 +688,31 @@ class T2I:
discarded = ""
usedTokens = 0
totalTokens = len(tokens)
for i in range(0,totalTokens):
token = tokens[i].replace('</w>',' ')
for i in range(0, totalTokens):
token = tokens[i].replace('</w>', ' ')
# alternate color
s = (usedTokens % 6) + 1
if i < self.model.cond_stage_model.max_length:
tokenized = tokenized + f"\x1b[0;3{s};40m{token}"
usedTokens += 1
else: # over max token length
else: # over max token length
discarded = discarded + f"\x1b[0;3{s};40m{token}"
print(f"\nTokens ({usedTokens}):\n{tokenized}\x1b[0m")
if discarded != "":
print(f"Tokens Discarded ({totalTokens-usedTokens}):\n{discarded}\x1b[0m")
print(
f"Tokens Discarded ({totalTokens-usedTokens}):\n{discarded}\x1b[0m")
def _resolution_check(self, width, height, log=False):
resize_needed = False
w, h = map(
lambda x: x - x % 64, (width, height)
) # resize to integer multiple of 64
if h != height or w != width:
if log:
print(
f'>> Provided width and height must be multiples of 64. Auto-resizing to {w}x{h}'
)
height = h
width = w
resize_needed = True
return width, height, resize_needed