wip SwapCrossAttnProcessor

This commit is contained in:
Damian Stewart 2023-01-21 18:07:36 +01:00
parent b3363a934d
commit 0c2a511671
2 changed files with 163 additions and 2 deletions

View File

@ -0,0 +1,160 @@
"""
# base implementation
class CrossAttnProcessor:
def __call__(self, attn: CrossAttention, hidden_states, encoder_hidden_states=None, attention_mask=None):
batch_size, sequence_length, _ = hidden_states.shape
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length)
query = attn.to_q(hidden_states)
query = attn.head_to_batch_dim(query)
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
attention_probs = attn.get_attention_scores(query, key, attention_mask)
hidden_states = torch.bmm(attention_probs, value)
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
return hidden_states
"""
import enum
from dataclasses import field, dataclass
import torch
from diffusers.models.cross_attention import CrossAttention, CrossAttnProcessor
class AttentionType(enum.Enum):
SELF = 1
TOKENS = 2
@dataclass
class SwapCrossAttnContext:
cross_attention_types_to_do: list[AttentionType]
modified_text_embeddings: torch.Tensor
index_map: torch.Tensor # maps from original prompt token indices to the equivalent tokens in the modified prompt
mask: torch.Tensor # in the target space of the index_map
def __int__(self,
cac_types_to_do: [AttentionType],
modified_text_embeddings: torch.Tensor,
index_map: torch.Tensor,
mask: torch.Tensor):
self.cross_attention_types_to_do = cac_types_to_do
self.modified_text_embeddings = modified_text_embeddings
self.index_map = index_map
self.mask = mask
def wants_cross_attention_control(self, attn_type: AttentionType) -> bool:
return attn_type in self.cross_attention_types_to_do
class SwapCrossAttnProcessor(CrossAttnProcessor):
def __call__(self, attn: CrossAttention, hidden_states, encoder_hidden_states=None, attention_mask=None,
# kwargs
cross_attention_swap_context_provider: SwapCrossAttnContext=None):
if cross_attention_swap_context_provider is None:
raise RuntimeError("a SwapCrossAttnContext instance must be passed via attention processor kwargs")
attention_type = AttentionType.SELF if encoder_hidden_states is None else AttentionType.TOKENS
# if cross-attention control is not in play, just call through to the base implementation.
if not cross_attention_swap_context_provider.wants_cross_attention_control(attention_type):
return super().__call__(attn, hidden_states, encoder_hidden_states, attention_mask)
batch_size, sequence_length, _ = hidden_states.shape
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length)
query = attn.to_q(hidden_states)
query = attn.head_to_batch_dim(query)
# helper function
def get_attention_probs(embeddings):
this_key = attn.to_k(embeddings)
this_key = attn.head_to_batch_dim(this_key)
return attn.get_attention_scores(query, this_key, attention_mask)
if attention_type == AttentionType.SELF:
# self attention has no remapping, it just bluntly copies the whole tensor
attention_probs = get_attention_probs(hidden_states)
value = attn.to_v(hidden_states)
else:
# tokens (cross) attention
# first, find attention probabilities for the "original" prompt
original_text_embeddings = encoder_hidden_states
original_attention_probs = get_attention_probs(original_text_embeddings)
# then, find attention probabilities for the "modified" prompt
modified_text_embeddings = cross_attention_swap_context_provider.modified_text_embeddings
modified_attention_probs = get_attention_probs(modified_text_embeddings)
# because the prompt modifications may result in token sequences shifted forwards or backwards,
# the original attention probabilities must be remapped to account for token index changes in the
# modified prompt
remapped_original_attention_probs = torch.index_select(original_attention_probs, -1,
cross_attention_swap_context_provider.index_map)
# only some tokens taken from the original attention probabilities. this is controlled by the mask.
mask = cross_attention_swap_context_provider.mask
inverse_mask = 1 - mask
attention_probs = \
remapped_original_attention_probs * mask + \
modified_attention_probs * inverse_mask
# for the "value" just use the modified text embeddings.
value = attn.to_v(modified_text_embeddings)
value = attn.head_to_batch_dim(value)
hidden_states = torch.bmm(attention_probs, value)
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
return hidden_states
class P2PCrossAttentionProc:
def __init__(self, head_size, upcast_attention, attn_maps_reweight):
super().__init__(head_size=head_size, upcast_attention=upcast_attention)
self.attn_maps_reweight = attn_maps_reweight
def __call__(self, hidden_states, query_proj, key_proj, value_proj, encoder_hidden_states, modified_text_embeddings):
batch_size, sequence_length, _ = hidden_states.shape
query = query_proj(hidden_states)
context = context if context is not None else hidden_states
attention_probs = []
original_text_embeddings = encoder_hidden_states
for context in [original_text_embeddings, modified_text_embeddings]:
key = key_proj(original_text_embeddings)
value = self.value_proj(original_text_embeddings)
query = self.head_to_batch_dim(query, self.head_size)
key = self.head_to_batch_dim(key, self.head_size)
value = self.head_to_batch_dim(value, self.head_size)
attention_probs.append(self.get_attention_scores(query, key))
merged_probs = self.attn_maps_reweight * torch.cat(attention_probs)
hidden_states = torch.bmm(attention_probs, value)
hidden_states = self.batch_to_head_dim(hidden_states)
return hidden_states
proc = P2PCrossAttentionProc(unet.config.head_size, unet.config.upcast_attention, 0.6)

View File

@ -333,10 +333,10 @@ def setup_cross_attention_control(model, context: Context):
indices[b0:b1] = indices_target[a0:a1]
mask[b0:b1] = 1
context.register_cross_attention_modules(model)
#context.register_cross_attention_modules(model)
context.cross_attention_mask = mask.to(device)
context.cross_attention_index_map = indices.to(device)
inject_attention_function(model, context)
#inject_attention_function(model, context)
def get_cross_attention_modules(model, which: CrossAttentionType) -> list[tuple[str, InvokeAICrossAttentionMixin]]:
@ -445,6 +445,7 @@ def get_mem_free_total(device):
return mem_free_total
class InvokeAIDiffusersCrossAttention(diffusers.models.attention.CrossAttention, InvokeAICrossAttentionMixin):
def __init__(self, **kwargs):