mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
added textual inversion and lora loaders
This commit is contained in:
parent
67eb715093
commit
0d3addc69b
@ -178,6 +178,11 @@ class ModelInstallService(ModelInstallServiceBase):
|
||||
)
|
||||
|
||||
def import_model(self, source: ModelSource, config: Optional[Dict[str, Any]] = None) -> ModelInstallJob: # noqa D102
|
||||
similar_jobs = [x for x in self.list_jobs() if x.source == source and not x.in_terminal_state]
|
||||
if similar_jobs:
|
||||
self._logger.warning(f"There is already an active install job for {source}. Not enqueuing.")
|
||||
return similar_jobs[0]
|
||||
|
||||
if isinstance(source, LocalModelSource):
|
||||
install_job = self._import_local_model(source, config)
|
||||
self._install_queue.put(install_job) # synchronously install
|
||||
|
@ -1,13 +1,17 @@
|
||||
# Copyright (c) 2024 The InvokeAI Development team
|
||||
"""LoRA model support."""
|
||||
|
||||
import bisect
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
from safetensors.torch import load_file
|
||||
from pathlib import Path
|
||||
from typing import Dict, Optional, Union, List, Tuple
|
||||
from typing_extensions import Self
|
||||
|
||||
from invokeai.backend.model_manager import BaseModelType
|
||||
|
||||
|
||||
class LoRALayerBase:
|
||||
# rank: Optional[int]
|
||||
# alpha: Optional[float]
|
||||
@ -41,7 +45,7 @@ class LoRALayerBase:
|
||||
self.rank = None # set in layer implementation
|
||||
self.layer_key = layer_key
|
||||
|
||||
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
|
||||
def get_weight(self, orig_weight: Optional[torch.Tensor]) -> torch.Tensor:
|
||||
raise NotImplementedError()
|
||||
|
||||
def calc_size(self) -> int:
|
||||
@ -82,7 +86,7 @@ class LoRALayer(LoRALayerBase):
|
||||
|
||||
self.rank = self.down.shape[0]
|
||||
|
||||
def get_weight(self, orig_weight: torch.Tensor):
|
||||
def get_weight(self, orig_weight: Optional[torch.Tensor]) -> torch.Tensor:
|
||||
if self.mid is not None:
|
||||
up = self.up.reshape(self.up.shape[0], self.up.shape[1])
|
||||
down = self.down.reshape(self.down.shape[0], self.down.shape[1])
|
||||
@ -121,11 +125,7 @@ class LoHALayer(LoRALayerBase):
|
||||
# t1: Optional[torch.Tensor] = None
|
||||
# t2: Optional[torch.Tensor] = None
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
layer_key: str,
|
||||
values: Dict[str, torch.Tensor]
|
||||
):
|
||||
def __init__(self, layer_key: str, values: Dict[str, torch.Tensor]):
|
||||
super().__init__(layer_key, values)
|
||||
|
||||
self.w1_a = values["hada_w1_a"]
|
||||
@ -145,7 +145,7 @@ class LoHALayer(LoRALayerBase):
|
||||
|
||||
self.rank = self.w1_b.shape[0]
|
||||
|
||||
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
|
||||
def get_weight(self, orig_weight: Optional[torch.Tensor]) -> torch.Tensor:
|
||||
if self.t1 is None:
|
||||
weight: torch.Tensor = (self.w1_a @ self.w1_b) * (self.w2_a @ self.w2_b)
|
||||
|
||||
@ -227,7 +227,7 @@ class LoKRLayer(LoRALayerBase):
|
||||
else:
|
||||
self.rank = None # unscaled
|
||||
|
||||
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
|
||||
def get_weight(self, orig_weight: Optional[torch.Tensor]) -> torch.Tensor:
|
||||
w1: Optional[torch.Tensor] = self.w1
|
||||
if w1 is None:
|
||||
assert self.w1_a is not None
|
||||
@ -305,7 +305,7 @@ class FullLayer(LoRALayerBase):
|
||||
|
||||
self.rank = None # unscaled
|
||||
|
||||
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
|
||||
def get_weight(self, orig_weight: Optional[torch.Tensor]) -> torch.Tensor:
|
||||
return self.weight
|
||||
|
||||
def calc_size(self) -> int:
|
||||
@ -330,7 +330,7 @@ class IA3Layer(LoRALayerBase):
|
||||
def __init__(
|
||||
self,
|
||||
layer_key: str,
|
||||
values: Dict[str, torch.Tensor],
|
||||
values: Dict[str, torch.Tensor],
|
||||
):
|
||||
super().__init__(layer_key, values)
|
||||
|
||||
@ -339,10 +339,11 @@ class IA3Layer(LoRALayerBase):
|
||||
|
||||
self.rank = None # unscaled
|
||||
|
||||
def get_weight(self, orig_weight: torch.Tensor):
|
||||
def get_weight(self, orig_weight: Optional[torch.Tensor]) -> torch.Tensor:
|
||||
weight = self.weight
|
||||
if not self.on_input:
|
||||
weight = weight.reshape(-1, 1)
|
||||
assert orig_weight is not None
|
||||
return orig_weight * weight
|
||||
|
||||
def calc_size(self) -> int:
|
||||
@ -361,8 +362,10 @@ class IA3Layer(LoRALayerBase):
|
||||
self.weight = self.weight.to(device=device, dtype=dtype)
|
||||
self.on_input = self.on_input.to(device=device, dtype=dtype)
|
||||
|
||||
|
||||
AnyLoRALayer = Union[LoRALayer, LoHALayer, LoKRLayer, FullLayer, IA3Layer]
|
||||
|
||||
|
||||
|
||||
# TODO: rename all methods used in model logic with Info postfix and remove here Raw postfix
|
||||
class LoRAModelRaw: # (torch.nn.Module):
|
||||
_name: str
|
||||
@ -530,7 +533,7 @@ class LoRAModelRaw: # (torch.nn.Module):
|
||||
|
||||
# code from
|
||||
# https://github.com/bmaltais/kohya_ss/blob/2accb1305979ba62f5077a23aabac23b4c37e935/networks/lora_diffusers.py#L15C1-L97C32
|
||||
def make_sdxl_unet_conversion_map() -> List[Tuple[str,str]]:
|
||||
def make_sdxl_unet_conversion_map() -> List[Tuple[str, str]]:
|
||||
"""Create a dict mapping state_dict keys from Stability AI SDXL format to diffusers SDXL format."""
|
||||
unet_conversion_map_layer = []
|
||||
|
586
invokeai/backend/embeddings/model_patcher.py
Normal file
586
invokeai/backend/embeddings/model_patcher.py
Normal file
@ -0,0 +1,586 @@
|
||||
# Copyright (c) 2024 Ryan Dick, Lincoln D. Stein, and the InvokeAI Development Team
|
||||
"""These classes implement model patching with LoRAs and Textual Inversions."""
|
||||
from __future__ import annotations
|
||||
|
||||
import pickle
|
||||
from contextlib import contextmanager
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, Generator, List, Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from compel.embeddings_provider import BaseTextualInversionManager
|
||||
from diffusers import ModelMixin, OnnxRuntimeModel, UNet2DConditionModel
|
||||
from safetensors.torch import load_file
|
||||
from transformers import CLIPTextModel, CLIPTokenizer
|
||||
from typing_extensions import Self
|
||||
|
||||
from invokeai.app.shared.models import FreeUConfig
|
||||
from invokeai.backend.model_manager.load.optimizations import skip_torch_weight_init
|
||||
from invokeai.backend.onnx.onnx_runtime import IAIOnnxRuntimeModel
|
||||
|
||||
from .lora import LoRAModelRaw
|
||||
|
||||
"""
|
||||
loras = [
|
||||
(lora_model1, 0.7),
|
||||
(lora_model2, 0.4),
|
||||
]
|
||||
with LoRAHelper.apply_lora_unet(unet, loras):
|
||||
# unet with applied loras
|
||||
# unmodified unet
|
||||
|
||||
"""
|
||||
|
||||
|
||||
# TODO: rename smth like ModelPatcher and add TI method?
|
||||
class ModelPatcher:
|
||||
@staticmethod
|
||||
def _resolve_lora_key(model: torch.nn.Module, lora_key: str, prefix: str) -> Tuple[str, torch.nn.Module]:
|
||||
assert "." not in lora_key
|
||||
|
||||
if not lora_key.startswith(prefix):
|
||||
raise Exception(f"lora_key with invalid prefix: {lora_key}, {prefix}")
|
||||
|
||||
module = model
|
||||
module_key = ""
|
||||
key_parts = lora_key[len(prefix) :].split("_")
|
||||
|
||||
submodule_name = key_parts.pop(0)
|
||||
|
||||
while len(key_parts) > 0:
|
||||
try:
|
||||
module = module.get_submodule(submodule_name)
|
||||
module_key += "." + submodule_name
|
||||
submodule_name = key_parts.pop(0)
|
||||
except Exception:
|
||||
submodule_name += "_" + key_parts.pop(0)
|
||||
|
||||
module = module.get_submodule(submodule_name)
|
||||
module_key = (module_key + "." + submodule_name).lstrip(".")
|
||||
|
||||
return (module_key, module)
|
||||
|
||||
@classmethod
|
||||
@contextmanager
|
||||
def apply_lora_unet(
|
||||
cls,
|
||||
unet: UNet2DConditionModel,
|
||||
loras: List[Tuple[LoRAModelRaw, float]],
|
||||
) -> Generator[None, None, None]:
|
||||
with cls.apply_lora(unet, loras, "lora_unet_"):
|
||||
yield
|
||||
|
||||
@classmethod
|
||||
@contextmanager
|
||||
def apply_lora_text_encoder(
|
||||
cls,
|
||||
text_encoder: CLIPTextModel,
|
||||
loras: List[Tuple[LoRAModelRaw, float]],
|
||||
):
|
||||
with cls.apply_lora(text_encoder, loras, "lora_te_"):
|
||||
yield
|
||||
|
||||
@classmethod
|
||||
@contextmanager
|
||||
def apply_sdxl_lora_text_encoder(
|
||||
cls,
|
||||
text_encoder: CLIPTextModel,
|
||||
loras: List[Tuple[LoRAModelRaw, float]],
|
||||
):
|
||||
with cls.apply_lora(text_encoder, loras, "lora_te1_"):
|
||||
yield
|
||||
|
||||
@classmethod
|
||||
@contextmanager
|
||||
def apply_sdxl_lora_text_encoder2(
|
||||
cls,
|
||||
text_encoder: CLIPTextModel,
|
||||
loras: List[Tuple[LoRAModelRaw, float]],
|
||||
):
|
||||
with cls.apply_lora(text_encoder, loras, "lora_te2_"):
|
||||
yield
|
||||
|
||||
@classmethod
|
||||
@contextmanager
|
||||
def apply_lora(
|
||||
cls,
|
||||
model: Union[torch.nn.Module, ModelMixin, UNet2DConditionModel],
|
||||
loras: List[Tuple[LoRAModelRaw, float]],
|
||||
prefix: str,
|
||||
) -> Generator[None, None, None]:
|
||||
original_weights = {}
|
||||
try:
|
||||
with torch.no_grad():
|
||||
for lora, lora_weight in loras:
|
||||
# assert lora.device.type == "cpu"
|
||||
for layer_key, layer in lora.layers.items():
|
||||
if not layer_key.startswith(prefix):
|
||||
continue
|
||||
|
||||
# TODO(ryand): A non-negligible amount of time is currently spent resolving LoRA keys. This
|
||||
# should be improved in the following ways:
|
||||
# 1. The key mapping could be more-efficiently pre-computed. This would save time every time a
|
||||
# LoRA model is applied.
|
||||
# 2. From an API perspective, there's no reason that the `ModelPatcher` should be aware of the
|
||||
# intricacies of Stable Diffusion key resolution. It should just expect the input LoRA
|
||||
# weights to have valid keys.
|
||||
module_key, module = cls._resolve_lora_key(model, layer_key, prefix)
|
||||
|
||||
# All of the LoRA weight calculations will be done on the same device as the module weight.
|
||||
# (Performance will be best if this is a CUDA device.)
|
||||
device = module.weight.device
|
||||
dtype = module.weight.dtype
|
||||
|
||||
if module_key not in original_weights:
|
||||
original_weights[module_key] = module.weight.detach().to(device="cpu", copy=True)
|
||||
|
||||
layer_scale = layer.alpha / layer.rank if (layer.alpha and layer.rank) else 1.0
|
||||
|
||||
# We intentionally move to the target device first, then cast. Experimentally, this was found to
|
||||
# be significantly faster for 16-bit CPU tensors being moved to a CUDA device than doing the
|
||||
# same thing in a single call to '.to(...)'.
|
||||
layer.to(device=device)
|
||||
layer.to(dtype=torch.float32)
|
||||
# TODO(ryand): Using torch.autocast(...) over explicit casting may offer a speed benefit on CUDA
|
||||
# devices here. Experimentally, it was found to be very slow on CPU. More investigation needed.
|
||||
layer_weight = layer.get_weight(module.weight) * (lora_weight * layer_scale)
|
||||
layer.to(device=torch.device("cpu"))
|
||||
|
||||
assert isinstance(layer_weight, torch.Tensor) # mypy thinks layer_weight is a float|Any ??!
|
||||
if module.weight.shape != layer_weight.shape:
|
||||
# TODO: debug on lycoris
|
||||
assert hasattr(layer_weight, "reshape")
|
||||
layer_weight = layer_weight.reshape(module.weight.shape)
|
||||
|
||||
assert isinstance(layer_weight, torch.Tensor) # mypy thinks layer_weight is a float|Any ??!
|
||||
module.weight += layer_weight.to(dtype=dtype)
|
||||
|
||||
yield # wait for context manager exit
|
||||
|
||||
finally:
|
||||
assert hasattr(model, "get_submodule") # mypy not picking up fact that torch.nn.Module has get_submodule()
|
||||
with torch.no_grad():
|
||||
for module_key, weight in original_weights.items():
|
||||
model.get_submodule(module_key).weight.copy_(weight)
|
||||
|
||||
@classmethod
|
||||
@contextmanager
|
||||
def apply_ti(
|
||||
cls,
|
||||
tokenizer: CLIPTokenizer,
|
||||
text_encoder: CLIPTextModel,
|
||||
ti_list: List[Tuple[str, TextualInversionModel]],
|
||||
) -> Generator[Tuple[CLIPTokenizer, TextualInversionManager], None, None]:
|
||||
init_tokens_count = None
|
||||
new_tokens_added = None
|
||||
|
||||
# TODO: This is required since Transformers 4.32 see
|
||||
# https://github.com/huggingface/transformers/pull/25088
|
||||
# More information by NVIDIA:
|
||||
# https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc
|
||||
# This value might need to be changed in the future and take the GPUs model into account as there seem
|
||||
# to be ideal values for different GPUS. This value is temporary!
|
||||
# For references to the current discussion please see https://github.com/invoke-ai/InvokeAI/pull/4817
|
||||
pad_to_multiple_of = 8
|
||||
|
||||
try:
|
||||
# HACK: The CLIPTokenizer API does not include a way to remove tokens after calling add_tokens(...). As a
|
||||
# workaround, we create a full copy of `tokenizer` so that its original behavior can be restored after
|
||||
# exiting this `apply_ti(...)` context manager.
|
||||
#
|
||||
# In a previous implementation, the deep copy was obtained with `ti_tokenizer = copy.deepcopy(tokenizer)`,
|
||||
# but a pickle roundtrip was found to be much faster (1 sec vs. 0.05 secs).
|
||||
ti_tokenizer = pickle.loads(pickle.dumps(tokenizer))
|
||||
ti_manager = TextualInversionManager(ti_tokenizer)
|
||||
init_tokens_count = text_encoder.resize_token_embeddings(None, pad_to_multiple_of).num_embeddings
|
||||
|
||||
def _get_trigger(ti_name: str, index: int) -> str:
|
||||
trigger = ti_name
|
||||
if index > 0:
|
||||
trigger += f"-!pad-{i}"
|
||||
return f"<{trigger}>"
|
||||
|
||||
def _get_ti_embedding(model_embeddings: torch.nn.Module, ti: TextualInversionModel) -> torch.Tensor:
|
||||
# for SDXL models, select the embedding that matches the text encoder's dimensions
|
||||
if ti.embedding_2 is not None:
|
||||
return (
|
||||
ti.embedding_2
|
||||
if ti.embedding_2.shape[1] == model_embeddings.weight.data[0].shape[0]
|
||||
else ti.embedding
|
||||
)
|
||||
else:
|
||||
return ti.embedding
|
||||
|
||||
# modify tokenizer
|
||||
new_tokens_added = 0
|
||||
for ti_name, ti in ti_list:
|
||||
ti_embedding = _get_ti_embedding(text_encoder.get_input_embeddings(), ti)
|
||||
|
||||
for i in range(ti_embedding.shape[0]):
|
||||
new_tokens_added += ti_tokenizer.add_tokens(_get_trigger(ti_name, i))
|
||||
|
||||
# Modify text_encoder.
|
||||
# resize_token_embeddings(...) constructs a new torch.nn.Embedding internally. Initializing the weights of
|
||||
# this embedding is slow and unnecessary, so we wrap this step in skip_torch_weight_init() to save some
|
||||
# time.
|
||||
with skip_torch_weight_init():
|
||||
text_encoder.resize_token_embeddings(init_tokens_count + new_tokens_added, pad_to_multiple_of)
|
||||
model_embeddings = text_encoder.get_input_embeddings()
|
||||
|
||||
for ti_name, ti in ti_list:
|
||||
ti_embedding = _get_ti_embedding(text_encoder.get_input_embeddings(), ti)
|
||||
|
||||
ti_tokens = []
|
||||
for i in range(ti_embedding.shape[0]):
|
||||
embedding = ti_embedding[i]
|
||||
trigger = _get_trigger(ti_name, i)
|
||||
|
||||
token_id = ti_tokenizer.convert_tokens_to_ids(trigger)
|
||||
if token_id == ti_tokenizer.unk_token_id:
|
||||
raise RuntimeError(f"Unable to find token id for token '{trigger}'")
|
||||
|
||||
if model_embeddings.weight.data[token_id].shape != embedding.shape:
|
||||
raise ValueError(
|
||||
f"Cannot load embedding for {trigger}. It was trained on a model with token dimension"
|
||||
f" {embedding.shape[0]}, but the current model has token dimension"
|
||||
f" {model_embeddings.weight.data[token_id].shape[0]}."
|
||||
)
|
||||
|
||||
model_embeddings.weight.data[token_id] = embedding.to(
|
||||
device=text_encoder.device, dtype=text_encoder.dtype
|
||||
)
|
||||
ti_tokens.append(token_id)
|
||||
|
||||
if len(ti_tokens) > 1:
|
||||
ti_manager.pad_tokens[ti_tokens[0]] = ti_tokens[1:]
|
||||
|
||||
yield ti_tokenizer, ti_manager
|
||||
|
||||
finally:
|
||||
if init_tokens_count and new_tokens_added:
|
||||
text_encoder.resize_token_embeddings(init_tokens_count, pad_to_multiple_of)
|
||||
|
||||
@classmethod
|
||||
@contextmanager
|
||||
def apply_clip_skip(
|
||||
cls,
|
||||
text_encoder: CLIPTextModel,
|
||||
clip_skip: int,
|
||||
) -> Generator[None, None, None]:
|
||||
skipped_layers = []
|
||||
try:
|
||||
for _i in range(clip_skip):
|
||||
skipped_layers.append(text_encoder.text_model.encoder.layers.pop(-1))
|
||||
|
||||
yield
|
||||
|
||||
finally:
|
||||
while len(skipped_layers) > 0:
|
||||
text_encoder.text_model.encoder.layers.append(skipped_layers.pop())
|
||||
|
||||
@classmethod
|
||||
@contextmanager
|
||||
def apply_freeu(
|
||||
cls,
|
||||
unet: UNet2DConditionModel,
|
||||
freeu_config: Optional[FreeUConfig] = None,
|
||||
) -> Generator[None, None, None]:
|
||||
did_apply_freeu = False
|
||||
try:
|
||||
assert hasattr(unet, "enable_freeu") # mypy doesn't pick up this attribute?
|
||||
if freeu_config is not None:
|
||||
unet.enable_freeu(b1=freeu_config.b1, b2=freeu_config.b2, s1=freeu_config.s1, s2=freeu_config.s2)
|
||||
did_apply_freeu = True
|
||||
|
||||
yield
|
||||
|
||||
finally:
|
||||
assert hasattr(unet, "disable_freeu") # mypy doesn't pick up this attribute?
|
||||
if did_apply_freeu:
|
||||
unet.disable_freeu()
|
||||
|
||||
|
||||
class TextualInversionModel:
|
||||
embedding: torch.Tensor # [n, 768]|[n, 1280]
|
||||
embedding_2: Optional[torch.Tensor] = None # [n, 768]|[n, 1280] - for SDXL models
|
||||
|
||||
@classmethod
|
||||
def from_checkpoint(
|
||||
cls,
|
||||
file_path: Union[str, Path],
|
||||
device: Optional[torch.device] = None,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
) -> Self:
|
||||
if not isinstance(file_path, Path):
|
||||
file_path = Path(file_path)
|
||||
|
||||
result = cls() # TODO:
|
||||
|
||||
if file_path.suffix == ".safetensors":
|
||||
state_dict = load_file(file_path.absolute().as_posix(), device="cpu")
|
||||
else:
|
||||
state_dict = torch.load(file_path, map_location="cpu")
|
||||
|
||||
# both v1 and v2 format embeddings
|
||||
# difference mostly in metadata
|
||||
if "string_to_param" in state_dict:
|
||||
if len(state_dict["string_to_param"]) > 1:
|
||||
print(
|
||||
f'Warn: Embedding "{file_path.name}" contains multiple tokens, which is not supported. The first',
|
||||
" token will be used.",
|
||||
)
|
||||
|
||||
result.embedding = next(iter(state_dict["string_to_param"].values()))
|
||||
|
||||
# v3 (easynegative)
|
||||
elif "emb_params" in state_dict:
|
||||
result.embedding = state_dict["emb_params"]
|
||||
|
||||
# v5(sdxl safetensors file)
|
||||
elif "clip_g" in state_dict and "clip_l" in state_dict:
|
||||
result.embedding = state_dict["clip_g"]
|
||||
result.embedding_2 = state_dict["clip_l"]
|
||||
|
||||
# v4(diffusers bin files)
|
||||
else:
|
||||
result.embedding = next(iter(state_dict.values()))
|
||||
|
||||
if len(result.embedding.shape) == 1:
|
||||
result.embedding = result.embedding.unsqueeze(0)
|
||||
|
||||
if not isinstance(result.embedding, torch.Tensor):
|
||||
raise ValueError(f"Invalid embeddings file: {file_path.name}")
|
||||
|
||||
return result
|
||||
|
||||
|
||||
# no type hints for BaseTextualInversionManager?
|
||||
class TextualInversionManager(BaseTextualInversionManager): # type: ignore
|
||||
pad_tokens: Dict[int, List[int]]
|
||||
tokenizer: CLIPTokenizer
|
||||
|
||||
def __init__(self, tokenizer: CLIPTokenizer):
|
||||
self.pad_tokens = {}
|
||||
self.tokenizer = tokenizer
|
||||
|
||||
def expand_textual_inversion_token_ids_if_necessary(self, token_ids: list[int]) -> list[int]:
|
||||
if len(self.pad_tokens) == 0:
|
||||
return token_ids
|
||||
|
||||
if token_ids[0] == self.tokenizer.bos_token_id:
|
||||
raise ValueError("token_ids must not start with bos_token_id")
|
||||
if token_ids[-1] == self.tokenizer.eos_token_id:
|
||||
raise ValueError("token_ids must not end with eos_token_id")
|
||||
|
||||
new_token_ids = []
|
||||
for token_id in token_ids:
|
||||
new_token_ids.append(token_id)
|
||||
if token_id in self.pad_tokens:
|
||||
new_token_ids.extend(self.pad_tokens[token_id])
|
||||
|
||||
# Do not exceed the max model input size
|
||||
# The -2 here is compensating for compensate compel.embeddings_provider.get_token_ids(),
|
||||
# which first removes and then adds back the start and end tokens.
|
||||
max_length = list(self.tokenizer.max_model_input_sizes.values())[0] - 2
|
||||
if len(new_token_ids) > max_length:
|
||||
new_token_ids = new_token_ids[0:max_length]
|
||||
|
||||
return new_token_ids
|
||||
|
||||
|
||||
class ONNXModelPatcher:
|
||||
@classmethod
|
||||
@contextmanager
|
||||
def apply_lora_unet(
|
||||
cls,
|
||||
unet: OnnxRuntimeModel,
|
||||
loras: List[Tuple[LoRAModelRaw, float]],
|
||||
) -> Generator[None, None, None]:
|
||||
with cls.apply_lora(unet, loras, "lora_unet_"):
|
||||
yield
|
||||
|
||||
@classmethod
|
||||
@contextmanager
|
||||
def apply_lora_text_encoder(
|
||||
cls,
|
||||
text_encoder: OnnxRuntimeModel,
|
||||
loras: List[Tuple[LoRAModelRaw, float]],
|
||||
) -> Generator[None, None, None]:
|
||||
with cls.apply_lora(text_encoder, loras, "lora_te_"):
|
||||
yield
|
||||
|
||||
# based on
|
||||
# https://github.com/ssube/onnx-web/blob/ca2e436f0623e18b4cfe8a0363fcfcf10508acf7/api/onnx_web/convert/diffusion/lora.py#L323
|
||||
@classmethod
|
||||
@contextmanager
|
||||
def apply_lora(
|
||||
cls,
|
||||
model: IAIOnnxRuntimeModel,
|
||||
loras: List[Tuple[LoRAModelRaw, float]],
|
||||
prefix: str,
|
||||
) -> Generator[None, None, None]:
|
||||
from .models.base import IAIOnnxRuntimeModel
|
||||
|
||||
if not isinstance(model, IAIOnnxRuntimeModel):
|
||||
raise Exception("Only IAIOnnxRuntimeModel models supported")
|
||||
|
||||
orig_weights = {}
|
||||
|
||||
try:
|
||||
blended_loras: Dict[str, torch.Tensor] = {}
|
||||
|
||||
for lora, lora_weight in loras:
|
||||
for layer_key, layer in lora.layers.items():
|
||||
if not layer_key.startswith(prefix):
|
||||
continue
|
||||
|
||||
layer.to(dtype=torch.float32)
|
||||
layer_key = layer_key.replace(prefix, "")
|
||||
# TODO: rewrite to pass original tensor weight(required by ia3)
|
||||
layer_weight = layer.get_weight(None).detach().cpu().numpy() * lora_weight
|
||||
if layer_key in blended_loras:
|
||||
blended_loras[layer_key] += layer_weight
|
||||
else:
|
||||
blended_loras[layer_key] = layer_weight
|
||||
|
||||
node_names = {}
|
||||
for node in model.nodes.values():
|
||||
node_names[node.name.replace("/", "_").replace(".", "_").lstrip("_")] = node.name
|
||||
|
||||
for layer_key, lora_weight in blended_loras.items():
|
||||
conv_key = layer_key + "_Conv"
|
||||
gemm_key = layer_key + "_Gemm"
|
||||
matmul_key = layer_key + "_MatMul"
|
||||
|
||||
if conv_key in node_names or gemm_key in node_names:
|
||||
if conv_key in node_names:
|
||||
conv_node = model.nodes[node_names[conv_key]]
|
||||
else:
|
||||
conv_node = model.nodes[node_names[gemm_key]]
|
||||
|
||||
weight_name = [n for n in conv_node.input if ".weight" in n][0]
|
||||
orig_weight = model.tensors[weight_name]
|
||||
|
||||
if orig_weight.shape[-2:] == (1, 1):
|
||||
if lora_weight.shape[-2:] == (1, 1):
|
||||
new_weight = orig_weight.squeeze((3, 2)) + lora_weight.squeeze((3, 2))
|
||||
else:
|
||||
new_weight = orig_weight.squeeze((3, 2)) + lora_weight
|
||||
|
||||
new_weight = np.expand_dims(new_weight, (2, 3))
|
||||
else:
|
||||
if orig_weight.shape != lora_weight.shape:
|
||||
new_weight = orig_weight + lora_weight.reshape(orig_weight.shape)
|
||||
else:
|
||||
new_weight = orig_weight + lora_weight
|
||||
|
||||
orig_weights[weight_name] = orig_weight
|
||||
model.tensors[weight_name] = new_weight.astype(orig_weight.dtype)
|
||||
|
||||
elif matmul_key in node_names:
|
||||
weight_node = model.nodes[node_names[matmul_key]]
|
||||
matmul_name = [n for n in weight_node.input if "MatMul" in n][0]
|
||||
|
||||
orig_weight = model.tensors[matmul_name]
|
||||
new_weight = orig_weight + lora_weight.transpose()
|
||||
|
||||
orig_weights[matmul_name] = orig_weight
|
||||
model.tensors[matmul_name] = new_weight.astype(orig_weight.dtype)
|
||||
|
||||
else:
|
||||
# warn? err?
|
||||
pass
|
||||
|
||||
yield
|
||||
|
||||
finally:
|
||||
# restore original weights
|
||||
for name, orig_weight in orig_weights.items():
|
||||
model.tensors[name] = orig_weight
|
||||
|
||||
@classmethod
|
||||
@contextmanager
|
||||
def apply_ti(
|
||||
cls,
|
||||
tokenizer: CLIPTokenizer,
|
||||
text_encoder: IAIOnnxRuntimeModel,
|
||||
ti_list: List[Tuple[str, Any]],
|
||||
) -> Generator[Tuple[CLIPTokenizer, TextualInversionManager], None, None]:
|
||||
from .models.base import IAIOnnxRuntimeModel
|
||||
|
||||
if not isinstance(text_encoder, IAIOnnxRuntimeModel):
|
||||
raise Exception("Only IAIOnnxRuntimeModel models supported")
|
||||
|
||||
orig_embeddings = None
|
||||
|
||||
try:
|
||||
# HACK: The CLIPTokenizer API does not include a way to remove tokens after calling add_tokens(...). As a
|
||||
# workaround, we create a full copy of `tokenizer` so that its original behavior can be restored after
|
||||
# exiting this `apply_ti(...)` context manager.
|
||||
#
|
||||
# In a previous implementation, the deep copy was obtained with `ti_tokenizer = copy.deepcopy(tokenizer)`,
|
||||
# but a pickle roundtrip was found to be much faster (1 sec vs. 0.05 secs).
|
||||
ti_tokenizer = pickle.loads(pickle.dumps(tokenizer))
|
||||
ti_manager = TextualInversionManager(ti_tokenizer)
|
||||
|
||||
def _get_trigger(ti_name: str, index: int) -> str:
|
||||
trigger = ti_name
|
||||
if index > 0:
|
||||
trigger += f"-!pad-{i}"
|
||||
return f"<{trigger}>"
|
||||
|
||||
# modify text_encoder
|
||||
orig_embeddings = text_encoder.tensors["text_model.embeddings.token_embedding.weight"]
|
||||
|
||||
# modify tokenizer
|
||||
new_tokens_added = 0
|
||||
for ti_name, ti in ti_list:
|
||||
if ti.embedding_2 is not None:
|
||||
ti_embedding = (
|
||||
ti.embedding_2 if ti.embedding_2.shape[1] == orig_embeddings.shape[0] else ti.embedding
|
||||
)
|
||||
else:
|
||||
ti_embedding = ti.embedding
|
||||
|
||||
for i in range(ti_embedding.shape[0]):
|
||||
new_tokens_added += ti_tokenizer.add_tokens(_get_trigger(ti_name, i))
|
||||
|
||||
embeddings = np.concatenate(
|
||||
(np.copy(orig_embeddings), np.zeros((new_tokens_added, orig_embeddings.shape[1]))),
|
||||
axis=0,
|
||||
)
|
||||
|
||||
for ti_name, _ in ti_list:
|
||||
ti_tokens = []
|
||||
for i in range(ti_embedding.shape[0]):
|
||||
embedding = ti_embedding[i].detach().numpy()
|
||||
trigger = _get_trigger(ti_name, i)
|
||||
|
||||
token_id = ti_tokenizer.convert_tokens_to_ids(trigger)
|
||||
if token_id == ti_tokenizer.unk_token_id:
|
||||
raise RuntimeError(f"Unable to find token id for token '{trigger}'")
|
||||
|
||||
if embeddings[token_id].shape != embedding.shape:
|
||||
raise ValueError(
|
||||
f"Cannot load embedding for {trigger}. It was trained on a model with token dimension"
|
||||
f" {embedding.shape[0]}, but the current model has token dimension"
|
||||
f" {embeddings[token_id].shape[0]}."
|
||||
)
|
||||
|
||||
embeddings[token_id] = embedding
|
||||
ti_tokens.append(token_id)
|
||||
|
||||
if len(ti_tokens) > 1:
|
||||
ti_manager.pad_tokens[ti_tokens[0]] = ti_tokens[1:]
|
||||
|
||||
text_encoder.tensors["text_model.embeddings.token_embedding.weight"] = embeddings.astype(
|
||||
orig_embeddings.dtype
|
||||
)
|
||||
|
||||
yield ti_tokenizer, ti_manager
|
||||
|
||||
finally:
|
||||
# restore
|
||||
if orig_embeddings is not None:
|
||||
text_encoder.tensors["text_model.embeddings.token_embedding.weight"] = orig_embeddings
|
@ -102,7 +102,7 @@ class ModelPatcher:
|
||||
def apply_lora(
|
||||
cls,
|
||||
model: torch.nn.Module,
|
||||
loras: List[Tuple[LoRAModel, float]],
|
||||
loras: List[Tuple[LoRAModel, float]], # THIS IS INCORRECT. IT IS ACTUALLY A LoRAModelRaw
|
||||
prefix: str,
|
||||
):
|
||||
original_weights = {}
|
||||
@ -194,6 +194,8 @@ class ModelPatcher:
|
||||
return f"<{trigger}>"
|
||||
|
||||
def _get_ti_embedding(model_embeddings, ti):
|
||||
print(f"DEBUG: model_embeddings={type(model_embeddings)}, ti={type(ti)}")
|
||||
print(f"DEBUG: is it an nn.Module? {isinstance(model_embeddings, torch.nn.Module)}")
|
||||
# for SDXL models, select the embedding that matches the text encoder's dimensions
|
||||
if ti.embedding_2 is not None:
|
||||
return (
|
||||
@ -202,6 +204,7 @@ class ModelPatcher:
|
||||
else ti.embedding
|
||||
)
|
||||
else:
|
||||
print(f"DEBUG: ti.embedding={type(ti.embedding)}")
|
||||
return ti.embedding
|
||||
|
||||
# modify tokenizer
|
||||
|
@ -28,9 +28,11 @@ from diffusers import ModelMixin
|
||||
from pydantic import BaseModel, ConfigDict, Field, TypeAdapter
|
||||
from typing_extensions import Annotated, Any, Dict
|
||||
|
||||
from .onnx_runtime import IAIOnnxRuntimeModel
|
||||
from invokeai.backend.onnx.onnx_runtime import IAIOnnxRuntimeModel
|
||||
|
||||
from ..ip_adapter.ip_adapter import IPAdapter, IPAdapterPlus
|
||||
|
||||
|
||||
class InvalidModelConfigException(Exception):
|
||||
"""Exception for when config parser doesn't recognized this combination of model type and format."""
|
||||
|
||||
|
@ -10,11 +10,17 @@ from diffusers import ModelMixin
|
||||
from diffusers.configuration_utils import ConfigMixin
|
||||
|
||||
from invokeai.app.services.config import InvokeAIAppConfig
|
||||
from invokeai.backend.model_manager import AnyModel, AnyModelConfig, InvalidModelConfigException, ModelRepoVariant, SubModelType
|
||||
from invokeai.backend.model_manager import (
|
||||
AnyModel,
|
||||
AnyModelConfig,
|
||||
InvalidModelConfigException,
|
||||
ModelRepoVariant,
|
||||
SubModelType,
|
||||
)
|
||||
from invokeai.backend.model_manager.load.convert_cache import ModelConvertCacheBase
|
||||
from invokeai.backend.model_manager.load.load_base import LoadedModel, ModelLoaderBase
|
||||
from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase, ModelLockerBase
|
||||
from invokeai.backend.model_manager.load.model_util import calc_model_size_by_fs, calc_model_size_by_data
|
||||
from invokeai.backend.model_manager.load.model_util import calc_model_size_by_data, calc_model_size_by_fs
|
||||
from invokeai.backend.model_manager.load.optimizations import skip_torch_weight_init
|
||||
from invokeai.backend.util.devices import choose_torch_device, torch_dtype
|
||||
|
||||
@ -160,4 +166,3 @@ class ModelLoader(ModelLoaderBase):
|
||||
submodel_type: Optional[SubModelType] = None,
|
||||
) -> AnyModel:
|
||||
raise NotImplementedError
|
||||
|
||||
|
@ -97,4 +97,4 @@ def get_pretty_snapshot_diff(snapshot_1: Optional[MemorySnapshot], snapshot_2: O
|
||||
if snapshot_1.vram is not None and snapshot_2.vram is not None:
|
||||
msg += get_msg_line("VRAM", snapshot_1.vram, snapshot_2.vram)
|
||||
|
||||
return "\n"+msg if len(msg)>0 else msg
|
||||
return "\n" + msg if len(msg) > 0 else msg
|
||||
|
@ -1,5 +1,3 @@
|
||||
"""Init file for RamCache."""
|
||||
|
||||
from .model_cache_base import ModelCacheBase
|
||||
from .model_cache_default import ModelCache
|
||||
_all__ = ["ModelCacheBase", "ModelCache"]
|
||||
|
@ -14,8 +14,10 @@ from invokeai.backend.model_manager import (
|
||||
)
|
||||
from invokeai.backend.model_manager.convert_ckpt_to_diffusers import convert_controlnet_to_diffusers
|
||||
from invokeai.backend.model_manager.load.load_base import AnyModelLoader
|
||||
|
||||
from .generic_diffusers import GenericDiffusersLoader
|
||||
|
||||
|
||||
@AnyModelLoader.register(base=BaseModelType.Any, type=ModelType.ControlNet, format=ModelFormat.Diffusers)
|
||||
@AnyModelLoader.register(base=BaseModelType.Any, type=ModelType.ControlNet, format=ModelFormat.Checkpoint)
|
||||
class ControlnetLoader(GenericDiffusersLoader):
|
||||
@ -37,7 +39,7 @@ class ControlnetLoader(GenericDiffusersLoader):
|
||||
if config.base not in {BaseModelType.StableDiffusion1, BaseModelType.StableDiffusion2}:
|
||||
raise Exception(f"Vae conversion not supported for model type: {config.base}")
|
||||
else:
|
||||
assert hasattr(config, 'config')
|
||||
assert hasattr(config, "config")
|
||||
config_file = config.config
|
||||
|
||||
if weights_path.suffix == ".safetensors":
|
||||
|
@ -15,6 +15,7 @@ from invokeai.backend.model_manager import (
|
||||
from invokeai.backend.model_manager.load.load_base import AnyModelLoader
|
||||
from invokeai.backend.model_manager.load.load_default import ModelLoader
|
||||
|
||||
|
||||
@AnyModelLoader.register(base=BaseModelType.Any, type=ModelType.CLIPVision, format=ModelFormat.Diffusers)
|
||||
@AnyModelLoader.register(base=BaseModelType.Any, type=ModelType.T2IAdapter, format=ModelFormat.Diffusers)
|
||||
class GenericDiffusersLoader(ModelLoader):
|
||||
|
@ -1,11 +1,11 @@
|
||||
# Copyright (c) 2024, Lincoln D. Stein and the InvokeAI Development Team
|
||||
"""Class for IP Adapter model loading in InvokeAI."""
|
||||
|
||||
import torch
|
||||
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
|
||||
from invokeai.backend.ip_adapter.ip_adapter import build_ip_adapter
|
||||
from invokeai.backend.model_manager import (
|
||||
AnyModel,
|
||||
@ -18,6 +18,7 @@ from invokeai.backend.model_manager import (
|
||||
from invokeai.backend.model_manager.load.load_base import AnyModelLoader
|
||||
from invokeai.backend.model_manager.load.load_default import ModelLoader
|
||||
|
||||
|
||||
@AnyModelLoader.register(base=BaseModelType.Any, type=ModelType.IPAdapter, format=ModelFormat.InvokeAI)
|
||||
class IPAdapterInvokeAILoader(ModelLoader):
|
||||
"""Class to load IP Adapter diffusers models."""
|
||||
@ -36,4 +37,3 @@ class IPAdapterInvokeAILoader(ModelLoader):
|
||||
dtype=self._torch_dtype,
|
||||
)
|
||||
return model
|
||||
|
||||
|
@ -2,13 +2,12 @@
|
||||
"""Class for LoRA model loading in InvokeAI."""
|
||||
|
||||
|
||||
from logging import Logger
|
||||
from pathlib import Path
|
||||
from typing import Optional, Tuple
|
||||
from logging import Logger
|
||||
|
||||
from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase
|
||||
from invokeai.backend.model_manager.load.convert_cache import ModelConvertCacheBase
|
||||
from invokeai.app.services.config import InvokeAIAppConfig
|
||||
from invokeai.backend.embeddings.lora import LoRAModelRaw
|
||||
from invokeai.backend.model_manager import (
|
||||
AnyModel,
|
||||
AnyModelConfig,
|
||||
@ -18,9 +17,11 @@ from invokeai.backend.model_manager import (
|
||||
ModelType,
|
||||
SubModelType,
|
||||
)
|
||||
from invokeai.backend.model_manager.lora import LoRAModelRaw
|
||||
from invokeai.backend.model_manager.load.convert_cache import ModelConvertCacheBase
|
||||
from invokeai.backend.model_manager.load.load_base import AnyModelLoader
|
||||
from invokeai.backend.model_manager.load.load_default import ModelLoader
|
||||
from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase
|
||||
|
||||
|
||||
@AnyModelLoader.register(base=BaseModelType.Any, type=ModelType.Lora, format=ModelFormat.Diffusers)
|
||||
@AnyModelLoader.register(base=BaseModelType.Any, type=ModelType.Lora, format=ModelFormat.Lycoris)
|
||||
@ -47,6 +48,7 @@ class LoraLoader(ModelLoader):
|
||||
) -> AnyModel:
|
||||
if submodel_type is not None:
|
||||
raise ValueError("There are no submodels in a LoRA model.")
|
||||
assert self._model_base is not None
|
||||
model = LoRAModelRaw.from_checkpoint(
|
||||
file_path=model_path,
|
||||
dtype=self._torch_dtype,
|
||||
@ -56,9 +58,11 @@ class LoraLoader(ModelLoader):
|
||||
|
||||
# override
|
||||
def _get_model_path(
|
||||
self, config: AnyModelConfig, submodel_type: Optional[SubModelType] = None
|
||||
self, config: AnyModelConfig, submodel_type: Optional[SubModelType] = None
|
||||
) -> Tuple[Path, AnyModelConfig, Optional[SubModelType]]:
|
||||
self._model_base = config.base # cheating a little - setting this variable for later call to _load_model()
|
||||
self._model_base = (
|
||||
config.base
|
||||
) # cheating a little - we remember this variable for using in the subsequent call to _load_model()
|
||||
|
||||
model_base_path = self._app_config.models_path
|
||||
model_path = model_base_path / config.path
|
||||
@ -72,5 +76,3 @@ class LoraLoader(ModelLoader):
|
||||
|
||||
result = model_path.resolve(), config, submodel_type
|
||||
return result
|
||||
|
||||
|
||||
|
@ -0,0 +1,55 @@
|
||||
# Copyright (c) 2024, Lincoln D. Stein and the InvokeAI Development Team
|
||||
"""Class for TI model loading in InvokeAI."""
|
||||
|
||||
|
||||
from pathlib import Path
|
||||
from typing import Optional, Tuple
|
||||
|
||||
from invokeai.backend.embeddings.model_patcher import TextualInversionModel as TextualInversionModelRaw
|
||||
from invokeai.backend.model_manager import (
|
||||
AnyModel,
|
||||
AnyModelConfig,
|
||||
BaseModelType,
|
||||
ModelFormat,
|
||||
ModelRepoVariant,
|
||||
ModelType,
|
||||
SubModelType,
|
||||
)
|
||||
from invokeai.backend.model_manager.load.load_base import AnyModelLoader
|
||||
from invokeai.backend.model_manager.load.load_default import ModelLoader
|
||||
|
||||
|
||||
@AnyModelLoader.register(base=BaseModelType.Any, type=ModelType.TextualInversion, format=ModelFormat.EmbeddingFile)
|
||||
@AnyModelLoader.register(base=BaseModelType.Any, type=ModelType.TextualInversion, format=ModelFormat.EmbeddingFolder)
|
||||
class TextualInversionLoader(ModelLoader):
|
||||
"""Class to load TI models."""
|
||||
|
||||
def _load_model(
|
||||
self,
|
||||
model_path: Path,
|
||||
model_variant: Optional[ModelRepoVariant] = None,
|
||||
submodel_type: Optional[SubModelType] = None,
|
||||
) -> AnyModel:
|
||||
if submodel_type is not None:
|
||||
raise ValueError("There are no submodels in a TI model.")
|
||||
model = TextualInversionModelRaw.from_checkpoint(
|
||||
file_path=model_path,
|
||||
dtype=self._torch_dtype,
|
||||
)
|
||||
return model
|
||||
|
||||
# override
|
||||
def _get_model_path(
|
||||
self, config: AnyModelConfig, submodel_type: Optional[SubModelType] = None
|
||||
) -> Tuple[Path, AnyModelConfig, Optional[SubModelType]]:
|
||||
model_path = self._app_config.models_path / config.path
|
||||
|
||||
if config.format == ModelFormat.EmbeddingFolder:
|
||||
path = model_path / "learned_embeds.bin"
|
||||
else:
|
||||
path = model_path
|
||||
|
||||
if not path.exists():
|
||||
raise OSError(f"The embedding file at {path} was not found")
|
||||
|
||||
return path, config, submodel_type
|
@ -15,6 +15,7 @@ from invokeai.backend.model_manager import (
|
||||
)
|
||||
from invokeai.backend.model_manager.convert_ckpt_to_diffusers import convert_ldm_vae_to_diffusers
|
||||
from invokeai.backend.model_manager.load.load_base import AnyModelLoader
|
||||
|
||||
from .generic_diffusers import GenericDiffusersLoader
|
||||
|
||||
|
||||
|
@ -3,13 +3,13 @@
|
||||
|
||||
import json
|
||||
from pathlib import Path
|
||||
from typing import Optional, Union
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
from diffusers import DiffusionPipeline
|
||||
|
||||
from invokeai.backend.model_manager.config import AnyModel
|
||||
from invokeai.backend.model_manager.onnx_runtime import IAIOnnxRuntimeModel
|
||||
from invokeai.backend.onnx.onnx_runtime import IAIOnnxRuntimeModel
|
||||
|
||||
|
||||
def calc_model_size_by_data(model: AnyModel) -> int:
|
||||
|
Loading…
Reference in New Issue
Block a user