mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Merge branch 'development' of github.com:pbaylies/stable-diffusion into pbaylies-development
This commit is contained in:
commit
0f9bff66bc
@ -799,9 +799,6 @@ class InvokeAIWebServer:
|
||||
rfc_dict['init_image_path'] = parameters[
|
||||
'init_img'
|
||||
] # TODO: Noncompliant
|
||||
rfc_dict[
|
||||
'sampler'
|
||||
] = 'ddim' # TODO: FIX ME WHEN IMG2IMG SUPPORTS ALL SAMPLERS
|
||||
if 'init_mask' in parameters:
|
||||
rfc_dict['mask_hash'] = calculate_init_img_hash(
|
||||
self.get_image_path_from_url(parameters['init_mask'])
|
||||
|
Before Width: | Height: | Size: 1.3 MiB After Width: | Height: | Size: 1.3 MiB |
@ -2,24 +2,22 @@
|
||||
|
||||
## Run
|
||||
|
||||
- `python backend/server.py` serves both frontend and backend at http://localhost:9090
|
||||
- `python scripts/dream.py --web` serves both frontend and backend at
|
||||
http://localhost:9090
|
||||
|
||||
## Evironment
|
||||
|
||||
Install [node](https://nodejs.org/en/download/) (includes npm) and optionally
|
||||
[yarn](https://yarnpkg.com/getting-started/install).
|
||||
|
||||
From `frontend/` run `npm install` / `yarn install` to install the frontend packages.
|
||||
From `frontend/` run `npm install` / `yarn install` to install the frontend
|
||||
packages.
|
||||
|
||||
## Dev
|
||||
|
||||
1. From `frontend/`, run `npm dev` / `yarn dev` to start the dev server.
|
||||
2. Note the address it starts up on (probably `http://localhost:5173/`).
|
||||
3. Edit `backend/server.py`'s `additional_allowed_origins` to include this address, e.g.
|
||||
`additional_allowed_origins = ['http://localhost:5173']`.
|
||||
4. Leaving the dev server running, open a new terminal and go to the project root.
|
||||
5. Run `python backend/server.py`.
|
||||
6. Navigate to the dev server address e.g. `http://localhost:5173/`.
|
||||
2. Run `python scripts/dream.py --web`.
|
||||
3. Navigate to the dev server address e.g. `http://localhost:5173/`.
|
||||
|
||||
To build for dev: `npm build-dev` / `yarn build-dev`
|
||||
|
||||
@ -28,10 +26,3 @@ To build for production: `npm build` / `yarn build`
|
||||
## TODO
|
||||
|
||||
- Search repo for "TODO"
|
||||
- My one gripe with Chakra: no way to disable all animations right now and drop the dependence on
|
||||
`framer-motion`. I would prefer to save the ~30kb on bundle and have zero animations. This is on
|
||||
the Chakra roadmap. See https://github.com/chakra-ui/chakra-ui/pull/6368 for last discussion on
|
||||
this. Need to check in on this issue periodically.
|
||||
- Mobile friendly layout
|
||||
- Proper image gallery/viewer/manager
|
||||
- Help tooltips and such
|
||||
|
File diff suppressed because one or more lines are too long
2
frontend/dist/index.html
vendored
2
frontend/dist/index.html
vendored
@ -6,7 +6,7 @@
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
|
||||
<title>InvokeAI - A Stable Diffusion Toolkit</title>
|
||||
<link rel="shortcut icon" type="icon" href="/assets/favicon.0d253ced.ico" />
|
||||
<script type="module" crossorigin src="/assets/index.045a5291.js"></script>
|
||||
<script type="module" crossorigin src="/assets/index.d9916e7a.js"></script>
|
||||
<link rel="stylesheet" href="/assets/index.853a336f.css">
|
||||
</head>
|
||||
|
||||
|
@ -7,8 +7,6 @@ export const SAMPLERS: Array<string> = [
|
||||
'k_lms',
|
||||
'k_dpm_2',
|
||||
'k_dpm_2_a',
|
||||
'k_dpm_fast',
|
||||
'k_dpm_adaptive',
|
||||
'k_euler',
|
||||
'k_euler_a',
|
||||
'k_heun',
|
||||
|
@ -189,7 +189,6 @@ class Args(object):
|
||||
switches.append(f'--perlin {a["perlin"]}')
|
||||
if a['threshold'] > 0:
|
||||
switches.append(f'--threshold {a["threshold"]}')
|
||||
|
||||
if a['grid']:
|
||||
switches.append('--grid')
|
||||
if a['seamless']:
|
||||
|
@ -32,7 +32,7 @@ class Txt2Img(Generator):
|
||||
if self.free_gpu_mem and self.model.model.device != self.model.device:
|
||||
self.model.model.to(self.model.device)
|
||||
|
||||
sampler.make_schedule(ddim_num_steps=steps, ddim_eta=ddim_eta, verbose=True)
|
||||
sampler.make_schedule(ddim_num_steps=steps, ddim_eta=ddim_eta, verbose=False)
|
||||
|
||||
samples, _ = sampler.sample(
|
||||
batch_size = 1,
|
||||
|
@ -79,17 +79,9 @@ class KSampler(Sampler):
|
||||
ddim_eta=0.0,
|
||||
verbose=False,
|
||||
)
|
||||
self.model = outer_model
|
||||
self.model = outer_model
|
||||
self.ddim_num_steps = ddim_num_steps
|
||||
sigmas = K.sampling.get_sigmas_karras(
|
||||
n=ddim_num_steps,
|
||||
sigma_min=self.model.sigmas[0].item(),
|
||||
sigma_max=self.model.sigmas[-1].item(),
|
||||
rho=7.,
|
||||
device=self.device,
|
||||
# Birch-san recommends this, but it doesn't match the call signature in his branch of k-diffusion
|
||||
# concat_zero=False
|
||||
)
|
||||
sigmas = self.model.get_sigmas(ddim_num_steps)
|
||||
self.sigmas = sigmas
|
||||
|
||||
# ALERT: We are completely overriding the sample() method in the base class, which
|
||||
@ -133,7 +125,8 @@ class KSampler(Sampler):
|
||||
|
||||
# sigmas = self.model.get_sigmas(S)
|
||||
# sigmas are now set up in make_schedule - we take the last steps items
|
||||
sigmas = self.sigmas[-S:]
|
||||
sigmas = self.sigmas[-S-1:]
|
||||
|
||||
if x_T is not None:
|
||||
x = x_T * sigmas[0]
|
||||
else:
|
||||
@ -147,7 +140,7 @@ class KSampler(Sampler):
|
||||
'uncond': unconditional_conditioning,
|
||||
'cond_scale': unconditional_guidance_scale,
|
||||
}
|
||||
print(f'>> Sampling with k__{self.schedule}')
|
||||
print(f'>> Sampling with k_{self.schedule}')
|
||||
return (
|
||||
K.sampling.__dict__[f'sample_{self.schedule}'](
|
||||
model_wrap_cfg, x, sigmas, extra_args=extra_args,
|
||||
|
@ -218,7 +218,7 @@ def rand_perlin_2d(shape, res, fade = lambda t: 6*t**5 - 15*t**4 + 10*t**3):
|
||||
delta = (res[0] / shape[0], res[1] / shape[1])
|
||||
d = (shape[0] // res[0], shape[1] // res[1])
|
||||
|
||||
grid = torch.stack(torch.meshgrid(torch.arange(0, res[0], delta[0]), torch.arange(0, res[1], delta[1])), dim = -1) % 1
|
||||
grid = torch.stack(torch.meshgrid(torch.arange(0, res[0], delta[0]), torch.arange(0, res[1], delta[1]), indexing='ij'), dim = -1) % 1
|
||||
angles = 2*math.pi*torch.rand(res[0]+1, res[1]+1)
|
||||
gradients = torch.stack((torch.cos(angles), torch.sin(angles)), dim = -1)
|
||||
|
||||
@ -230,4 +230,4 @@ def rand_perlin_2d(shape, res, fade = lambda t: 6*t**5 - 15*t**4 + 10*t**3):
|
||||
n01 = dot(tile_grads([0, -1],[1, None]), [0, -1])
|
||||
n11 = dot(tile_grads([1, None], [1, None]), [-1,-1])
|
||||
t = fade(grid[:shape[0], :shape[1]])
|
||||
return math.sqrt(2) * torch.lerp(torch.lerp(n00, n10, t[..., 0]), torch.lerp(n01, n11, t[..., 0]), t[..., 1])
|
||||
return math.sqrt(2) * torch.lerp(torch.lerp(n00, n10, t[..., 0]), torch.lerp(n01, n11, t[..., 0]), t[..., 1])
|
||||
|
Loading…
Reference in New Issue
Block a user