mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
latents.py converted to use model manager service; events emitted
This commit is contained in:
parent
df5b968954
commit
11ecf438f5
@ -1,31 +1,32 @@
|
||||
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
|
||||
|
||||
import random
|
||||
from typing import Literal, Optional, Union
|
||||
|
||||
import diffusers
|
||||
import einops
|
||||
from pydantic import BaseModel, Field
|
||||
import torch
|
||||
from diffusers import DiffusionPipeline
|
||||
from diffusers.schedulers import SchedulerMixin as Scheduler
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from invokeai.app.models.exceptions import CanceledException
|
||||
from invokeai.app.util.misc import SEED_MAX, get_random_seed
|
||||
|
||||
from invokeai.app.util.step_callback import stable_diffusion_step_callback
|
||||
|
||||
from ...backend.model_management.model_manager import ModelManager
|
||||
from ...backend.util.devices import choose_torch_device, torch_dtype
|
||||
from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import PostprocessingSettings
|
||||
from ...backend.image_util.seamless import configure_model_padding
|
||||
from ...backend.prompting.conditioning import get_uc_and_c_and_ec
|
||||
from ...backend.stable_diffusion.diffusers_pipeline import ConditioningData, StableDiffusionGeneratorPipeline, image_resized_to_grid_as_tensor
|
||||
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext, InvocationConfig
|
||||
import numpy as np
|
||||
from ..services.image_storage import ImageType
|
||||
from .baseinvocation import BaseInvocation, InvocationContext
|
||||
from .image import ImageField, ImageOutput, build_image_output
|
||||
from .compel import ConditioningField
|
||||
from ...backend.model_management.model_manager import SDModelType
|
||||
from ...backend.stable_diffusion import PipelineIntermediateState
|
||||
from diffusers.schedulers import SchedulerMixin as Scheduler
|
||||
import diffusers
|
||||
from diffusers import DiffusionPipeline
|
||||
from ...backend.stable_diffusion.diffusers_pipeline import (
|
||||
ConditioningData, StableDiffusionGeneratorPipeline,
|
||||
image_resized_to_grid_as_tensor)
|
||||
from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import \
|
||||
PostprocessingSettings
|
||||
from ...backend.util.devices import choose_torch_device, torch_dtype
|
||||
from ..services.image_storage import ImageType
|
||||
from .baseinvocation import (BaseInvocation, BaseInvocationOutput,
|
||||
InvocationConfig, InvocationContext)
|
||||
from .compel import ConditioningField
|
||||
from .image import ImageField, ImageOutput, build_image_output
|
||||
|
||||
|
||||
class LatentsField(BaseModel):
|
||||
@ -103,6 +104,37 @@ def get_noise(width:int, height:int, device:torch.device, seed:int = 0, latent_c
|
||||
# x = (1 - self.perlin) * x + self.perlin * perlin_noise
|
||||
return x
|
||||
|
||||
class ModelChooser:
|
||||
def choose_model(self, context: InvocationContext) -> StableDiffusionGeneratorPipeline:
|
||||
|
||||
if context.services.queue.is_canceled(context.graph_execution_state_id):
|
||||
raise CanceledException
|
||||
|
||||
# Get the source node id (we are invoking the prepared node)
|
||||
graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id)
|
||||
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
|
||||
|
||||
context.services.events.emit_model_load_started(
|
||||
graph_execution_state_id=context.graph_execution_state_id,
|
||||
node=self.dict(),
|
||||
source_node_id=source_node_id,
|
||||
model_name=self.model,
|
||||
submodel=SDModelType.diffusers
|
||||
)
|
||||
|
||||
model_manager = context.services.model_manager
|
||||
model_info = model_manager.get_model(self.model)
|
||||
model_ctx: StableDiffusionGeneratorPipeline = model_info.context
|
||||
context.services.events.emit_model_load_completed (
|
||||
graph_execution_state_id=context.graph_execution_state_id,
|
||||
node=self.dict(),
|
||||
source_node_id=source_node_id,
|
||||
model_name=self.model,
|
||||
submodel=SDModelType.diffusers,
|
||||
model_info=model_info
|
||||
)
|
||||
|
||||
return model_ctx
|
||||
|
||||
class NoiseInvocation(BaseInvocation):
|
||||
"""Generates latent noise."""
|
||||
@ -135,7 +167,7 @@ class NoiseInvocation(BaseInvocation):
|
||||
|
||||
|
||||
# Text to image
|
||||
class TextToLatentsInvocation(BaseInvocation):
|
||||
class TextToLatentsInvocation(BaseInvocation, ModelChooser):
|
||||
"""Generates latents from conditionings."""
|
||||
|
||||
type: Literal["t2l"] = "t2l"
|
||||
@ -175,32 +207,6 @@ class TextToLatentsInvocation(BaseInvocation):
|
||||
source_node_id=source_node_id,
|
||||
)
|
||||
|
||||
def get_model(self, model_manager: ModelManager) -> StableDiffusionGeneratorPipeline:
|
||||
model_info = model_manager.get_model(self.model)
|
||||
model_name = model_info.name
|
||||
model_hash = model_info.hash
|
||||
model_ctx: StableDiffusionGeneratorPipeline = model_info.context
|
||||
with model_ctx as model:
|
||||
model.scheduler = get_scheduler(
|
||||
model=model,
|
||||
scheduler_name=self.scheduler
|
||||
)
|
||||
|
||||
if isinstance(model, DiffusionPipeline):
|
||||
for component in [model.unet, model.vae]:
|
||||
configure_model_padding(component,
|
||||
self.seamless,
|
||||
self.seamless_axes
|
||||
)
|
||||
else:
|
||||
configure_model_padding(model,
|
||||
self.seamless,
|
||||
self.seamless_axes
|
||||
)
|
||||
|
||||
return model_ctx
|
||||
|
||||
|
||||
def get_conditioning_data(self, context: InvocationContext, model: StableDiffusionGeneratorPipeline) -> ConditioningData:
|
||||
c, extra_conditioning_info = context.services.latents.get(self.positive_conditioning.conditioning_name)
|
||||
uc, _ = context.services.latents.get(self.negative_conditioning.conditioning_name)
|
||||
@ -230,8 +236,8 @@ class TextToLatentsInvocation(BaseInvocation):
|
||||
def step_callback(state: PipelineIntermediateState):
|
||||
self.dispatch_progress(context, source_node_id, state)
|
||||
|
||||
model = self.get_model(context.services.model_manager)
|
||||
conditioning_data = self.get_conditioning_data(context, model)
|
||||
with self.choose_model(context) as model:
|
||||
conditioning_data = self.get_conditioning_data(context, model)
|
||||
|
||||
# TODO: Verify the noise is the right size
|
||||
result_latents, result_attention_map_saver = model.latents_from_embeddings(
|
||||
@ -251,8 +257,30 @@ class TextToLatentsInvocation(BaseInvocation):
|
||||
latents=LatentsField(latents_name=name)
|
||||
)
|
||||
|
||||
def choose_model(self, context: InvocationContext) -> StableDiffusionGeneratorPipeline:
|
||||
model_ctx = super().choose_model(context)
|
||||
|
||||
class LatentsToLatentsInvocation(TextToLatentsInvocation):
|
||||
with model_ctx as model:
|
||||
model.scheduler = get_scheduler(
|
||||
model=model,
|
||||
scheduler_name=self.scheduler
|
||||
)
|
||||
|
||||
if isinstance(model, DiffusionPipeline):
|
||||
for component in [model.unet, model.vae]:
|
||||
configure_model_padding(component,
|
||||
self.seamless,
|
||||
self.seamless_axes
|
||||
)
|
||||
else:
|
||||
configure_model_padding(model,
|
||||
self.seamless,
|
||||
self.seamless_axes
|
||||
)
|
||||
return model_ctx
|
||||
|
||||
|
||||
class LatentsToLatentsInvocation(TextToLatentsInvocation, ModelChooser):
|
||||
"""Generates latents using latents as base image."""
|
||||
|
||||
type: Literal["l2l"] = "l2l"
|
||||
@ -283,7 +311,7 @@ class LatentsToLatentsInvocation(TextToLatentsInvocation):
|
||||
def step_callback(state: PipelineIntermediateState):
|
||||
self.dispatch_progress(context, source_node_id, state)
|
||||
|
||||
with self.get_model(context.services.model_manager) as model:
|
||||
with self.choose_model(context) as model:
|
||||
conditioning_data = self.get_conditioning_data(model)
|
||||
|
||||
# TODO: Verify the noise is the right size
|
||||
@ -318,7 +346,7 @@ class LatentsToLatentsInvocation(TextToLatentsInvocation):
|
||||
|
||||
|
||||
# Latent to image
|
||||
class LatentsToImageInvocation(BaseInvocation):
|
||||
class LatentsToImageInvocation(BaseInvocation, ModelChooser):
|
||||
"""Generates an image from latents."""
|
||||
|
||||
type: Literal["l2i"] = "l2i"
|
||||
@ -343,9 +371,7 @@ class LatentsToImageInvocation(BaseInvocation):
|
||||
latents = context.services.latents.get(self.latents.latents_name)
|
||||
|
||||
# TODO: this only really needs the vae
|
||||
model_info = choose_model(context.services.model_manager, self.model)
|
||||
|
||||
with model_info.context as model:
|
||||
with self.choose_model(context) as model:
|
||||
with torch.inference_mode():
|
||||
np_image = model.decode_latents(latents)
|
||||
image = model.numpy_to_pil(np_image)[0]
|
||||
@ -432,7 +458,7 @@ class ScaleLatentsInvocation(BaseInvocation):
|
||||
return LatentsOutput(latents=LatentsField(latents_name=name))
|
||||
|
||||
|
||||
class ImageToLatentsInvocation(BaseInvocation):
|
||||
class ImageToLatentsInvocation(BaseInvocation, ModelChooser):
|
||||
"""Encodes an image into latents."""
|
||||
|
||||
type: Literal["i2l"] = "i2l"
|
||||
@ -457,7 +483,7 @@ class ImageToLatentsInvocation(BaseInvocation):
|
||||
)
|
||||
|
||||
# TODO: this only really needs the vae
|
||||
model_info = choose_model(context.services.model_manager, self.model)
|
||||
model_info = self.choose_model(context)
|
||||
model: StableDiffusionGeneratorPipeline = model_info["model"]
|
||||
|
||||
image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB"))
|
||||
@ -474,3 +500,4 @@ class ImageToLatentsInvocation(BaseInvocation):
|
||||
name = f"{context.graph_execution_state_id}__{self.id}"
|
||||
context.services.latents.set(name, latents)
|
||||
return LatentsOutput(latents=LatentsField(latents_name=name))
|
||||
|
||||
|
@ -4,6 +4,7 @@ from typing import Any
|
||||
from invokeai.app.api.models.images import ProgressImage
|
||||
from invokeai.app.util.misc import get_timestamp
|
||||
from invokeai.app.services.model_manager_service import SDModelType, SDModelInfo
|
||||
from invokeai.app.models.exceptions import CanceledException
|
||||
|
||||
class EventServiceBase:
|
||||
session_event: str = "session_event"
|
||||
|
@ -4,6 +4,7 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from pathlib import Path
|
||||
from typing import Union, Callable, types
|
||||
from dataclasses import dataclass
|
||||
|
||||
from invokeai.backend.model_management.model_manager import (
|
||||
ModelManager,
|
||||
@ -15,6 +16,11 @@ from invokeai.backend.model_management.model_manager import (
|
||||
from ...backend import Args,Globals # this must go when pr 3340 merged
|
||||
from ...backend.util import choose_precision, choose_torch_device
|
||||
|
||||
@dataclass
|
||||
class LastUsedModel:
|
||||
model_name: str
|
||||
model_type: SDModelType
|
||||
|
||||
class ModelManagerServiceBase(ABC):
|
||||
"""Responsible for managing models on disk and in memory"""
|
||||
|
||||
@ -273,6 +279,22 @@ class ModelManagerService(ModelManagerServiceBase):
|
||||
Retrieve the indicated model. submodel can be used to get a
|
||||
part (such as the vae) of a diffusers mode.
|
||||
"""
|
||||
|
||||
# Temporary hack here: we remember the last model fetched
|
||||
# so that when executing a graph, the first node called gets
|
||||
# to set default model for subsequent nodes in the event that
|
||||
# they do not set the model explicitly. This should be
|
||||
# displaced by model loader mechanism.
|
||||
# This is to work around lack of model loader at current time,
|
||||
# which was causing inconsistent model usage throughout graph.
|
||||
if not model_name:
|
||||
self.logger.debug('No model name provided, defaulting to last loaded model')
|
||||
model_name = LastUsedModel.name
|
||||
model_type = model_type or LastUsedModel.type
|
||||
else:
|
||||
LastUsedModel.name = model_name
|
||||
LastUsedModel.model_type = model_type
|
||||
|
||||
return self.mgr.get_model(
|
||||
model_name,
|
||||
model_type,
|
||||
|
Loading…
Reference in New Issue
Block a user