mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Merge branch 'main' into fix/mem_cleanup
This commit is contained in:
commit
186e98da5e
@ -106,16 +106,16 @@ providing information about a model defined in models.yaml. For example:
|
||||
|
||||
>>> models = mgr.list_models()
|
||||
>>> json.dumps(models[0])
|
||||
{"path": "/home/lstein/invokeai-main/models/sd-1/controlnet/canny",
|
||||
"model_format": "diffusers",
|
||||
"name": "canny",
|
||||
"base_model": "sd-1",
|
||||
{"path": "/home/lstein/invokeai-main/models/sd-1/controlnet/canny",
|
||||
"model_format": "diffusers",
|
||||
"name": "canny",
|
||||
"base_model": "sd-1",
|
||||
"type": "controlnet"
|
||||
}
|
||||
|
||||
You can filter by model type and base model as shown here:
|
||||
|
||||
|
||||
|
||||
controlnets = mgr.list_models(model_type=ModelType.ControlNet,
|
||||
base_model=BaseModelType.StableDiffusion1)
|
||||
for c in controlnets:
|
||||
@ -140,14 +140,14 @@ Layout of the `models` directory:
|
||||
|
||||
models
|
||||
├── sd-1
|
||||
│ ├── controlnet
|
||||
│ ├── lora
|
||||
│ ├── main
|
||||
│ └── embedding
|
||||
│ ├── controlnet
|
||||
│ ├── lora
|
||||
│ ├── main
|
||||
│ └── embedding
|
||||
├── sd-2
|
||||
│ ├── controlnet
|
||||
│ ├── lora
|
||||
│ ├── main
|
||||
│ ├── controlnet
|
||||
│ ├── lora
|
||||
│ ├── main
|
||||
│ └── embedding
|
||||
└── core
|
||||
├── face_reconstruction
|
||||
@ -195,7 +195,7 @@ name, base model, type and a dict of model attributes. See
|
||||
`invokeai/backend/model_management/models` for the attributes required
|
||||
by each model type.
|
||||
|
||||
A model can be deleted using `del_model()`, providing the same
|
||||
A model can be deleted using `del_model()`, providing the same
|
||||
identifying information as `get_model()`
|
||||
|
||||
The `heuristic_import()` method will take a set of strings
|
||||
@ -304,7 +304,7 @@ class ModelManager(object):
|
||||
logger: types.ModuleType = logger,
|
||||
):
|
||||
"""
|
||||
Initialize with the path to the models.yaml config file.
|
||||
Initialize with the path to the models.yaml config file.
|
||||
Optional parameters are the torch device type, precision, max_models,
|
||||
and sequential_offload boolean. Note that the default device
|
||||
type and precision are set up for a CUDA system running at half precision.
|
||||
@ -323,7 +323,7 @@ class ModelManager(object):
|
||||
self.config_meta = ConfigMeta(**config.pop("__metadata__"))
|
||||
# TODO: metadata not found
|
||||
# TODO: version check
|
||||
|
||||
|
||||
self.app_config = InvokeAIAppConfig.get_config()
|
||||
self.logger = logger
|
||||
self.cache = ModelCache(
|
||||
@ -431,7 +431,7 @@ class ModelManager(object):
|
||||
:param model_name: symbolic name of the model in models.yaml
|
||||
:param model_type: ModelType enum indicating the type of model to return
|
||||
:param base_model: BaseModelType enum indicating the base model used by this model
|
||||
:param submode_typel: an ModelType enum indicating the portion of
|
||||
:param submode_typel: an ModelType enum indicating the portion of
|
||||
the model to retrieve (e.g. ModelType.Vae)
|
||||
"""
|
||||
model_class = MODEL_CLASSES[base_model][model_type]
|
||||
@ -456,7 +456,7 @@ class ModelManager(object):
|
||||
raise ModelNotFoundException(f"Model not found - {model_key}")
|
||||
|
||||
# vae/movq override
|
||||
# TODO:
|
||||
# TODO:
|
||||
if submodel_type is not None and hasattr(model_config, submodel_type):
|
||||
override_path = getattr(model_config, submodel_type)
|
||||
if override_path:
|
||||
@ -489,7 +489,7 @@ class ModelManager(object):
|
||||
self.cache_keys[model_key].add(model_context.key)
|
||||
|
||||
model_hash = "<NO_HASH>" # TODO:
|
||||
|
||||
|
||||
return ModelInfo(
|
||||
context = model_context,
|
||||
name = model_name,
|
||||
@ -518,7 +518,7 @@ class ModelManager(object):
|
||||
|
||||
def model_names(self) -> List[Tuple[str, BaseModelType, ModelType]]:
|
||||
"""
|
||||
Return a list of (str, BaseModelType, ModelType) corresponding to all models
|
||||
Return a list of (str, BaseModelType, ModelType) corresponding to all models
|
||||
known to the configuration.
|
||||
"""
|
||||
return [(self.parse_key(x)) for x in self.models.keys()]
|
||||
@ -692,12 +692,12 @@ class ModelManager(object):
|
||||
if new_name is None and new_base is None:
|
||||
self.logger.error("rename_model() called with neither a new_name nor a new_base. {model_name} unchanged.")
|
||||
return
|
||||
|
||||
|
||||
model_key = self.create_key(model_name, base_model, model_type)
|
||||
model_cfg = self.models.get(model_key, None)
|
||||
if not model_cfg:
|
||||
raise ModelNotFoundException(f"Unknown model: {model_key}")
|
||||
|
||||
|
||||
old_path = self.app_config.root_path / model_cfg.path
|
||||
new_name = new_name or model_name
|
||||
new_base = new_base or base_model
|
||||
@ -726,7 +726,7 @@ class ModelManager(object):
|
||||
self.models.pop(model_key, None) # delete
|
||||
self.models[new_key] = model_cfg
|
||||
self.commit()
|
||||
|
||||
|
||||
def convert_model (
|
||||
self,
|
||||
model_name: str,
|
||||
@ -776,12 +776,12 @@ class ModelManager(object):
|
||||
# something went wrong, so don't leave dangling diffusers model in directory or it will cause a duplicate model error!
|
||||
rmtree(new_diffusers_path)
|
||||
raise
|
||||
|
||||
|
||||
if checkpoint_path.exists() and checkpoint_path.is_relative_to(self.app_config.models_path):
|
||||
checkpoint_path.unlink()
|
||||
|
||||
|
||||
return result
|
||||
|
||||
|
||||
def search_models(self, search_folder):
|
||||
self.logger.info(f"Finding Models In: {search_folder}")
|
||||
models_folder_ckpt = Path(search_folder).glob("**/*.ckpt")
|
||||
@ -824,10 +824,14 @@ class ModelManager(object):
|
||||
assert config_file_path is not None,'no config file path to write to'
|
||||
config_file_path = self.app_config.root_path / config_file_path
|
||||
tmpfile = os.path.join(os.path.dirname(config_file_path), "new_config.tmp")
|
||||
with open(tmpfile, "w", encoding="utf-8") as outfile:
|
||||
outfile.write(self.preamble())
|
||||
outfile.write(yaml_str)
|
||||
os.replace(tmpfile, config_file_path)
|
||||
try:
|
||||
with open(tmpfile, "w", encoding="utf-8") as outfile:
|
||||
outfile.write(self.preamble())
|
||||
outfile.write(yaml_str)
|
||||
os.replace(tmpfile, config_file_path)
|
||||
except OSError as err:
|
||||
self.logger.warning(f"Could not modify the config file at {config_file_path}")
|
||||
self.logger.warning(err)
|
||||
|
||||
def preamble(self) -> str:
|
||||
"""
|
||||
@ -977,13 +981,12 @@ class ModelManager(object):
|
||||
# avoid circular import here
|
||||
from invokeai.backend.install.model_install_backend import ModelInstall
|
||||
successfully_installed = dict()
|
||||
|
||||
|
||||
installer = ModelInstall(config = self.app_config,
|
||||
prediction_type_helper = prediction_type_helper,
|
||||
model_manager = self)
|
||||
for thing in items_to_import:
|
||||
installed = installer.heuristic_import(thing)
|
||||
successfully_installed.update(installed)
|
||||
self.commit()
|
||||
self.commit()
|
||||
return successfully_installed
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user