mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
refactoring complete; please test carefully!
This commit is contained in:
commit
19fa222810
21
README.md
21
README.md
@ -97,6 +97,27 @@ contributing this code.
|
||||
|
||||
![Dream Web Server](static/dream_web_server.png)
|
||||
|
||||
## Reading Prompts from a File
|
||||
|
||||
You can automate dream.py by providing a text file with the prompts
|
||||
you want to run, one line per prompt. The text file must be composed
|
||||
with a text editor (e.g. Notepad) and not a word processor. Each line
|
||||
should look like what you would type at the dream> prompt:
|
||||
|
||||
~~~~
|
||||
a beautiful sunny day in the park, children playing -n4 -C10
|
||||
stormy weather on a mountain top, goats grazing -s100
|
||||
innovative packaging for a squid's dinner -S137038382
|
||||
~~~~
|
||||
|
||||
Then pass this file's name to dream.py when you invoke it:
|
||||
|
||||
~~~~
|
||||
(ldm) ~/stable-diffusion$ python3 scripts/dream.py --from_file="path/to/prompts.txt"
|
||||
~~~~
|
||||
|
||||
>>>>>>> big-refactoring
|
||||
|
||||
## Weighted Prompts
|
||||
|
||||
You may weight different sections of the prompt to tell the sampler to attach different levels of
|
||||
|
1
TODO.txt
1
TODO.txt
@ -2,6 +2,7 @@ Feature requests:
|
||||
|
||||
1. "gobig" mode - split image into strips, scale up, add detail using
|
||||
img2img and reassemble with feathering. Issue #66.
|
||||
See https://github.com/jquesnelle/txt2imghd
|
||||
|
||||
2. Port basujindal low VRAM optimizations. Issue #62
|
||||
|
||||
|
195
ldm/dream_util.py
Normal file
195
ldm/dream_util.py
Normal file
@ -0,0 +1,195 @@
|
||||
'''Utilities for dealing with PNG images and their path names'''
|
||||
import os
|
||||
import atexit
|
||||
import re
|
||||
from math import sqrt,floor,ceil
|
||||
from PIL import Image,PngImagePlugin
|
||||
|
||||
# -------------------image generation utils-----
|
||||
class PngWriter:
|
||||
|
||||
def __init__(self,outdir,prompt=None,batch_size=1):
|
||||
self.outdir = outdir
|
||||
self.batch_size = batch_size
|
||||
self.prompt = prompt
|
||||
self.filepath = None
|
||||
self.files_written = []
|
||||
os.makedirs(outdir, exist_ok=True)
|
||||
|
||||
def write_image(self,image,seed):
|
||||
self.filepath = self.unique_filename(seed,self.filepath) # will increment name in some sensible way
|
||||
try:
|
||||
prompt = f'{self.prompt} -S{seed}'
|
||||
self.save_image_and_prompt_to_png(image,prompt,self.filepath)
|
||||
except IOError as e:
|
||||
print(e)
|
||||
self.files_written.append([self.filepath,seed])
|
||||
|
||||
def unique_filename(self,seed,previouspath=None):
|
||||
revision = 1
|
||||
|
||||
if previouspath is None:
|
||||
# sort reverse alphabetically until we find max+1
|
||||
dirlist = sorted(os.listdir(self.outdir),reverse=True)
|
||||
# find the first filename that matches our pattern or return 000000.0.png
|
||||
filename = next((f for f in dirlist if re.match('^(\d+)\..*\.png',f)),'0000000.0.png')
|
||||
basecount = int(filename.split('.',1)[0])
|
||||
basecount += 1
|
||||
if self.batch_size > 1:
|
||||
filename = f'{basecount:06}.{seed}.01.png'
|
||||
else:
|
||||
filename = f'{basecount:06}.{seed}.png'
|
||||
return os.path.join(self.outdir,filename)
|
||||
|
||||
else:
|
||||
basename = os.path.basename(previouspath)
|
||||
x = re.match('^(\d+)\..*\.png',basename)
|
||||
if not x:
|
||||
return self.unique_filename(seed,previouspath)
|
||||
|
||||
basecount = int(x.groups()[0])
|
||||
series = 0
|
||||
finished = False
|
||||
while not finished:
|
||||
series += 1
|
||||
filename = f'{basecount:06}.{seed}.png'
|
||||
if self.batch_size>1 or os.path.exists(os.path.join(self.outdir,filename)):
|
||||
filename = f'{basecount:06}.{seed}.{series:02}.png'
|
||||
finished = not os.path.exists(os.path.join(self.outdir,filename))
|
||||
return os.path.join(self.outdir,filename)
|
||||
|
||||
def save_image_and_prompt_to_png(self,image,prompt,path):
|
||||
info = PngImagePlugin.PngInfo()
|
||||
info.add_text("Dream",prompt)
|
||||
image.save(path,"PNG",pnginfo=info)
|
||||
|
||||
def make_grid(self,image_list,rows=None,cols=None):
|
||||
image_cnt = len(image_list)
|
||||
if None in (rows,cols):
|
||||
rows = floor(sqrt(image_cnt)) # try to make it square
|
||||
cols = ceil(image_cnt/rows)
|
||||
width = image_list[0].width
|
||||
height = image_list[0].height
|
||||
|
||||
grid_img = Image.new('RGB',(width*cols,height*rows))
|
||||
for r in range(0,rows):
|
||||
for c in range (0,cols):
|
||||
i = r*rows + c
|
||||
grid_img.paste(image_list[i],(c*width,r*height))
|
||||
|
||||
return grid_img
|
||||
|
||||
class PromptFormatter():
|
||||
def __init__(self,t2i,opt):
|
||||
self.t2i = t2i
|
||||
self.opt = opt
|
||||
|
||||
def normalize_prompt(self):
|
||||
'''Normalize the prompt and switches'''
|
||||
t2i = self.t2i
|
||||
opt = self.opt
|
||||
|
||||
switches = list()
|
||||
switches.append(f'"{opt.prompt}"')
|
||||
switches.append(f'-s{opt.steps or t2i.steps}')
|
||||
switches.append(f'-b{opt.batch_size or t2i.batch_size}')
|
||||
switches.append(f'-W{opt.width or t2i.width}')
|
||||
switches.append(f'-H{opt.height or t2i.height}')
|
||||
switches.append(f'-C{opt.cfg_scale or t2i.cfg_scale}')
|
||||
switches.append(f'-m{t2i.sampler_name}')
|
||||
if opt.init_img:
|
||||
switches.append(f'-I{opt.init_img}')
|
||||
if opt.strength and opt.init_img is not None:
|
||||
switches.append(f'-f{opt.strength or t2i.strength}')
|
||||
if t2i.full_precision:
|
||||
switches.append('-F')
|
||||
return ' '.join(switches)
|
||||
|
||||
# ---------------readline utilities---------------------
|
||||
try:
|
||||
import readline
|
||||
readline_available = True
|
||||
except:
|
||||
readline_available = False
|
||||
|
||||
class Completer():
|
||||
def __init__(self,options):
|
||||
self.options = sorted(options)
|
||||
return
|
||||
|
||||
def complete(self,text,state):
|
||||
buffer = readline.get_line_buffer()
|
||||
|
||||
if text.startswith(('-I','--init_img')):
|
||||
return self._path_completions(text,state,('.png'))
|
||||
|
||||
if buffer.strip().endswith('cd') or text.startswith(('.','/')):
|
||||
return self._path_completions(text,state,())
|
||||
|
||||
response = None
|
||||
if state == 0:
|
||||
# This is the first time for this text, so build a match list.
|
||||
if text:
|
||||
self.matches = [s
|
||||
for s in self.options
|
||||
if s and s.startswith(text)]
|
||||
else:
|
||||
self.matches = self.options[:]
|
||||
|
||||
# Return the state'th item from the match list,
|
||||
# if we have that many.
|
||||
try:
|
||||
response = self.matches[state]
|
||||
except IndexError:
|
||||
response = None
|
||||
return response
|
||||
|
||||
def _path_completions(self,text,state,extensions):
|
||||
# get the path so far
|
||||
if text.startswith('-I'):
|
||||
path = text.replace('-I','',1).lstrip()
|
||||
elif text.startswith('--init_img='):
|
||||
path = text.replace('--init_img=','',1).lstrip()
|
||||
else:
|
||||
path = text
|
||||
|
||||
matches = list()
|
||||
|
||||
path = os.path.expanduser(path)
|
||||
if len(path)==0:
|
||||
matches.append(text+'./')
|
||||
else:
|
||||
dir = os.path.dirname(path)
|
||||
dir_list = os.listdir(dir)
|
||||
for n in dir_list:
|
||||
if n.startswith('.') and len(n)>1:
|
||||
continue
|
||||
full_path = os.path.join(dir,n)
|
||||
if full_path.startswith(path):
|
||||
if os.path.isdir(full_path):
|
||||
matches.append(os.path.join(os.path.dirname(text),n)+'/')
|
||||
elif n.endswith(extensions):
|
||||
matches.append(os.path.join(os.path.dirname(text),n))
|
||||
|
||||
try:
|
||||
response = matches[state]
|
||||
except IndexError:
|
||||
response = None
|
||||
return response
|
||||
|
||||
if readline_available:
|
||||
readline.set_completer(Completer(['cd','pwd',
|
||||
'--steps','-s','--seed','-S','--iterations','-n','--batch_size','-b',
|
||||
'--width','-W','--height','-H','--cfg_scale','-C','--grid','-g',
|
||||
'--individual','-i','--init_img','-I','--strength','-f','-v','--variants']).complete)
|
||||
readline.set_completer_delims(" ")
|
||||
readline.parse_and_bind('tab: complete')
|
||||
|
||||
histfile = os.path.join(os.path.expanduser('~'),".dream_history")
|
||||
try:
|
||||
readline.read_history_file(histfile)
|
||||
readline.set_history_length(1000)
|
||||
except FileNotFoundError:
|
||||
pass
|
||||
atexit.register(readline.write_history_file,histfile)
|
||||
|
490
ldm/simplet2i.py
490
ldm/simplet2i.py
@ -4,53 +4,6 @@
|
||||
# Copyright (c) 2022 Machine Vision and Learning Group, LMU Munich
|
||||
# Copyright (c) 2022 Robin Rombach and Patrick Esser and contributors
|
||||
|
||||
|
||||
"""Simplified text to image API for stable diffusion/latent diffusion
|
||||
|
||||
Example Usage:
|
||||
|
||||
from ldm.simplet2i import T2I
|
||||
# Create an object with default values
|
||||
t2i = T2I(outdir = <path> // outputs/txt2img-samples
|
||||
model = <path> // models/ldm/stable-diffusion-v1/model.ckpt
|
||||
config = <path> // default="configs/stable-diffusion/v1-inference.yaml
|
||||
iterations = <integer> // how many times to run the sampling (1)
|
||||
batch_size = <integer> // how many images to generate per sampling (1)
|
||||
steps = <integer> // 50
|
||||
seed = <integer> // current system time
|
||||
sampler_name= ['ddim', 'k_dpm_2_a', 'k_dpm_2', 'k_euler_a', 'k_euler', 'k_heun', 'k_lms', 'plms'] // k_lms
|
||||
grid = <boolean> // false
|
||||
width = <integer> // image width, multiple of 64 (512)
|
||||
height = <integer> // image height, multiple of 64 (512)
|
||||
cfg_scale = <float> // unconditional guidance scale (7.5)
|
||||
fixed_code = <boolean> // False
|
||||
)
|
||||
|
||||
# do the slow model initialization
|
||||
t2i.load_model()
|
||||
|
||||
# Do the fast inference & image generation. Any options passed here
|
||||
# override the default values assigned during class initialization
|
||||
# Will call load_model() if the model was not previously loaded.
|
||||
# The method returns a list of images. Each row of the list is a sub-list of [filename,seed]
|
||||
results = t2i.txt2img(prompt = "an astronaut riding a horse"
|
||||
outdir = "./outputs/txt2img-samples)
|
||||
)
|
||||
|
||||
for row in results:
|
||||
print(f'filename={row[0]}')
|
||||
print(f'seed ={row[1]}')
|
||||
|
||||
# Same thing, but using an initial image.
|
||||
results = t2i.img2img(prompt = "an astronaut riding a horse"
|
||||
outdir = "./outputs/img2img-samples"
|
||||
init_img = "./sketches/horse+rider.png")
|
||||
|
||||
for row in results:
|
||||
print(f'filename={row[0]}')
|
||||
print(f'seed ={row[1]}')
|
||||
"""
|
||||
|
||||
import torch
|
||||
import numpy as np
|
||||
import random
|
||||
@ -65,8 +18,8 @@ from torchvision.utils import make_grid
|
||||
from pytorch_lightning import seed_everything
|
||||
from torch import autocast
|
||||
from contextlib import contextmanager, nullcontext
|
||||
import transformers
|
||||
import time
|
||||
import math
|
||||
import re
|
||||
import traceback
|
||||
|
||||
@ -74,12 +27,74 @@ from ldm.util import instantiate_from_config
|
||||
from ldm.models.diffusion.ddim import DDIMSampler
|
||||
from ldm.models.diffusion.plms import PLMSSampler
|
||||
from ldm.models.diffusion.ksampler import KSampler
|
||||
from ldm.dream_util import PngWriter
|
||||
|
||||
"""Simplified text to image API for stable diffusion/latent diffusion
|
||||
|
||||
Example Usage:
|
||||
|
||||
from ldm.simplet2i import T2I
|
||||
|
||||
# Create an object with default values
|
||||
t2i = T2I(model = <path> // models/ldm/stable-diffusion-v1/model.ckpt
|
||||
config = <path> // configs/stable-diffusion/v1-inference.yaml
|
||||
iterations = <integer> // how many times to run the sampling (1)
|
||||
batch_size = <integer> // how many images to generate per sampling (1)
|
||||
steps = <integer> // 50
|
||||
seed = <integer> // current system time
|
||||
sampler_name= ['ddim', 'k_dpm_2_a', 'k_dpm_2', 'k_euler_a', 'k_euler', 'k_heun', 'k_lms', 'plms'] // k_lms
|
||||
grid = <boolean> // false
|
||||
width = <integer> // image width, multiple of 64 (512)
|
||||
height = <integer> // image height, multiple of 64 (512)
|
||||
cfg_scale = <float> // unconditional guidance scale (7.5)
|
||||
)
|
||||
|
||||
# do the slow model initialization
|
||||
t2i.load_model()
|
||||
|
||||
# Do the fast inference & image generation. Any options passed here
|
||||
# override the default values assigned during class initialization
|
||||
# Will call load_model() if the model was not previously loaded and so
|
||||
# may be slow at first.
|
||||
# The method returns a list of images. Each row of the list is a sub-list of [filename,seed]
|
||||
results = t2i.prompt2png(prompt = "an astronaut riding a horse",
|
||||
outdir = "./outputs/samples",
|
||||
iterations = 3)
|
||||
|
||||
for row in results:
|
||||
print(f'filename={row[0]}')
|
||||
print(f'seed ={row[1]}')
|
||||
|
||||
# Same thing, but using an initial image.
|
||||
results = t2i.prompt2png(prompt = "an astronaut riding a horse",
|
||||
outdir = "./outputs/,
|
||||
iterations = 3,
|
||||
init_img = "./sketches/horse+rider.png")
|
||||
|
||||
for row in results:
|
||||
print(f'filename={row[0]}')
|
||||
print(f'seed ={row[1]}')
|
||||
|
||||
# Same thing, but we return a series of Image objects, which lets you manipulate them,
|
||||
# combine them, and save them under arbitrary names
|
||||
|
||||
results = t2i.prompt2image(prompt = "an astronaut riding a horse"
|
||||
outdir = "./outputs/")
|
||||
for row in results:
|
||||
im = row[0]
|
||||
seed = row[1]
|
||||
im.save(f'./outputs/samples/an_astronaut_riding_a_horse-{seed}.png')
|
||||
im.thumbnail(100,100).save('./outputs/samples/astronaut_thumb.jpg')
|
||||
|
||||
Note that the old txt2img() and img2img() calls are deprecated but will
|
||||
still work.
|
||||
"""
|
||||
|
||||
|
||||
class T2I:
|
||||
"""T2I class
|
||||
Attributes
|
||||
----------
|
||||
outdir
|
||||
model
|
||||
config
|
||||
iterations
|
||||
@ -87,12 +102,9 @@ class T2I:
|
||||
steps
|
||||
seed
|
||||
sampler_name
|
||||
grid
|
||||
individual
|
||||
width
|
||||
height
|
||||
cfg_scale
|
||||
fixed_code
|
||||
latent_channels
|
||||
downsampling_factor
|
||||
precision
|
||||
@ -102,23 +114,19 @@ class T2I:
|
||||
The vast majority of these arguments default to reasonable values.
|
||||
"""
|
||||
def __init__(self,
|
||||
outdir="outputs/txt2img-samples",
|
||||
batch_size=1,
|
||||
iterations = 1,
|
||||
width=512,
|
||||
height=512,
|
||||
grid=False,
|
||||
individual=None, # redundant
|
||||
steps=50,
|
||||
seed=None,
|
||||
cfg_scale=7.5,
|
||||
weights="models/ldm/stable-diffusion-v1/model.ckpt",
|
||||
config = "configs/stable-diffusion/v1-inference.yaml",
|
||||
width=512,
|
||||
height=512,
|
||||
sampler_name="klms",
|
||||
latent_channels=4,
|
||||
downsampling_factor=8,
|
||||
ddim_eta=0.0, # deterministic
|
||||
fixed_code=False,
|
||||
precision='autocast',
|
||||
full_precision=False,
|
||||
strength=0.75, # default in scripts/img2img.py
|
||||
@ -126,18 +134,15 @@ The vast majority of these arguments default to reasonable values.
|
||||
latent_diffusion_weights=False, # just to keep track of this parameter when regenerating prompt
|
||||
device='cuda'
|
||||
):
|
||||
self.outdir = outdir
|
||||
self.batch_size = batch_size
|
||||
self.iterations = iterations
|
||||
self.width = width
|
||||
self.height = height
|
||||
self.grid = grid
|
||||
self.steps = steps
|
||||
self.cfg_scale = cfg_scale
|
||||
self.weights = weights
|
||||
self.config = config
|
||||
self.sampler_name = sampler_name
|
||||
self.fixed_code = fixed_code
|
||||
self.latent_channels = latent_channels
|
||||
self.downsampling_factor = downsampling_factor
|
||||
self.ddim_eta = ddim_eta
|
||||
@ -153,17 +158,77 @@ The vast majority of these arguments default to reasonable values.
|
||||
self.seed = self._new_seed()
|
||||
else:
|
||||
self.seed = seed
|
||||
transformers.logging.set_verbosity_error()
|
||||
|
||||
@torch.no_grad()
|
||||
def txt2img(self,prompt,outdir=None,batch_size=None,iterations=None,
|
||||
steps=None,seed=None,grid=None,individual=None,width=None,height=None,
|
||||
cfg_scale=None,ddim_eta=None,strength=None,embedding_path=None,init_img=None,
|
||||
skip_normalize=False,variants=None): # note the "variants" option is an unused hack caused by how options are passed
|
||||
"""
|
||||
Generate an image from the prompt, writing iteration images into the outdir
|
||||
The output is a list of lists in the format: [[filename1,seed1], [filename2,seed2],...]
|
||||
"""
|
||||
outdir = outdir or self.outdir
|
||||
def prompt2png(self,prompt,outdir,**kwargs):
|
||||
'''
|
||||
Takes a prompt and an output directory, writes out the requested number
|
||||
of PNG files, and returns an array of [[filename,seed],[filename,seed]...]
|
||||
Optional named arguments are the same as those passed to T2I and prompt2image()
|
||||
'''
|
||||
results = self.prompt2image(prompt,**kwargs)
|
||||
pngwriter = PngWriter(outdir,prompt,kwargs.get('batch_size',self.batch_size))
|
||||
for r in results:
|
||||
metadata_str = f'prompt2png("{prompt}" {kwargs} seed={r[1]}' # gets written into the PNG
|
||||
pngwriter.write_image(r[0],r[1])
|
||||
return pngwriter.files_written
|
||||
|
||||
def txt2img(self,prompt,**kwargs):
|
||||
outdir = kwargs.get('outdir','outputs/img-samples')
|
||||
return self.prompt2png(prompt,outdir,**kwargs)
|
||||
|
||||
def img2img(self,prompt,**kwargs):
|
||||
outdir = kwargs.get('outdir','outputs/img-samples')
|
||||
assert 'init_img' in kwargs,'call to img2img() must include the init_img argument'
|
||||
return self.prompt2png(prompt,outdir,**kwargs)
|
||||
|
||||
def prompt2image(self,
|
||||
# these are common
|
||||
prompt,
|
||||
batch_size=None,
|
||||
iterations=None,
|
||||
steps=None,
|
||||
seed=None,
|
||||
cfg_scale=None,
|
||||
ddim_eta=None,
|
||||
skip_normalize=False,
|
||||
image_callback=None,
|
||||
# these are specific to txt2img
|
||||
width=None,
|
||||
height=None,
|
||||
# these are specific to img2img
|
||||
init_img=None,
|
||||
strength=None,
|
||||
variants=None,
|
||||
**args): # eat up additional cruft
|
||||
'''
|
||||
ldm.prompt2image() is the common entry point for txt2img() and img2img()
|
||||
It takes the following arguments:
|
||||
prompt // prompt string (no default)
|
||||
iterations // iterations (1); image count=iterations x batch_size
|
||||
batch_size // images per iteration (1)
|
||||
steps // refinement steps per iteration
|
||||
seed // seed for random number generator
|
||||
width // width of image, in multiples of 64 (512)
|
||||
height // height of image, in multiples of 64 (512)
|
||||
cfg_scale // how strongly the prompt influences the image (7.5) (must be >1)
|
||||
init_img // path to an initial image - its dimensions override width and height
|
||||
strength // strength for noising/unnoising init_img. 0.0 preserves image exactly, 1.0 replaces it completely
|
||||
ddim_eta // image randomness (eta=0.0 means the same seed always produces the same image)
|
||||
variants // if >0, the 1st generated image will be passed back to img2img to generate the requested number of variants
|
||||
callback // a function or method that will be called each time an image is generated
|
||||
|
||||
To use the callback, define a function of method that receives two arguments, an Image object
|
||||
and the seed. You can then do whatever you like with the image, including converting it to
|
||||
different formats and manipulating it. For example:
|
||||
|
||||
def process_image(image,seed):
|
||||
image.save(f{'images/seed.png'})
|
||||
|
||||
The callback used by the prompt2png() can be found in ldm/dream_util.py. It contains code
|
||||
to create the requested output directory, select a unique informative name for each image, and
|
||||
write the prompt into the PNG metadata.
|
||||
'''
|
||||
steps = steps or self.steps
|
||||
seed = seed or self.seed
|
||||
width = width or self.width
|
||||
@ -172,52 +237,70 @@ The vast majority of these arguments default to reasonable values.
|
||||
ddim_eta = ddim_eta or self.ddim_eta
|
||||
batch_size = batch_size or self.batch_size
|
||||
iterations = iterations or self.iterations
|
||||
strength = strength or self.strength # not actually used here, but preserved for code refactoring
|
||||
embedding_path = embedding_path or self.embedding_path
|
||||
strength = strength or self.strength
|
||||
|
||||
model = self.load_model() # will instantiate the model or return it from cache
|
||||
|
||||
assert strength<1.0 and strength>=0.0, "strength (-f) must be >=0.0 and <1.0"
|
||||
assert cfg_scale>1.0, "CFG_Scale (-C) must be >1.0"
|
||||
assert 0. <= strength <= 1., 'can only work with strength in [0.0, 1.0]'
|
||||
w = int(width/64) * 64
|
||||
h = int(height/64) * 64
|
||||
if h != height or w != width:
|
||||
print(f'Height and width must be multiples of 64. Resizing to {h}x{w}')
|
||||
height = h
|
||||
width = w
|
||||
|
||||
# grid and individual are mutually exclusive, with individual taking priority.
|
||||
# not necessary, but needed for compatability with dream bot
|
||||
if (grid is None):
|
||||
grid = self.grid
|
||||
if individual:
|
||||
grid = False
|
||||
|
||||
data = [batch_size * [prompt]]
|
||||
scope = autocast if self.precision=="autocast" else nullcontext
|
||||
|
||||
# make directories and establish names for the output files
|
||||
os.makedirs(outdir, exist_ok=True)
|
||||
tic = time.time()
|
||||
if init_img:
|
||||
assert os.path.exists(init_img),f'{init_img}: File not found'
|
||||
results = self._img2img(prompt,
|
||||
data=data,precision_scope=scope,
|
||||
batch_size=batch_size,iterations=iterations,
|
||||
steps=steps,seed=seed,cfg_scale=cfg_scale,ddim_eta=ddim_eta,
|
||||
skip_normalize=skip_normalize,
|
||||
init_img=init_img,strength=strength,variants=variants,
|
||||
callback=image_callback)
|
||||
else:
|
||||
results = self._txt2img(prompt,
|
||||
data=data,precision_scope=scope,
|
||||
batch_size=batch_size,iterations=iterations,
|
||||
steps=steps,seed=seed,cfg_scale=cfg_scale,ddim_eta=ddim_eta,
|
||||
skip_normalize=skip_normalize,
|
||||
width=width,height=height,
|
||||
callback=image_callback)
|
||||
toc = time.time()
|
||||
print(f'{len(results)} images generated in',"%4.2fs"% (toc-tic))
|
||||
return results
|
||||
|
||||
@torch.no_grad()
|
||||
def _txt2img(self,prompt,
|
||||
data,precision_scope,
|
||||
batch_size,iterations,
|
||||
steps,seed,cfg_scale,ddim_eta,
|
||||
skip_normalize,
|
||||
width,height,
|
||||
callback): # the callback is called each time a new Image is generated
|
||||
"""
|
||||
Generate an image from the prompt, writing iteration images into the outdir
|
||||
The output is a list of lists in the format: [[image1,seed1], [image2,seed2],...]
|
||||
"""
|
||||
|
||||
start_code = None
|
||||
if self.fixed_code:
|
||||
start_code = torch.randn([batch_size,
|
||||
self.latent_channels,
|
||||
height // self.downsampling_factor,
|
||||
width // self.downsampling_factor],
|
||||
device=self.device)
|
||||
|
||||
precision_scope = autocast if self.precision=="autocast" else nullcontext
|
||||
sampler = self.sampler
|
||||
images = list()
|
||||
seeds = list()
|
||||
filename = None
|
||||
image_count = 0
|
||||
tic = time.time()
|
||||
|
||||
# Gawd. Too many levels of indent here. Need to refactor into smaller routines!
|
||||
try:
|
||||
with precision_scope(self.device.type), model.ema_scope():
|
||||
with precision_scope(self.device.type), self.model.ema_scope():
|
||||
all_samples = list()
|
||||
for n in trange(iterations, desc="Sampling"):
|
||||
seed_everything(seed)
|
||||
for prompts in tqdm(data, desc="data", dynamic_ncols=True):
|
||||
uc = None
|
||||
if cfg_scale != 1.0:
|
||||
uc = model.get_learned_conditioning(batch_size * [""])
|
||||
uc = self.model.get_learned_conditioning(batch_size * [""])
|
||||
if isinstance(prompts, tuple):
|
||||
prompts = list(prompts)
|
||||
|
||||
@ -233,138 +316,78 @@ The vast majority of these arguments default to reasonable values.
|
||||
weight = weights[i]
|
||||
if not skip_normalize:
|
||||
weight = weight / totalWeight
|
||||
c = torch.add(c,model.get_learned_conditioning(subprompts[i]), alpha=weight)
|
||||
c = torch.add(c,self.model.get_learned_conditioning(subprompts[i]), alpha=weight)
|
||||
else: # just standard 1 prompt
|
||||
c = model.get_learned_conditioning(prompts)
|
||||
c = self.model.get_learned_conditioning(prompts)
|
||||
|
||||
shape = [self.latent_channels, height // self.downsampling_factor, width // self.downsampling_factor]
|
||||
samples_ddim, _ = sampler.sample(S=steps,
|
||||
conditioning=c,
|
||||
batch_size=batch_size,
|
||||
shape=shape,
|
||||
verbose=False,
|
||||
unconditional_guidance_scale=cfg_scale,
|
||||
unconditional_conditioning=uc,
|
||||
eta=ddim_eta,
|
||||
x_T=start_code)
|
||||
conditioning=c,
|
||||
batch_size=batch_size,
|
||||
shape=shape,
|
||||
verbose=False,
|
||||
unconditional_guidance_scale=cfg_scale,
|
||||
unconditional_conditioning=uc,
|
||||
eta=ddim_eta)
|
||||
|
||||
x_samples_ddim = model.decode_first_stage(samples_ddim)
|
||||
x_samples_ddim = self.model.decode_first_stage(samples_ddim)
|
||||
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
|
||||
|
||||
if not grid:
|
||||
for x_sample in x_samples_ddim:
|
||||
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
|
||||
filename = self._unique_filename(outdir,previousname=filename,
|
||||
seed=seed,isbatch=(batch_size>1))
|
||||
assert not os.path.exists(filename)
|
||||
Image.fromarray(x_sample.astype(np.uint8)).save(filename)
|
||||
images.append([filename,seed])
|
||||
else:
|
||||
all_samples.append(x_samples_ddim)
|
||||
seeds.append(seed)
|
||||
|
||||
image_count += 1
|
||||
for x_sample in x_samples_ddim:
|
||||
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
|
||||
image = Image.fromarray(x_sample.astype(np.uint8))
|
||||
images.append([image,seed])
|
||||
if callback is not None:
|
||||
callback(image,seed)
|
||||
|
||||
seed = self._new_seed()
|
||||
if grid:
|
||||
images = self._make_grid(samples=all_samples,
|
||||
seeds=seeds,
|
||||
batch_size=batch_size,
|
||||
iterations=iterations,
|
||||
outdir=outdir)
|
||||
except KeyboardInterrupt:
|
||||
print('*interrupted*')
|
||||
print('Partial results will be returned; if --grid was requested, nothing will be returned.')
|
||||
except RuntimeError as e:
|
||||
print(str(e))
|
||||
|
||||
toc = time.time()
|
||||
print(f'{image_count} images generated in',"%4.2fs"% (toc-tic))
|
||||
|
||||
return images
|
||||
|
||||
# There is lots of shared code between this and txt2img and should be refactored.
|
||||
@torch.no_grad()
|
||||
def img2img(self,prompt,outdir=None,init_img=None,batch_size=None,iterations=None,
|
||||
steps=None,seed=None,grid=None,individual=None,width=None,height=None,
|
||||
cfg_scale=None,ddim_eta=None,strength=None,embedding_path=None,
|
||||
skip_normalize=False,variants=None): # note the "variants" option is an unused hack caused by how options are passed
|
||||
def _img2img(self,prompt,
|
||||
data,precision_scope,
|
||||
batch_size,iterations,
|
||||
steps,seed,cfg_scale,ddim_eta,
|
||||
skip_normalize,
|
||||
init_img,strength,variants,
|
||||
callback):
|
||||
"""
|
||||
Generate an image from the prompt and the initial image, writing iteration images into the outdir
|
||||
The output is a list of lists in the format: [[filename1,seed1], [filename2,seed2],...]
|
||||
The output is a list of lists in the format: [[image,seed1], [image,seed2],...]
|
||||
"""
|
||||
outdir = outdir or self.outdir
|
||||
steps = steps or self.steps
|
||||
seed = seed or self.seed
|
||||
cfg_scale = cfg_scale or self.cfg_scale
|
||||
ddim_eta = ddim_eta or self.ddim_eta
|
||||
batch_size = batch_size or self.batch_size
|
||||
iterations = iterations or self.iterations
|
||||
strength = strength or self.strength
|
||||
embedding_path = embedding_path or self.embedding_path
|
||||
|
||||
assert strength<1.0 and strength>=0.0, "strength (-f) must be >=0.0 and <1.0"
|
||||
assert cfg_scale>1.0, "CFG_Scale (-C) must be >1.0"
|
||||
|
||||
if init_img is None:
|
||||
print("no init_img provided!")
|
||||
return []
|
||||
|
||||
model = self.load_model() # will instantiate the model or return it from cache
|
||||
|
||||
precision_scope = autocast if self.precision=="autocast" else nullcontext
|
||||
|
||||
# grid and individual are mutually exclusive, with individual taking priority.
|
||||
# not necessary, but needed for compatability with dream bot
|
||||
if (grid is None):
|
||||
grid = self.grid
|
||||
if individual:
|
||||
grid = False
|
||||
|
||||
data = [batch_size * [prompt]]
|
||||
|
||||
# PLMS sampler not supported yet, so ignore previous sampler
|
||||
if self.sampler_name!='ddim':
|
||||
print(f"sampler '{self.sampler_name}' is not yet supported. Using DDM sampler")
|
||||
sampler = DDIMSampler(model, device=self.device)
|
||||
sampler = DDIMSampler(self.model, device=self.device)
|
||||
else:
|
||||
sampler = self.sampler
|
||||
|
||||
# make directories and establish names for the output files
|
||||
os.makedirs(outdir, exist_ok=True)
|
||||
|
||||
assert os.path.isfile(init_img)
|
||||
init_image = self._load_img(init_img).to(self.device)
|
||||
init_image = repeat(init_image, '1 ... -> b ...', b=batch_size)
|
||||
with precision_scope(self.device.type):
|
||||
init_latent = model.get_first_stage_encoding(model.encode_first_stage(init_image)) # move to latent space
|
||||
init_latent = self.model.get_first_stage_encoding(self.model.encode_first_stage(init_image)) # move to latent space
|
||||
|
||||
sampler.make_schedule(ddim_num_steps=steps, ddim_eta=ddim_eta, verbose=False)
|
||||
|
||||
try:
|
||||
assert 0. <= strength <= 1., 'can only work with strength in [0.0, 1.0]'
|
||||
except AssertionError:
|
||||
print(f"strength must be between 0.0 and 1.0, but received value {strength}")
|
||||
return []
|
||||
|
||||
t_enc = int(strength * steps)
|
||||
print(f"target t_enc is {t_enc} steps")
|
||||
|
||||
# print(f"target t_enc is {t_enc} steps")
|
||||
images = list()
|
||||
seeds = list()
|
||||
filename = None
|
||||
image_count = 0 # actual number of iterations performed
|
||||
tic = time.time()
|
||||
|
||||
# Gawd. Too many levels of indent here. Need to refactor into smaller routines!
|
||||
try:
|
||||
with precision_scope(self.device.type), model.ema_scope():
|
||||
with precision_scope(self.device.type), self.model.ema_scope():
|
||||
all_samples = list()
|
||||
for n in trange(iterations, desc="Sampling"):
|
||||
seed_everything(seed)
|
||||
for prompts in tqdm(data, desc="data", dynamic_ncols=True):
|
||||
uc = None
|
||||
if cfg_scale != 1.0:
|
||||
uc = model.get_learned_conditioning(batch_size * [""])
|
||||
uc = self.model.get_learned_conditioning(batch_size * [""])
|
||||
if isinstance(prompts, tuple):
|
||||
prompts = list(prompts)
|
||||
|
||||
@ -380,9 +403,9 @@ The vast majority of these arguments default to reasonable values.
|
||||
weight = weights[i]
|
||||
if not skip_normalize:
|
||||
weight = weight / totalWeight
|
||||
c = torch.add(c,model.get_learned_conditioning(subprompts[i]), alpha=weight)
|
||||
c = torch.add(c,self.model.get_learned_conditioning(subprompts[i]), alpha=weight)
|
||||
else: # just standard 1 prompt
|
||||
c = model.get_learned_conditioning(prompts)
|
||||
c = self.model.get_learned_conditioning(prompts)
|
||||
|
||||
# encode (scaled latent)
|
||||
z_enc = sampler.stochastic_encode(init_latent, torch.tensor([t_enc]*batch_size).to(self.device))
|
||||
@ -390,28 +413,16 @@ The vast majority of these arguments default to reasonable values.
|
||||
samples = sampler.decode(z_enc, c, t_enc, unconditional_guidance_scale=cfg_scale,
|
||||
unconditional_conditioning=uc,)
|
||||
|
||||
x_samples = model.decode_first_stage(samples)
|
||||
x_samples = self.model.decode_first_stage(samples)
|
||||
x_samples = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0)
|
||||
|
||||
if not grid:
|
||||
for x_sample in x_samples:
|
||||
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
|
||||
filename = self._unique_filename(outdir,previousname=filename,
|
||||
seed=seed,isbatch=(batch_size>1))
|
||||
assert not os.path.exists(filename)
|
||||
Image.fromarray(x_sample.astype(np.uint8)).save(filename)
|
||||
images.append([filename,seed])
|
||||
else:
|
||||
all_samples.append(x_samples)
|
||||
seeds.append(seed)
|
||||
image_count +=1
|
||||
for x_sample in x_samples:
|
||||
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
|
||||
image = Image.fromarray(x_sample.astype(np.uint8))
|
||||
images.append([image,seed])
|
||||
if callback is not None:
|
||||
callback(image,seed)
|
||||
seed = self._new_seed()
|
||||
if grid:
|
||||
images = self._make_grid(samples=all_samples,
|
||||
seeds=seeds,
|
||||
batch_size=batch_size,
|
||||
iterations=iterations,
|
||||
outdir=outdir)
|
||||
|
||||
except KeyboardInterrupt:
|
||||
print('*interrupted*')
|
||||
@ -419,26 +430,6 @@ The vast majority of these arguments default to reasonable values.
|
||||
except RuntimeError as e:
|
||||
print("Oops! A runtime error has occurred. If this is unexpected, please copy-and-paste this stack trace and post it as an Issue to http://github.com/lstein/stable-diffusion")
|
||||
traceback.print_exc()
|
||||
|
||||
toc = time.time()
|
||||
print(f'{image_count} images generated in',"%4.2fs"% (toc-tic))
|
||||
|
||||
return images
|
||||
|
||||
def _make_grid(self,samples,seeds,batch_size,iterations,outdir):
|
||||
images = list()
|
||||
n_rows = batch_size if batch_size>1 else int(math.sqrt(batch_size * iterations))
|
||||
# save as grid
|
||||
grid = torch.stack(samples, 0)
|
||||
grid = rearrange(grid, 'n b c h w -> (n b) c h w')
|
||||
grid = make_grid(grid, nrow=n_rows)
|
||||
|
||||
# to image
|
||||
grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy()
|
||||
filename = self._unique_filename(outdir,seed=seeds[0],grid_count=batch_size*iterations)
|
||||
Image.fromarray(grid.astype(np.uint8)).save(filename)
|
||||
for s in seeds:
|
||||
images.append([filename,s])
|
||||
return images
|
||||
|
||||
def _new_seed(self):
|
||||
@ -489,8 +480,8 @@ The vast majority of these arguments default to reasonable values.
|
||||
def _load_model_from_config(self, config, ckpt):
|
||||
print(f"Loading model from {ckpt}")
|
||||
pl_sd = torch.load(ckpt, map_location="cpu")
|
||||
if "global_step" in pl_sd:
|
||||
print(f"Global Step: {pl_sd['global_step']}")
|
||||
# if "global_step" in pl_sd:
|
||||
# print(f"Global Step: {pl_sd['global_step']}")
|
||||
sd = pl_sd["state_dict"]
|
||||
model = instantiate_from_config(config.model)
|
||||
m, u = model.load_state_dict(sd, strict=False)
|
||||
@ -514,43 +505,6 @@ The vast majority of these arguments default to reasonable values.
|
||||
image = torch.from_numpy(image)
|
||||
return 2.*image - 1.
|
||||
|
||||
def _unique_filename(self,outdir,previousname=None,seed=0,isbatch=False,grid_count=None):
|
||||
revision = 1
|
||||
|
||||
if previousname is None:
|
||||
# sort reverse alphabetically until we find max+1
|
||||
dirlist = sorted(os.listdir(outdir),reverse=True)
|
||||
# find the first filename that matches our pattern or return 000000.0.png
|
||||
filename = next((f for f in dirlist if re.match('^(\d+)\..*\.png',f)),'0000000.0.png')
|
||||
basecount = int(filename.split('.',1)[0])
|
||||
basecount += 1
|
||||
if grid_count is not None:
|
||||
grid_label = f'grid#1-{grid_count}'
|
||||
filename = f'{basecount:06}.{seed}.{grid_label}.png'
|
||||
elif isbatch:
|
||||
filename = f'{basecount:06}.{seed}.01.png'
|
||||
else:
|
||||
filename = f'{basecount:06}.{seed}.png'
|
||||
|
||||
return os.path.join(outdir,filename)
|
||||
|
||||
else:
|
||||
previousname = os.path.basename(previousname)
|
||||
x = re.match('^(\d+)\..*\.png',previousname)
|
||||
if not x:
|
||||
return self._unique_filename(outdir,previousname,seed)
|
||||
|
||||
basecount = int(x.groups()[0])
|
||||
series = 0
|
||||
finished = False
|
||||
while not finished:
|
||||
series += 1
|
||||
filename = f'{basecount:06}.{seed}.png'
|
||||
if isbatch or os.path.exists(os.path.join(outdir,filename)):
|
||||
filename = f'{basecount:06}.{seed}.{series:02}.png'
|
||||
finished = not os.path.exists(os.path.join(outdir,filename))
|
||||
return os.path.join(outdir,filename)
|
||||
|
||||
def _split_weighted_subprompts(text):
|
||||
"""
|
||||
grabs all text up to the first occurrence of ':'
|
||||
|
251
scripts/dream.py
251
scripts/dream.py
@ -3,18 +3,10 @@
|
||||
|
||||
import argparse
|
||||
import shlex
|
||||
import atexit
|
||||
import os
|
||||
import sys
|
||||
import copy
|
||||
from PIL import Image,PngImagePlugin
|
||||
|
||||
# readline unavailable on windows systems
|
||||
try:
|
||||
import readline
|
||||
readline_available = True
|
||||
except:
|
||||
readline_available = False
|
||||
from ldm.dream_util import Completer,PngWriter,PromptFormatter
|
||||
|
||||
debugging = False
|
||||
|
||||
@ -35,10 +27,6 @@ def main():
|
||||
config = "configs/stable-diffusion/v1-inference.yaml"
|
||||
weights = "models/ldm/stable-diffusion-v1/model.ckpt"
|
||||
|
||||
# command line history will be stored in a file called "~/.dream_history"
|
||||
if readline_available:
|
||||
setup_readline()
|
||||
|
||||
print("* Initializing, be patient...\n")
|
||||
sys.path.append('.')
|
||||
from pytorch_lightning import logging
|
||||
@ -54,8 +42,6 @@ def main():
|
||||
# the user input loop
|
||||
t2i = T2I(width=width,
|
||||
height=height,
|
||||
batch_size=opt.batch_size,
|
||||
outdir=opt.outdir,
|
||||
sampler_name=opt.sampler_name,
|
||||
weights=weights,
|
||||
full_precision=opt.full_precision,
|
||||
@ -87,13 +73,13 @@ def main():
|
||||
log_path = os.path.join(opt.outdir,'dream_log.txt')
|
||||
with open(log_path,'a') as log:
|
||||
cmd_parser = create_cmd_parser()
|
||||
main_loop(t2i,cmd_parser,log,infile)
|
||||
main_loop(t2i,opt.outdir,cmd_parser,log,infile)
|
||||
log.close()
|
||||
if infile:
|
||||
infile.close()
|
||||
|
||||
|
||||
def main_loop(t2i,parser,log,infile):
|
||||
def main_loop(t2i,outdir,parser,log,infile):
|
||||
''' prompt/read/execute loop '''
|
||||
done = False
|
||||
|
||||
@ -131,13 +117,13 @@ def main_loop(t2i,parser,log,infile):
|
||||
if elements[0]=='cd' and len(elements)>1:
|
||||
if os.path.exists(elements[1]):
|
||||
print(f"setting image output directory to {elements[1]}")
|
||||
t2i.outdir=elements[1]
|
||||
outdir=elements[1]
|
||||
else:
|
||||
print(f"directory {elements[1]} does not exist")
|
||||
continue
|
||||
|
||||
if elements[0]=='pwd':
|
||||
print(f"current output directory is {t2i.outdir}")
|
||||
print(f"current output directory is {outdir}")
|
||||
continue
|
||||
|
||||
if elements[0].startswith('!dream'): # in case a stored prompt still contains the !dream command
|
||||
@ -166,117 +152,77 @@ def main_loop(t2i,parser,log,infile):
|
||||
print("Try again with a prompt!")
|
||||
continue
|
||||
|
||||
normalized_prompt = PromptFormatter(t2i,opt).normalize_prompt()
|
||||
individual_images = not opt.grid
|
||||
|
||||
try:
|
||||
if opt.init_img is None:
|
||||
results = t2i.txt2img(**vars(opt))
|
||||
else:
|
||||
assert os.path.exists(opt.init_img),f"No file found at {opt.init_img}. On Linux systems, pressing <tab> after -I will autocomplete a list of possible image files."
|
||||
if None not in (opt.width,opt.height):
|
||||
print('Warning: width and height options are ignored when modifying an init image')
|
||||
results = t2i.img2img(**vars(opt))
|
||||
file_writer = PngWriter(outdir,normalized_prompt,opt.batch_size)
|
||||
callback = file_writer.write_image if individual_images else None
|
||||
|
||||
image_list = t2i.prompt2image(image_callback=callback,**vars(opt))
|
||||
results = file_writer.files_written if individual_images else image_list
|
||||
|
||||
if opt.grid and len(results) > 0:
|
||||
grid_img = file_writer.make_grid([r[0] for r in results])
|
||||
filename = file_writer.unique_filename(results[0][1])
|
||||
seeds = [a[1] for a in results]
|
||||
results = [[filename,seeds]]
|
||||
metadata_prompt = f'{normalized_prompt} -S{results[0][1]}'
|
||||
file_writer.save_image_and_prompt_to_png(grid_img,metadata_prompt,filename)
|
||||
|
||||
except AssertionError as e:
|
||||
print(e)
|
||||
continue
|
||||
|
||||
|
||||
allVariantResults = []
|
||||
if opt.variants is not None:
|
||||
print(f"Generating {opt.variants} variant(s)...")
|
||||
newopt = copy.deepcopy(opt)
|
||||
newopt.iterations = 1
|
||||
newopt.variants = None
|
||||
for r in results:
|
||||
newopt.init_img = r[0]
|
||||
print(f"\t generating variant for {newopt.init_img}")
|
||||
for j in range(0, opt.variants):
|
||||
try:
|
||||
variantResults = t2i.img2img(**vars(newopt))
|
||||
allVariantResults.append([newopt,variantResults])
|
||||
except AssertionError as e:
|
||||
print(e)
|
||||
continue
|
||||
print(f"{opt.variants} Variants generated!")
|
||||
except OSError as e:
|
||||
print(e)
|
||||
continue
|
||||
|
||||
print("Outputs:")
|
||||
write_log_message(t2i,opt,results,log)
|
||||
|
||||
if allVariantResults:
|
||||
print("Variant outputs:")
|
||||
for vr in allVariantResults:
|
||||
write_log_message(t2i,vr[0],vr[1],log)
|
||||
|
||||
write_log_message(t2i,normalized_prompt,results,log)
|
||||
|
||||
print("goodbye!")
|
||||
|
||||
# variant generation is going to be superseded by a generalized
|
||||
# "prompt-morph" functionality
|
||||
# def generate_variants(t2i,outdir,opt,previous_gens):
|
||||
# variants = []
|
||||
# print(f"Generating {opt.variants} variant(s)...")
|
||||
# newopt = copy.deepcopy(opt)
|
||||
# newopt.iterations = 1
|
||||
# newopt.variants = None
|
||||
# for r in previous_gens:
|
||||
# newopt.init_img = r[0]
|
||||
# prompt = PromptFormatter(t2i,newopt).normalize_prompt()
|
||||
# print(f"] generating variant for {newopt.init_img}")
|
||||
# for j in range(0,opt.variants):
|
||||
# try:
|
||||
# file_writer = PngWriter(outdir,prompt,newopt.batch_size)
|
||||
# callback = file_writer.write_image
|
||||
# t2i.prompt2image(image_callback=callback,**vars(newopt))
|
||||
# results = file_writer.files_written
|
||||
# variants.append([prompt,results])
|
||||
# except AssertionError as e:
|
||||
# print(e)
|
||||
# continue
|
||||
# print(f'{opt.variants} variants generated')
|
||||
# return variants
|
||||
|
||||
|
||||
def write_log_message(t2i,opt,results,logfile):
|
||||
''' logs the name of the output image, its prompt and seed to the terminal, log file, and a Dream text chunk in the PNG metadata '''
|
||||
switches = _reconstruct_switches(t2i,opt)
|
||||
prompt_str = ' '.join(switches)
|
||||
|
||||
# when multiple images are produced in batch, then we keep track of where each starts
|
||||
def write_log_message(t2i,prompt,results,logfile):
|
||||
''' logs the name of the output image, its prompt and seed to the terminal, log file, and a Dream text chunk in the PNG metadata'''
|
||||
last_seed = None
|
||||
img_num = 1
|
||||
batch_size = opt.batch_size or t2i.batch_size
|
||||
seenit = {}
|
||||
|
||||
seeds = [a[1] for a in results]
|
||||
if batch_size > 1:
|
||||
seeds = f"(seeds for each batch row: {seeds})"
|
||||
else:
|
||||
seeds = f"(seeds for individual images: {seeds})"
|
||||
|
||||
for r in results:
|
||||
seed = r[1]
|
||||
log_message = (f'{r[0]}: {prompt_str} -S{seed}')
|
||||
log_message = (f'{r[0]}: {prompt} -S{seed}')
|
||||
|
||||
if batch_size > 1:
|
||||
if seed != last_seed:
|
||||
img_num = 1
|
||||
log_message += f' # (batch image {img_num} of {batch_size})'
|
||||
else:
|
||||
img_num += 1
|
||||
log_message += f' # (batch image {img_num} of {batch_size})'
|
||||
last_seed = seed
|
||||
print(log_message)
|
||||
logfile.write(log_message+"\n")
|
||||
logfile.flush()
|
||||
if r[0] not in seenit:
|
||||
seenit[r[0]] = True
|
||||
try:
|
||||
if opt.grid:
|
||||
_write_prompt_to_png(r[0],f'{prompt_str} -g -S{seed} {seeds}')
|
||||
else:
|
||||
_write_prompt_to_png(r[0],f'{prompt_str} -S{seed}')
|
||||
except FileNotFoundError:
|
||||
print(f"Could not open file '{r[0]}' for reading")
|
||||
|
||||
def _reconstruct_switches(t2i,opt):
|
||||
'''Normalize the prompt and switches'''
|
||||
switches = list()
|
||||
switches.append(f'"{opt.prompt}"')
|
||||
switches.append(f'-s{opt.steps or t2i.steps}')
|
||||
switches.append(f'-b{opt.batch_size or t2i.batch_size}')
|
||||
switches.append(f'-W{opt.width or t2i.width}')
|
||||
switches.append(f'-H{opt.height or t2i.height}')
|
||||
switches.append(f'-C{opt.cfg_scale or t2i.cfg_scale}')
|
||||
switches.append(f'-m{t2i.sampler_name}')
|
||||
if opt.variants:
|
||||
switches.append(f'-v{opt.variants}')
|
||||
if opt.init_img:
|
||||
switches.append(f'-I{opt.init_img}')
|
||||
if opt.strength and opt.init_img is not None:
|
||||
switches.append(f'-f{opt.strength or t2i.strength}')
|
||||
if t2i.full_precision:
|
||||
switches.append('-F')
|
||||
return switches
|
||||
|
||||
def _write_prompt_to_png(path,prompt):
|
||||
info = PngImagePlugin.PngInfo()
|
||||
info.add_text("Dream",prompt)
|
||||
im = Image.open(path)
|
||||
im.save(path,"PNG",pnginfo=info)
|
||||
|
||||
def create_argv_parser():
|
||||
parser = argparse.ArgumentParser(description="Parse script's command line args")
|
||||
parser.add_argument("--laion400m",
|
||||
@ -297,10 +243,6 @@ def create_argv_parser():
|
||||
dest='full_precision',
|
||||
action='store_true',
|
||||
help="use slower full precision math for calculations")
|
||||
parser.add_argument('-b','--batch_size',
|
||||
type=int,
|
||||
default=1,
|
||||
help="number of images to produce per iteration (faster, but doesn't generate individual seeds")
|
||||
parser.add_argument('--sampler','-m',
|
||||
dest="sampler_name",
|
||||
choices=['ddim', 'k_dpm_2_a', 'k_dpm_2', 'k_euler_a', 'k_euler', 'k_heun', 'k_lms', 'plms'],
|
||||
@ -336,93 +278,12 @@ def create_cmd_parser():
|
||||
parser.add_argument('-i','--individual',action='store_true',help="generate individual files (default)")
|
||||
parser.add_argument('-I','--init_img',type=str,help="path to input image for img2img mode (supersedes width and height)")
|
||||
parser.add_argument('-f','--strength',default=0.75,type=float,help="strength for noising/unnoising. 0.0 preserves image exactly, 1.0 replaces it completely")
|
||||
parser.add_argument('-v','--variants',type=int,help="in img2img mode, the first generated image will get passed back to img2img to generate the requested number of variants")
|
||||
# variants is going to be superseded by a generalized "prompt-morph" function
|
||||
# parser.add_argument('-v','--variants',type=int,help="in img2img mode, the first generated image will get passed back to img2img to generate the requested number of variants")
|
||||
parser.add_argument('-x','--skip_normalize',action='store_true',help="skip subprompt weight normalization")
|
||||
return parser
|
||||
|
||||
if readline_available:
|
||||
def setup_readline():
|
||||
readline.set_completer(Completer(['cd','pwd',
|
||||
'--steps','-s','--seed','-S','--iterations','-n','--batch_size','-b',
|
||||
'--width','-W','--height','-H','--cfg_scale','-C','--grid','-g',
|
||||
'--individual','-i','--init_img','-I','--strength','-f','-v','--variants']).complete)
|
||||
readline.set_completer_delims(" ")
|
||||
readline.parse_and_bind('tab: complete')
|
||||
load_history()
|
||||
|
||||
def load_history():
|
||||
histfile = os.path.join(os.path.expanduser('~'),".dream_history")
|
||||
try:
|
||||
readline.read_history_file(histfile)
|
||||
readline.set_history_length(1000)
|
||||
except FileNotFoundError:
|
||||
pass
|
||||
atexit.register(readline.write_history_file,histfile)
|
||||
|
||||
class Completer():
|
||||
def __init__(self,options):
|
||||
self.options = sorted(options)
|
||||
return
|
||||
|
||||
def complete(self,text,state):
|
||||
buffer = readline.get_line_buffer()
|
||||
|
||||
if text.startswith(('-I','--init_img')):
|
||||
return self._path_completions(text,state,('.png'))
|
||||
|
||||
if buffer.strip().endswith('cd') or text.startswith(('.','/')):
|
||||
return self._path_completions(text,state,())
|
||||
|
||||
response = None
|
||||
if state == 0:
|
||||
# This is the first time for this text, so build a match list.
|
||||
if text:
|
||||
self.matches = [s
|
||||
for s in self.options
|
||||
if s and s.startswith(text)]
|
||||
else:
|
||||
self.matches = self.options[:]
|
||||
|
||||
# Return the state'th item from the match list,
|
||||
# if we have that many.
|
||||
try:
|
||||
response = self.matches[state]
|
||||
except IndexError:
|
||||
response = None
|
||||
return response
|
||||
|
||||
def _path_completions(self,text,state,extensions):
|
||||
# get the path so far
|
||||
if text.startswith('-I'):
|
||||
path = text.replace('-I','',1).lstrip()
|
||||
elif text.startswith('--init_img='):
|
||||
path = text.replace('--init_img=','',1).lstrip()
|
||||
else:
|
||||
path = text
|
||||
|
||||
matches = list()
|
||||
|
||||
path = os.path.expanduser(path)
|
||||
if len(path)==0:
|
||||
matches.append(text+'./')
|
||||
else:
|
||||
dir = os.path.dirname(path)
|
||||
dir_list = os.listdir(dir)
|
||||
for n in dir_list:
|
||||
if n.startswith('.') and len(n)>1:
|
||||
continue
|
||||
full_path = os.path.join(dir,n)
|
||||
if full_path.startswith(path):
|
||||
if os.path.isdir(full_path):
|
||||
matches.append(os.path.join(os.path.dirname(text),n)+'/')
|
||||
elif n.endswith(extensions):
|
||||
matches.append(os.path.join(os.path.dirname(text),n))
|
||||
|
||||
try:
|
||||
response = matches[state]
|
||||
except IndexError:
|
||||
response = None
|
||||
return response
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
Loading…
Reference in New Issue
Block a user