mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
pipeline: remove code for legacy model
This commit is contained in:
parent
9d339e94f2
commit
1a829bb998
@ -495,18 +495,6 @@ class Generate:
|
|||||||
torch.cuda.reset_peak_memory_stats()
|
torch.cuda.reset_peak_memory_stats()
|
||||||
|
|
||||||
results = list()
|
results = list()
|
||||||
init_image = None
|
|
||||||
mask_image = None
|
|
||||||
|
|
||||||
try:
|
|
||||||
if (
|
|
||||||
self.free_gpu_mem
|
|
||||||
and self.model.cond_stage_model.device != self.model.device
|
|
||||||
):
|
|
||||||
self.model.cond_stage_model.device = self.model.device
|
|
||||||
self.model.cond_stage_model.to(self.model.device)
|
|
||||||
except AttributeError:
|
|
||||||
pass
|
|
||||||
|
|
||||||
try:
|
try:
|
||||||
uc, c, extra_conditioning_info = get_uc_and_c_and_ec(
|
uc, c, extra_conditioning_info = get_uc_and_c_and_ec(
|
||||||
|
@ -54,16 +54,6 @@ class PipelineIntermediateState:
|
|||||||
attention_map_saver: Optional[AttentionMapSaver] = None
|
attention_map_saver: Optional[AttentionMapSaver] = None
|
||||||
|
|
||||||
|
|
||||||
# copied from configs/stable-diffusion/v1-inference.yaml
|
|
||||||
_default_personalization_config_params = dict(
|
|
||||||
placeholder_strings=["*"],
|
|
||||||
initializer_wods=["sculpture"],
|
|
||||||
per_image_tokens=False,
|
|
||||||
num_vectors_per_token=1,
|
|
||||||
progressive_words=False,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
class AddsMaskLatents:
|
class AddsMaskLatents:
|
||||||
"""Add the channels required for inpainting model input.
|
"""Add the channels required for inpainting model input.
|
||||||
@ -917,20 +907,6 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
|||||||
device=self._model_group.device_for(self.unet),
|
device=self._model_group.device_for(self.unet),
|
||||||
)
|
)
|
||||||
|
|
||||||
@property
|
|
||||||
def cond_stage_model(self):
|
|
||||||
return self.embeddings_provider
|
|
||||||
|
|
||||||
@torch.inference_mode()
|
|
||||||
def _tokenize(self, prompt: Union[str, List[str]]):
|
|
||||||
return self.tokenizer(
|
|
||||||
prompt,
|
|
||||||
padding="max_length",
|
|
||||||
max_length=self.tokenizer.model_max_length,
|
|
||||||
truncation=True,
|
|
||||||
return_tensors="pt",
|
|
||||||
)
|
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def channels(self) -> int:
|
def channels(self) -> int:
|
||||||
"""Compatible with DiffusionWrapper"""
|
"""Compatible with DiffusionWrapper"""
|
||||||
|
Loading…
Reference in New Issue
Block a user