mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Migrate to new HF diffusers cache location (#2867)
# Migrate to new HF diffusers cache location This PR adjusts the model cache directory to use the layout of `diffusers 0.14`. This will automatically migrate any diffusers models located in `INVOKEAI_ROOT/models/diffusers` to `INVOKEAI_ROOT/models/hub`, and cache new downloaded diffusers files into the same location. As before, if environment variable `HF_HOME` is set, then both HuggingFace `from_pretrained()` calls as well as all InvokeAI methods will use `HF_HOME/hub` as their cache.
This commit is contained in:
commit
1b21e5df54
@ -295,7 +295,7 @@ def download_vaes():
|
||||
# first the diffusers version
|
||||
repo_id = "stabilityai/sd-vae-ft-mse"
|
||||
args = dict(
|
||||
cache_dir=global_cache_dir("diffusers"),
|
||||
cache_dir=global_cache_dir("hub"),
|
||||
)
|
||||
if not AutoencoderKL.from_pretrained(repo_id, **args):
|
||||
raise Exception(f"download of {repo_id} failed")
|
||||
|
@ -270,7 +270,6 @@ def _download_diffusion_weights(
|
||||
path = download_from_hf(
|
||||
model_class,
|
||||
repo_id,
|
||||
cache_subdir="diffusers",
|
||||
safety_checker=None,
|
||||
**extra_args,
|
||||
)
|
||||
|
@ -98,16 +98,13 @@ def global_cache_dir(subdir: Union[str, Path] = "") -> Path:
|
||||
"""
|
||||
Returns Path to the model cache directory. If a subdirectory
|
||||
is provided, it will be appended to the end of the path, allowing
|
||||
for huggingface-style conventions:
|
||||
global_cache_dir('diffusers')
|
||||
for Hugging Face-style conventions. Currently, Hugging Face has
|
||||
moved all models into the "hub" subfolder, so for any pretrained
|
||||
HF model, use:
|
||||
global_cache_dir('hub')
|
||||
Current HuggingFace documentation (mid-Jan 2023) indicates that
|
||||
transformers models will be cached into a "transformers" subdirectory,
|
||||
but in practice they seem to go into "hub". But if needed:
|
||||
global_cache_dir('transformers')
|
||||
One other caveat is that HuggingFace is moving some diffusers models
|
||||
into the "hub" subdirectory as well, so this will need to be revisited
|
||||
from time to time.
|
||||
|
||||
The legacy location for transformers used to be global_cache_dir('transformers')
|
||||
and global_cache_dir('diffusers') for diffusers.
|
||||
"""
|
||||
home: str = os.getenv("HF_HOME")
|
||||
|
||||
@ -115,7 +112,7 @@ def global_cache_dir(subdir: Union[str, Path] = "") -> Path:
|
||||
home = os.getenv("XDG_CACHE_HOME")
|
||||
|
||||
if home is not None:
|
||||
# Set `home` to $XDG_CACHE_HOME/huggingface, which is the default location mentioned in HuggingFace Hub Client Library.
|
||||
# Set `home` to $XDG_CACHE_HOME/huggingface, which is the default location mentioned in Hugging Face Hub Client Library.
|
||||
# See: https://huggingface.co/docs/huggingface_hub/main/en/package_reference/environment_variables#xdgcachehome
|
||||
home += os.sep + "huggingface"
|
||||
|
||||
|
@ -43,13 +43,11 @@ class SDLegacyType(Enum):
|
||||
V2 = 3
|
||||
UNKNOWN = 99
|
||||
|
||||
|
||||
DEFAULT_MAX_MODELS = 2
|
||||
VAE_TO_REPO_ID = { # hack, see note in convert_and_import()
|
||||
"vae-ft-mse-840000-ema-pruned": "stabilityai/sd-vae-ft-mse",
|
||||
}
|
||||
|
||||
|
||||
class ModelManager(object):
|
||||
def __init__(
|
||||
self,
|
||||
@ -369,7 +367,7 @@ class ModelManager(object):
|
||||
if vae := self._load_vae(mconfig["vae"]):
|
||||
pipeline_args.update(vae=vae)
|
||||
if not isinstance(name_or_path, Path):
|
||||
pipeline_args.update(cache_dir=global_cache_dir("diffusers"))
|
||||
pipeline_args.update(cache_dir=global_cache_dir("hub"))
|
||||
if using_fp16:
|
||||
pipeline_args.update(torch_dtype=torch.float16)
|
||||
fp_args_list = [{"revision": "fp16"}, {}]
|
||||
@ -916,27 +914,40 @@ class ModelManager(object):
|
||||
to the 2.3.0 "diffusers" version. This should be a one-time operation, called at
|
||||
script startup time.
|
||||
"""
|
||||
# Three transformer models to check: bert, clip and safety checker
|
||||
# Three transformer models to check: bert, clip and safety checker, and
|
||||
# the diffusers as well
|
||||
models_dir = Path(Globals.root, "models")
|
||||
legacy_locations = [
|
||||
Path(
|
||||
models_dir,
|
||||
"CompVis/stable-diffusion-safety-checker/models--CompVis--stable-diffusion-safety-checker"
|
||||
),
|
||||
Path("bert-base-uncased/models--bert-base-uncased"),
|
||||
Path(models_dir, "bert-base-uncased/models--bert-base-uncased"),
|
||||
Path(
|
||||
models_dir,
|
||||
"openai/clip-vit-large-patch14/models--openai--clip-vit-large-patch14"
|
||||
),
|
||||
]
|
||||
models_dir = Path(Globals.root, "models")
|
||||
legacy_locations.extend(list(global_cache_dir("diffusers").glob('*')))
|
||||
|
||||
legacy_layout = False
|
||||
for model in legacy_locations:
|
||||
legacy_layout = legacy_layout or Path(models_dir, model).exists()
|
||||
legacy_layout = legacy_layout or model.exists()
|
||||
if not legacy_layout:
|
||||
return
|
||||
|
||||
print(
|
||||
"** Legacy version <= 2.2.5 model directory layout detected. Reorganizing."
|
||||
"""
|
||||
>> ALERT:
|
||||
>> The location of your previously-installed diffusers models needs to move from
|
||||
>> invokeai/models/diffusers to invokeai/models/hub due to a change introduced by
|
||||
>> diffusers version 0.14. InvokeAI will now move all models from the "diffusers" directory
|
||||
>> into "hub" and then remove the diffusers directory. This is a quick, safe, one-time
|
||||
>> operation. However if you have customized either of these directories and need to
|
||||
>> make adjustments, please press ctrl-C now to abort and relaunch InvokeAI when you are ready.
|
||||
>> Otherwise press <enter> to continue."""
|
||||
)
|
||||
print("** This is a quick one-time operation.")
|
||||
input('continue> ')
|
||||
|
||||
# transformer files get moved into the hub directory
|
||||
if cls._is_huggingface_hub_directory_present():
|
||||
@ -948,33 +959,20 @@ class ModelManager(object):
|
||||
for model in legacy_locations:
|
||||
source = models_dir / model
|
||||
dest = hub / model.stem
|
||||
if dest.exists() and not source.exists():
|
||||
continue
|
||||
print(f"** {source} => {dest}")
|
||||
if source.exists():
|
||||
if dest.exists():
|
||||
rmtree(source)
|
||||
if dest.is_symlink():
|
||||
print(f"** Found symlink at {dest.name}. Not migrating.")
|
||||
elif dest.exists():
|
||||
if source.is_dir():
|
||||
rmtree(source)
|
||||
else:
|
||||
source.unlink()
|
||||
else:
|
||||
move(source, dest)
|
||||
|
||||
# anything else gets moved into the diffusers directory
|
||||
if cls._is_huggingface_hub_directory_present():
|
||||
diffusers = global_cache_dir("diffusers")
|
||||
else:
|
||||
diffusers = models_dir / "diffusers"
|
||||
|
||||
os.makedirs(diffusers, exist_ok=True)
|
||||
for root, dirs, _ in os.walk(models_dir, topdown=False):
|
||||
for dir in dirs:
|
||||
full_path = Path(root, dir)
|
||||
if full_path.is_relative_to(hub) or full_path.is_relative_to(diffusers):
|
||||
continue
|
||||
if Path(dir).match("models--*--*"):
|
||||
dest = diffusers / dir
|
||||
print(f"** {full_path} => {dest}")
|
||||
if dest.exists():
|
||||
rmtree(full_path)
|
||||
else:
|
||||
move(full_path, dest)
|
||||
|
||||
# now clean up by removing any empty directories
|
||||
empty = [
|
||||
root
|
||||
@ -1072,7 +1070,7 @@ class ModelManager(object):
|
||||
path = name_or_path
|
||||
else:
|
||||
owner, repo = name_or_path.split("/")
|
||||
path = Path(global_cache_dir("diffusers") / f"models--{owner}--{repo}")
|
||||
path = Path(global_cache_dir("hub") / f"models--{owner}--{repo}")
|
||||
if not path.exists():
|
||||
return None
|
||||
hashpath = path / "checksum.sha256"
|
||||
@ -1133,7 +1131,7 @@ class ModelManager(object):
|
||||
using_fp16 = self.precision == "float16"
|
||||
|
||||
vae_args.update(
|
||||
cache_dir=global_cache_dir("diffusers"),
|
||||
cache_dir=global_cache_dir("hub"),
|
||||
local_files_only=not Globals.internet_available,
|
||||
)
|
||||
|
||||
@ -1172,7 +1170,7 @@ class ModelManager(object):
|
||||
|
||||
@staticmethod
|
||||
def _delete_model_from_cache(repo_id):
|
||||
cache_info = scan_cache_dir(global_cache_dir("diffusers"))
|
||||
cache_info = scan_cache_dir(global_cache_dir("hub"))
|
||||
|
||||
# I'm sure there is a way to do this with comprehensions
|
||||
# but the code quickly became incomprehensible!
|
||||
|
@ -640,7 +640,7 @@ def do_textual_inversion_training(
|
||||
assert (
|
||||
pretrained_model_name_or_path
|
||||
), f"models.yaml error: neither 'repo_id' nor 'path' is defined for {model}"
|
||||
pipeline_args = dict(cache_dir=global_cache_dir("diffusers"))
|
||||
pipeline_args = dict(cache_dir=global_cache_dir("hub"))
|
||||
|
||||
# Load tokenizer
|
||||
if tokenizer_name:
|
||||
|
@ -442,7 +442,7 @@ def main():
|
||||
args = _parse_args()
|
||||
global_set_root(args.root_dir)
|
||||
|
||||
cache_dir = str(global_cache_dir("diffusers"))
|
||||
cache_dir = str(global_cache_dir("hub"))
|
||||
os.environ[
|
||||
"HF_HOME"
|
||||
] = cache_dir # because not clear the merge pipeline is honoring cache_dir
|
||||
|
Loading…
Reference in New Issue
Block a user