mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
cross-attention working with placeholder {} syntax
This commit is contained in:
parent
8ff507b03b
commit
1fc1f8bf05
@ -400,7 +400,7 @@ class Generate:
|
||||
mask_image = None
|
||||
|
||||
try:
|
||||
uc, c, ec = get_uc_and_c_and_ec(
|
||||
uc, c, ec, ec_index_map = get_uc_and_c_and_ec(
|
||||
prompt, model =self.model,
|
||||
skip_normalize=skip_normalize,
|
||||
log_tokens =self.log_tokenization
|
||||
@ -438,7 +438,7 @@ class Generate:
|
||||
sampler=self.sampler,
|
||||
steps=steps,
|
||||
cfg_scale=cfg_scale,
|
||||
conditioning=(uc, c, ec),
|
||||
conditioning=(uc, c, ec, ec_index_map),
|
||||
ddim_eta=ddim_eta,
|
||||
image_callback=image_callback, # called after the final image is generated
|
||||
step_callback=step_callback, # called after each intermediate image is generated
|
||||
|
@ -10,6 +10,8 @@ log_tokenization() print out colour-coded tokens and warn if trunca
|
||||
|
||||
'''
|
||||
import re
|
||||
from difflib import SequenceMatcher
|
||||
|
||||
import torch
|
||||
|
||||
def get_uc_and_c_and_ec(prompt, model, log_tokens=False, skip_normalize=False):
|
||||
@ -35,32 +37,46 @@ def get_uc_and_c_and_ec(prompt, model, log_tokens=False, skip_normalize=False):
|
||||
clean_prompt = edited_regex_compile.sub(' ', prompt)
|
||||
prompt = re.sub(' +', ' ', clean_prompt)
|
||||
|
||||
uc = model.get_learned_conditioning([unconditioned_words])
|
||||
ec = None
|
||||
if edited_words is not None:
|
||||
ec = model.get_learned_conditioning([edited_words])
|
||||
|
||||
# get weighted sub-prompts
|
||||
weighted_subprompts = split_weighted_subprompts(
|
||||
prompt, skip_normalize
|
||||
)
|
||||
|
||||
ec = None
|
||||
edit_opcodes = None
|
||||
|
||||
uc, _ = model.get_learned_conditioning([unconditioned_words])
|
||||
|
||||
if len(weighted_subprompts) > 1:
|
||||
# i dont know if this is correct.. but it works
|
||||
c = torch.zeros_like(uc)
|
||||
# normalize each "sub prompt" and add it
|
||||
for subprompt, weight in weighted_subprompts:
|
||||
log_tokenization(subprompt, model, log_tokens, weight)
|
||||
subprompt_embeddings, _ = model.get_learned_conditioning([subprompt])
|
||||
c = torch.add(
|
||||
c,
|
||||
model.get_learned_conditioning([subprompt]),
|
||||
subprompt_embeddings,
|
||||
alpha=weight,
|
||||
)
|
||||
if edited_words is not None:
|
||||
print("can't do cross-attention control with blends just yet, ignoring edits")
|
||||
else: # just standard 1 prompt
|
||||
log_tokenization(prompt, model, log_tokens, 1)
|
||||
c = model.get_learned_conditioning([prompt])
|
||||
uc = model.get_learned_conditioning([unconditioned_words])
|
||||
return (uc, c, ec)
|
||||
c, c_tokens = model.get_learned_conditioning([prompt])
|
||||
if edited_words is not None:
|
||||
ec, ec_tokens = model.get_learned_conditioning([edited_words])
|
||||
edit_opcodes = build_token_edit_opcodes(c_tokens, ec_tokens)
|
||||
|
||||
return (uc, c, ec, edit_opcodes)
|
||||
|
||||
def build_token_edit_opcodes(c_tokens, ec_tokens):
|
||||
tokens = c_tokens.cpu().numpy()[0]
|
||||
tokens_edit = ec_tokens.cpu().numpy()[0]
|
||||
|
||||
opcodes = SequenceMatcher(None, tokens, tokens_edit).get_opcodes()
|
||||
return opcodes
|
||||
|
||||
|
||||
def split_weighted_subprompts(text, skip_normalize=False)->list:
|
||||
"""
|
||||
|
@ -19,7 +19,7 @@ class Txt2Img(Generator):
|
||||
kwargs are 'width' and 'height'
|
||||
"""
|
||||
self.perlin = perlin
|
||||
uc, c, ec = conditioning
|
||||
uc, c, ec, edit_index_map = conditioning
|
||||
|
||||
@torch.no_grad()
|
||||
def make_image(x_T):
|
||||
@ -44,6 +44,7 @@ class Txt2Img(Generator):
|
||||
unconditional_guidance_scale = cfg_scale,
|
||||
unconditional_conditioning = uc,
|
||||
edited_conditioning = ec,
|
||||
edit_token_index_map = edit_index_map,
|
||||
eta = ddim_eta,
|
||||
img_callback = step_callback,
|
||||
threshold = threshold,
|
||||
|
@ -2,89 +2,99 @@ from enum import Enum
|
||||
import torch
|
||||
|
||||
|
||||
# adapted from bloc97's CrossAttentionControl colab
|
||||
# https://github.com/bloc97/CrossAttentionControl
|
||||
|
||||
class CrossAttentionControl:
|
||||
class AttentionType(Enum):
|
||||
SELF = 1
|
||||
TOKENS = 2
|
||||
|
||||
@classmethod
|
||||
def get_attention_module(cls, model, which: AttentionType):
|
||||
which_attn = "attn1" if which is cls.AttentionType.SELF else "attn2"
|
||||
module = next(module for name, module in model.named_modules() if
|
||||
type(module).__name__ == "CrossAttention" and which_attn in name)
|
||||
return module
|
||||
|
||||
@classmethod
|
||||
def setup_attention_editing(cls, model, original_tokens_length: int,
|
||||
def setup_attention_editing(cls, model,
|
||||
substitute_conditioning: torch.Tensor = None,
|
||||
token_indices_to_edit: list = None):
|
||||
edit_opcodes: list = None):
|
||||
"""
|
||||
:param model: The unet model to inject into.
|
||||
:param substitute_conditioning: The "edited" conditioning vector, [Bx77x768]
|
||||
:param edit_opcodes: Opcodes from difflib.SequenceMatcher describing how the base
|
||||
conditionings map to the "edited" conditionings.
|
||||
:return:
|
||||
"""
|
||||
|
||||
# adapted from init_attention_edit
|
||||
self_attention_module = cls.get_attention_module(model, cls.AttentionType.SELF)
|
||||
tokens_attention_module = cls.get_attention_module(model, cls.AttentionType.TOKENS)
|
||||
|
||||
if substitute_conditioning is not None:
|
||||
|
||||
device = substitute_conditioning.device
|
||||
|
||||
# this is not very torch-y
|
||||
mask = torch.zeros(original_tokens_length)
|
||||
for i in token_indices_to_edit:
|
||||
mask[i] = 1
|
||||
max_length = model.inner_model.cond_stage_model.max_length
|
||||
# mask=1 means use base prompt attention, mask=0 means use edited prompt attention
|
||||
mask = torch.zeros(max_length)
|
||||
indices_target = torch.arange(max_length, dtype=torch.long)
|
||||
indices = torch.zeros(max_length, dtype=torch.long)
|
||||
for name, a0, a1, b0, b1 in edit_opcodes:
|
||||
if b0 < max_length:
|
||||
if name == "equal":# or (name == "replace" and a1 - a0 == b1 - b0):
|
||||
# these tokens have not been edited
|
||||
indices[b0:b1] = indices_target[a0:a1]
|
||||
mask[b0:b1] = 1
|
||||
|
||||
self_attention_module.last_attn_slice_mask = None
|
||||
self_attention_module.last_attn_slice_indices = None
|
||||
tokens_attention_module.last_attn_slice_mask = mask.to(device)
|
||||
tokens_attention_module.last_attn_slice_indices = torch.tensor(token_indices_to_edit, device=device)
|
||||
for m in cls.get_attention_modules(model, cls.AttentionType.SELF):
|
||||
m.last_attn_slice_mask = None
|
||||
m.last_attn_slice_indices = None
|
||||
|
||||
for m in cls.get_attention_modules(model, cls.AttentionType.TOKENS):
|
||||
m.last_attn_slice_mask = mask.to(device)
|
||||
m.last_attn_slice_indices = indices.to(device)
|
||||
|
||||
cls.inject_attention_functions(model)
|
||||
|
||||
|
||||
@classmethod
|
||||
def get_attention_modules(cls, model, which: AttentionType):
|
||||
which_attn = "attn1" if which is cls.AttentionType.SELF else "attn2"
|
||||
return [module for name, module in model.named_modules() if
|
||||
type(module).__name__ == "CrossAttention" and which_attn in name]
|
||||
|
||||
|
||||
@classmethod
|
||||
def request_save_attention_maps(cls, model):
|
||||
self_attention_module = cls.get_attention_module(model, cls.AttentionType.SELF)
|
||||
tokens_attention_module = cls.get_attention_module(model, cls.AttentionType.TOKENS)
|
||||
self_attention_module.save_last_attn_slice = True
|
||||
tokens_attention_module.save_last_attn_slice = True
|
||||
self_attention_modules = cls.get_attention_modules(model, cls.AttentionType.SELF)
|
||||
tokens_attention_modules = cls.get_attention_modules(model, cls.AttentionType.TOKENS)
|
||||
for m in self_attention_modules+tokens_attention_modules:
|
||||
m.save_last_attn_slice = True
|
||||
|
||||
@classmethod
|
||||
def request_apply_saved_attention_maps(cls, model):
|
||||
self_attention_module = cls.get_attention_module(model, cls.AttentionType.SELF)
|
||||
tokens_attention_module = cls.get_attention_module(model, cls.AttentionType.TOKENS)
|
||||
self_attention_module.use_last_attn_slice = True
|
||||
tokens_attention_module.use_last_attn_slice = True
|
||||
self_attention_modules = cls.get_attention_modules(model, cls.AttentionType.SELF)
|
||||
tokens_attention_modules = cls.get_attention_modules(model, cls.AttentionType.TOKENS)
|
||||
for m in self_attention_modules+tokens_attention_modules:
|
||||
m.use_last_attn_slice = True
|
||||
|
||||
|
||||
@classmethod
|
||||
def inject_attention_functions(cls, unet):
|
||||
# ORIGINAL SOURCE CODE: https://github.com/huggingface/diffusers/blob/91ddd2a25b848df0fa1262d4f1cd98c7ccb87750/src/diffusers/models/attention.py#L276
|
||||
def new_attention(self, query, key, value):
|
||||
# TODO: use baddbmm for better performance
|
||||
print(f"entered new_attention")
|
||||
attention_scores = torch.matmul(query, key.transpose(-1, -2)) * self.scale
|
||||
attn_slice = attention_scores.softmax(dim=-1)
|
||||
# compute attention output
|
||||
|
||||
if self.use_last_attn_slice:
|
||||
if self.last_attn_slice_mask is not None:
|
||||
print('using masked last_attn_slice')
|
||||
|
||||
new_attn_slice = (torch.index_select(self.last_attn_slice, -1,
|
||||
self.last_attn_slice_indices))
|
||||
attn_slice = (attn_slice * (1 - self.last_attn_slice_mask)
|
||||
+ new_attn_slice * self.last_attn_slice_mask)
|
||||
base_attn_slice = torch.index_select(self.last_attn_slice, -1, self.last_attn_slice_indices)
|
||||
base_attn_slice_mask = self.last_attn_slice_mask
|
||||
this_attn_slice_mask = 1 - self.last_attn_slice_mask
|
||||
attn_slice = attn_slice * this_attn_slice_mask + base_attn_slice * base_attn_slice_mask
|
||||
else:
|
||||
print('using unmasked last_attn_slice')
|
||||
attn_slice = self.last_attn_slice
|
||||
|
||||
self.use_last_attn_slice = False
|
||||
else:
|
||||
print('not using last_attn_slice')
|
||||
|
||||
if self.save_last_attn_slice:
|
||||
print('saving last_attn_slice')
|
||||
self.last_attn_slice = attn_slice
|
||||
self.save_last_attn_slice = False
|
||||
else:
|
||||
print('not saving last_attn_slice')
|
||||
|
||||
if self.use_last_attn_weights and self.last_attn_slice_weights is not None:
|
||||
attn_slice = attn_slice * self.last_attn_slice_weights
|
||||
@ -92,16 +102,59 @@ class CrossAttentionControl:
|
||||
|
||||
hidden_states = torch.matmul(attn_slice, value)
|
||||
# reshape hidden_states
|
||||
hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
for _, module in unet.named_modules():
|
||||
def new_sliced_attention(self, query, key, value, sequence_length, dim):
|
||||
|
||||
batch_size_attention = query.shape[0]
|
||||
hidden_states = torch.zeros(
|
||||
(batch_size_attention, sequence_length, dim // self.heads), device=query.device, dtype=query.dtype
|
||||
)
|
||||
slice_size = self._slice_size if self._slice_size is not None else hidden_states.shape[0]
|
||||
for i in range(hidden_states.shape[0] // slice_size):
|
||||
start_idx = i * slice_size
|
||||
end_idx = (i + 1) * slice_size
|
||||
attn_slice = (
|
||||
torch.matmul(query[start_idx:end_idx], key[start_idx:end_idx].transpose(1, 2)) * self.scale
|
||||
) # TODO: use baddbmm for better performance
|
||||
attn_slice = attn_slice.softmax(dim=-1)
|
||||
|
||||
if self.use_last_attn_slice:
|
||||
if self.last_attn_slice_mask is not None:
|
||||
new_attn_slice = torch.index_select(self.last_attn_slice, -1, self.last_attn_slice_indices)
|
||||
attn_slice = attn_slice * (
|
||||
1 - self.last_attn_slice_mask) + new_attn_slice * self.last_attn_slice_mask
|
||||
else:
|
||||
attn_slice = self.last_attn_slice
|
||||
|
||||
self.use_last_attn_slice = False
|
||||
|
||||
if self.save_last_attn_slice:
|
||||
self.last_attn_slice = attn_slice
|
||||
self.save_last_attn_slice = False
|
||||
|
||||
if self.use_last_attn_weights and self.last_attn_slice_weights is not None:
|
||||
attn_slice = attn_slice * self.last_attn_slice_weights
|
||||
self.use_last_attn_weights = False
|
||||
|
||||
attn_slice = torch.matmul(attn_slice, value[start_idx:end_idx])
|
||||
|
||||
hidden_states[start_idx:end_idx] = attn_slice
|
||||
|
||||
# reshape hidden_states
|
||||
hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
for name, module in unet.named_modules():
|
||||
module_name = type(module).__name__
|
||||
if module_name == 'CrossAttention':
|
||||
if module_name == "CrossAttention":
|
||||
module.last_attn_slice = None
|
||||
module.use_last_attn_slice = False
|
||||
module.use_last_attn_weights = False
|
||||
module.save_last_attn_slice = False
|
||||
module.cross_attention_callback = new_attention.__get__(module, type(module))
|
||||
module._sliced_attention = new_sliced_attention.__get__(module, type(module))
|
||||
module._attention = new_attention.__get__(module, type(module))
|
||||
|
||||
|
||||
# original code below
|
||||
|
@ -30,7 +30,7 @@ def cfg_apply_threshold(result, threshold = 0.0, scale = 0.7):
|
||||
|
||||
|
||||
class CFGDenoiser(nn.Module):
|
||||
def __init__(self, model, threshold = 0, warmup = 0, edited_conditioning = None):
|
||||
def __init__(self, model, threshold = 0, warmup = 0, edited_conditioning = None, edit_opcodes = None):
|
||||
super().__init__()
|
||||
self.inner_model = model
|
||||
self.threshold = threshold
|
||||
@ -39,24 +39,23 @@ class CFGDenoiser(nn.Module):
|
||||
|
||||
self.edited_conditioning = edited_conditioning
|
||||
|
||||
if self.edited_conditioning is not None:
|
||||
initial_tokens_count = 77 # '<start> a cat sitting on a car <end>'
|
||||
token_indices_to_edit = [2] # 'cat'
|
||||
CrossAttentionControl.setup_attention_editing(self.inner_model, initial_tokens_count, edited_conditioning, token_indices_to_edit)
|
||||
if edited_conditioning is not None:
|
||||
# <start> a cat sitting on a car <end>
|
||||
CrossAttentionControl.setup_attention_editing(self.inner_model, edited_conditioning, edit_opcodes)
|
||||
else:
|
||||
# pass through the attention func but don't act on it
|
||||
CrossAttentionControl.setup_attention_editing(self.inner_model)
|
||||
|
||||
def forward(self, x, sigma, uncond, cond, cond_scale):
|
||||
x_in = torch.cat([x] * 2)
|
||||
sigma_in = torch.cat([sigma] * 2)
|
||||
cond_in = torch.cat([uncond, cond])
|
||||
|
||||
print('generating new unconditioned latents')
|
||||
print('generating unconditioned latents')
|
||||
unconditioned_latents = self.inner_model(x, sigma, cond=uncond)
|
||||
|
||||
# process x using the original prompt, saving the attention maps if required
|
||||
if self.edited_conditioning is not None:
|
||||
# this is automatically toggled off after the model forward()
|
||||
CrossAttentionControl.request_save_attention_maps(self.inner_model)
|
||||
print('generating new conditioned latents')
|
||||
print('generating conditioned latents')
|
||||
conditioned_latents = self.inner_model(x, sigma, cond=cond)
|
||||
|
||||
if self.edited_conditioning is not None:
|
||||
@ -192,6 +191,7 @@ class KSampler(Sampler):
|
||||
unconditional_guidance_scale=1.0,
|
||||
unconditional_conditioning=None,
|
||||
edited_conditioning=None,
|
||||
edit_token_index_map=None,
|
||||
threshold = 0,
|
||||
perlin = 0,
|
||||
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
||||
@ -223,7 +223,8 @@ class KSampler(Sampler):
|
||||
else:
|
||||
x = torch.randn([batch_size, *shape], device=self.device) * sigmas[0]
|
||||
|
||||
model_wrap_cfg = CFGDenoiser(self.model, threshold=threshold, warmup=max(0.8*S,S-10), edited_conditioning=edited_conditioning)
|
||||
model_wrap_cfg = CFGDenoiser(self.model, threshold=threshold, warmup=max(0.8*S,S-10),
|
||||
edited_conditioning=edited_conditioning, edit_opcodes=edit_token_index_map)
|
||||
extra_args = {
|
||||
'cond': conditioning,
|
||||
'uncond': unconditional_conditioning,
|
||||
|
@ -1,155 +1,367 @@
|
||||
from inspect import isfunction
|
||||
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import math
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch import nn, einsum
|
||||
from einops import rearrange, repeat
|
||||
|
||||
from ldm.modules.diffusionmodules.util import checkpoint
|
||||
|
||||
import psutil
|
||||
|
||||
def exists(val):
|
||||
return val is not None
|
||||
from torch import nn
|
||||
|
||||
|
||||
def uniq(arr):
|
||||
return{el: True for el in arr}.keys()
|
||||
class AttentionBlock(nn.Module):
|
||||
"""
|
||||
An attention block that allows spatial positions to attend to each other. Originally ported from here, but adapted
|
||||
to the N-d case.
|
||||
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
|
||||
Uses three q, k, v linear layers to compute attention.
|
||||
|
||||
Parameters:
|
||||
channels (:obj:`int`): The number of channels in the input and output.
|
||||
num_head_channels (:obj:`int`, *optional*):
|
||||
The number of channels in each head. If None, then `num_heads` = 1.
|
||||
num_groups (:obj:`int`, *optional*, defaults to 32): The number of groups to use for group norm.
|
||||
rescale_output_factor (:obj:`float`, *optional*, defaults to 1.0): The factor to rescale the output by.
|
||||
eps (:obj:`float`, *optional*, defaults to 1e-5): The epsilon value to use for group norm.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
channels: int,
|
||||
num_head_channels: Optional[int] = None,
|
||||
num_groups: int = 32,
|
||||
rescale_output_factor: float = 1.0,
|
||||
eps: float = 1e-5,
|
||||
):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
|
||||
self.num_heads = channels // num_head_channels if num_head_channels is not None else 1
|
||||
self.num_head_size = num_head_channels
|
||||
self.group_norm = nn.GroupNorm(num_channels=channels, num_groups=num_groups, eps=eps, affine=True)
|
||||
|
||||
# define q,k,v as linear layers
|
||||
self.query = nn.Linear(channels, channels)
|
||||
self.key = nn.Linear(channels, channels)
|
||||
self.value = nn.Linear(channels, channels)
|
||||
|
||||
self.rescale_output_factor = rescale_output_factor
|
||||
self.proj_attn = nn.Linear(channels, channels, 1)
|
||||
|
||||
def transpose_for_scores(self, projection: torch.Tensor) -> torch.Tensor:
|
||||
new_projection_shape = projection.size()[:-1] + (self.num_heads, -1)
|
||||
# move heads to 2nd position (B, T, H * D) -> (B, T, H, D) -> (B, H, T, D)
|
||||
new_projection = projection.view(new_projection_shape).permute(0, 2, 1, 3)
|
||||
return new_projection
|
||||
|
||||
def forward(self, hidden_states):
|
||||
residual = hidden_states
|
||||
batch, channel, height, width = hidden_states.shape
|
||||
|
||||
# norm
|
||||
hidden_states = self.group_norm(hidden_states)
|
||||
|
||||
hidden_states = hidden_states.view(batch, channel, height * width).transpose(1, 2)
|
||||
|
||||
# proj to q, k, v
|
||||
query_proj = self.query(hidden_states)
|
||||
key_proj = self.key(hidden_states)
|
||||
value_proj = self.value(hidden_states)
|
||||
|
||||
# transpose
|
||||
query_states = self.transpose_for_scores(query_proj)
|
||||
key_states = self.transpose_for_scores(key_proj)
|
||||
value_states = self.transpose_for_scores(value_proj)
|
||||
|
||||
# get scores
|
||||
scale = 1 / math.sqrt(math.sqrt(self.channels / self.num_heads))
|
||||
attention_scores = torch.matmul(query_states * scale, key_states.transpose(-1, -2) * scale) # TODO: use baddmm
|
||||
attention_probs = torch.softmax(attention_scores.float(), dim=-1).type(attention_scores.dtype)
|
||||
|
||||
# compute attention output
|
||||
hidden_states = torch.matmul(attention_probs, value_states)
|
||||
|
||||
hidden_states = hidden_states.permute(0, 2, 1, 3).contiguous()
|
||||
new_hidden_states_shape = hidden_states.size()[:-2] + (self.channels,)
|
||||
hidden_states = hidden_states.view(new_hidden_states_shape)
|
||||
|
||||
# compute next hidden_states
|
||||
hidden_states = self.proj_attn(hidden_states)
|
||||
hidden_states = hidden_states.transpose(-1, -2).reshape(batch, channel, height, width)
|
||||
|
||||
# res connect and rescale
|
||||
hidden_states = (hidden_states + residual) / self.rescale_output_factor
|
||||
return hidden_states
|
||||
|
||||
|
||||
def default(val, d):
|
||||
if exists(val):
|
||||
return val
|
||||
return d() if isfunction(d) else d
|
||||
class SpatialTransformer(nn.Module):
|
||||
"""
|
||||
Transformer block for image-like data. First, project the input (aka embedding) and reshape to b, t, d. Then apply
|
||||
standard transformer action. Finally, reshape to image.
|
||||
|
||||
Parameters:
|
||||
in_channels (:obj:`int`): The number of channels in the input and output.
|
||||
n_heads (:obj:`int`): The number of heads to use for multi-head attention.
|
||||
d_head (:obj:`int`): The number of channels in each head.
|
||||
depth (:obj:`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
|
||||
dropout (:obj:`float`, *optional*, defaults to 0.1): The dropout probability to use.
|
||||
context_dim (:obj:`int`, *optional*): The number of context dimensions to use.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
in_channels: int,
|
||||
n_heads: int,
|
||||
d_head: int,
|
||||
depth: int = 1,
|
||||
dropout: float = 0.0,
|
||||
num_groups: int = 32,
|
||||
context_dim: Optional[int] = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.n_heads = n_heads
|
||||
self.d_head = d_head
|
||||
self.in_channels = in_channels
|
||||
inner_dim = n_heads * d_head
|
||||
self.norm = torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
||||
|
||||
self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
|
||||
|
||||
self.transformer_blocks = nn.ModuleList(
|
||||
[
|
||||
BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim)
|
||||
for d in range(depth)
|
||||
]
|
||||
)
|
||||
|
||||
self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
||||
|
||||
def _set_attention_slice(self, slice_size):
|
||||
for block in self.transformer_blocks:
|
||||
block._set_attention_slice(slice_size)
|
||||
|
||||
def forward(self, hidden_states, context=None):
|
||||
# note: if no context is given, cross-attention defaults to self-attention
|
||||
batch, channel, height, weight = hidden_states.shape
|
||||
residual = hidden_states
|
||||
hidden_states = self.norm(hidden_states)
|
||||
hidden_states = self.proj_in(hidden_states)
|
||||
inner_dim = hidden_states.shape[1]
|
||||
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
|
||||
for block in self.transformer_blocks:
|
||||
hidden_states = block(hidden_states, context=context)
|
||||
hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2)
|
||||
hidden_states = self.proj_out(hidden_states)
|
||||
return hidden_states + residual
|
||||
|
||||
|
||||
def max_neg_value(t):
|
||||
return -torch.finfo(t.dtype).max
|
||||
class BasicTransformerBlock(nn.Module):
|
||||
r"""
|
||||
A basic Transformer block.
|
||||
|
||||
Parameters:
|
||||
dim (:obj:`int`): The number of channels in the input and output.
|
||||
n_heads (:obj:`int`): The number of heads to use for multi-head attention.
|
||||
d_head (:obj:`int`): The number of channels in each head.
|
||||
dropout (:obj:`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
||||
context_dim (:obj:`int`, *optional*): The size of the context vector for cross attention.
|
||||
gated_ff (:obj:`bool`, *optional*, defaults to :obj:`False`): Whether to use a gated feed-forward network.
|
||||
checkpoint (:obj:`bool`, *optional*, defaults to :obj:`False`): Whether to use checkpointing.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
n_heads: int,
|
||||
d_head: int,
|
||||
dropout=0.0,
|
||||
context_dim: Optional[int] = None,
|
||||
gated_ff: bool = True,
|
||||
checkpoint: bool = True,
|
||||
):
|
||||
super().__init__()
|
||||
self.attn1 = CrossAttention(
|
||||
query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout
|
||||
) # is a self-attention
|
||||
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
|
||||
self.attn2 = CrossAttention(
|
||||
query_dim=dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, dropout=dropout
|
||||
) # is self-attn if context is none
|
||||
self.norm1 = nn.LayerNorm(dim)
|
||||
self.norm2 = nn.LayerNorm(dim)
|
||||
self.norm3 = nn.LayerNorm(dim)
|
||||
self.checkpoint = checkpoint
|
||||
|
||||
def _set_attention_slice(self, slice_size):
|
||||
self.attn1._slice_size = slice_size
|
||||
self.attn2._slice_size = slice_size
|
||||
|
||||
def forward(self, hidden_states, context=None):
|
||||
hidden_states = hidden_states.contiguous() if hidden_states.device.type == "mps" else hidden_states
|
||||
hidden_states = self.attn1(self.norm1(hidden_states)) + hidden_states
|
||||
hidden_states = self.attn2(self.norm2(hidden_states), context=context) + hidden_states
|
||||
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
|
||||
return hidden_states
|
||||
|
||||
|
||||
def init_(tensor):
|
||||
dim = tensor.shape[-1]
|
||||
std = 1 / math.sqrt(dim)
|
||||
tensor.uniform_(-std, std)
|
||||
return tensor
|
||||
class CrossAttention(nn.Module):
|
||||
r"""
|
||||
A cross attention layer.
|
||||
|
||||
Parameters:
|
||||
query_dim (:obj:`int`): The number of channels in the query.
|
||||
context_dim (:obj:`int`, *optional*):
|
||||
The number of channels in the context. If not given, defaults to `query_dim`.
|
||||
heads (:obj:`int`, *optional*, defaults to 8): The number of heads to use for multi-head attention.
|
||||
dim_head (:obj:`int`, *optional*, defaults to 64): The number of channels in each head.
|
||||
dropout (:obj:`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, query_dim: int, context_dim: Optional[int] = None, heads: int = 8, dim_head: int = 64, dropout: int = 0.0
|
||||
):
|
||||
super().__init__()
|
||||
inner_dim = dim_head * heads
|
||||
context_dim = context_dim if context_dim is not None else query_dim
|
||||
|
||||
self.scale = dim_head**-0.5
|
||||
self.heads = heads
|
||||
# for slice_size > 0 the attention score computation
|
||||
# is split across the batch axis to save memory
|
||||
# You can set slice_size with `set_attention_slice`
|
||||
self._slice_size = None
|
||||
|
||||
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
||||
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
||||
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
||||
|
||||
self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout))
|
||||
|
||||
def reshape_heads_to_batch_dim(self, tensor):
|
||||
batch_size, seq_len, dim = tensor.shape
|
||||
head_size = self.heads
|
||||
tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
|
||||
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size)
|
||||
return tensor
|
||||
|
||||
def reshape_batch_dim_to_heads(self, tensor):
|
||||
batch_size, seq_len, dim = tensor.shape
|
||||
head_size = self.heads
|
||||
tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
|
||||
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
|
||||
return tensor
|
||||
|
||||
def forward(self, hidden_states, context=None, mask=None):
|
||||
batch_size, sequence_length, _ = hidden_states.shape
|
||||
|
||||
query = self.to_q(hidden_states)
|
||||
context = context if context is not None else hidden_states
|
||||
key = self.to_k(context)
|
||||
value = self.to_v(context)
|
||||
|
||||
dim = query.shape[-1]
|
||||
|
||||
query = self.reshape_heads_to_batch_dim(query)
|
||||
key = self.reshape_heads_to_batch_dim(key)
|
||||
value = self.reshape_heads_to_batch_dim(value)
|
||||
|
||||
# TODO(PVP) - mask is currently never used. Remember to re-implement when used
|
||||
|
||||
# attention, what we cannot get enough of
|
||||
|
||||
if self._slice_size is None or query.shape[0] // self._slice_size == 1:
|
||||
hidden_states = self._attention(query, key, value)
|
||||
else:
|
||||
hidden_states = self._sliced_attention(query, key, value, sequence_length, dim)
|
||||
|
||||
return self.to_out(hidden_states)
|
||||
|
||||
def _attention(self, query, key, value):
|
||||
# TODO: use baddbmm for better performance
|
||||
attention_scores = torch.matmul(query, key.transpose(-1, -2)) * self.scale
|
||||
attention_probs = attention_scores.softmax(dim=-1)
|
||||
# compute attention output
|
||||
hidden_states = torch.matmul(attention_probs, value)
|
||||
# reshape hidden_states
|
||||
hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
def _sliced_attention(self, query, key, value, sequence_length, dim):
|
||||
batch_size_attention = query.shape[0]
|
||||
hidden_states = torch.zeros(
|
||||
(batch_size_attention, sequence_length, dim // self.heads), device=query.device, dtype=query.dtype
|
||||
)
|
||||
slice_size = self._slice_size if self._slice_size is not None else hidden_states.shape[0]
|
||||
for i in range(hidden_states.shape[0] // slice_size):
|
||||
start_idx = i * slice_size
|
||||
end_idx = (i + 1) * slice_size
|
||||
attn_slice = (
|
||||
torch.matmul(query[start_idx:end_idx], key[start_idx:end_idx].transpose(1, 2)) * self.scale
|
||||
) # TODO: use baddbmm for better performance
|
||||
attn_slice = attn_slice.softmax(dim=-1)
|
||||
attn_slice = torch.matmul(attn_slice, value[start_idx:end_idx])
|
||||
|
||||
hidden_states[start_idx:end_idx] = attn_slice
|
||||
|
||||
# reshape hidden_states
|
||||
hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class FeedForward(nn.Module):
|
||||
r"""
|
||||
A feed-forward layer.
|
||||
|
||||
Parameters:
|
||||
dim (:obj:`int`): The number of channels in the input.
|
||||
dim_out (:obj:`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
|
||||
mult (:obj:`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
|
||||
glu (:obj:`bool`, *optional*, defaults to :obj:`False`): Whether to use GLU activation.
|
||||
dropout (:obj:`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, dim: int, dim_out: Optional[int] = None, mult: int = 4, glu: bool = False, dropout: float = 0.0
|
||||
):
|
||||
super().__init__()
|
||||
inner_dim = int(dim * mult)
|
||||
dim_out = dim_out if dim_out is not None else dim
|
||||
project_in = GEGLU(dim, inner_dim)
|
||||
|
||||
self.net = nn.Sequential(project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out))
|
||||
|
||||
def forward(self, hidden_states):
|
||||
return self.net(hidden_states)
|
||||
|
||||
|
||||
# feedforward
|
||||
class GEGLU(nn.Module):
|
||||
def __init__(self, dim_in, dim_out):
|
||||
r"""
|
||||
A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202.
|
||||
|
||||
Parameters:
|
||||
dim_in (:obj:`int`): The number of channels in the input.
|
||||
dim_out (:obj:`int`): The number of channels in the output.
|
||||
"""
|
||||
|
||||
def __init__(self, dim_in: int, dim_out: int):
|
||||
super().__init__()
|
||||
self.proj = nn.Linear(dim_in, dim_out * 2)
|
||||
|
||||
def forward(self, x):
|
||||
x, gate = self.proj(x).chunk(2, dim=-1)
|
||||
return x * F.gelu(gate)
|
||||
|
||||
|
||||
class FeedForward(nn.Module):
|
||||
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
|
||||
super().__init__()
|
||||
inner_dim = int(dim * mult)
|
||||
dim_out = default(dim_out, dim)
|
||||
project_in = nn.Sequential(
|
||||
nn.Linear(dim, inner_dim),
|
||||
nn.GELU()
|
||||
) if not glu else GEGLU(dim, inner_dim)
|
||||
|
||||
self.net = nn.Sequential(
|
||||
project_in,
|
||||
nn.Dropout(dropout),
|
||||
nn.Linear(inner_dim, dim_out)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.net(x)
|
||||
|
||||
|
||||
def zero_module(module):
|
||||
"""
|
||||
Zero out the parameters of a module and return it.
|
||||
"""
|
||||
for p in module.parameters():
|
||||
p.detach().zero_()
|
||||
return module
|
||||
|
||||
|
||||
def Normalize(in_channels):
|
||||
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
||||
|
||||
|
||||
class LinearAttention(nn.Module):
|
||||
def __init__(self, dim, heads=4, dim_head=32):
|
||||
super().__init__()
|
||||
self.heads = heads
|
||||
hidden_dim = dim_head * heads
|
||||
self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False)
|
||||
self.to_out = nn.Conv2d(hidden_dim, dim, 1)
|
||||
|
||||
def forward(self, x):
|
||||
b, c, h, w = x.shape
|
||||
qkv = self.to_qkv(x)
|
||||
q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3)
|
||||
k = k.softmax(dim=-1)
|
||||
context = torch.einsum('bhdn,bhen->bhde', k, v)
|
||||
out = torch.einsum('bhde,bhdn->bhen', context, q)
|
||||
out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w)
|
||||
return self.to_out(out)
|
||||
|
||||
|
||||
class SpatialSelfAttention(nn.Module):
|
||||
def __init__(self, in_channels):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
|
||||
self.norm = Normalize(in_channels)
|
||||
self.q = torch.nn.Conv2d(in_channels,
|
||||
in_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0)
|
||||
self.k = torch.nn.Conv2d(in_channels,
|
||||
in_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0)
|
||||
self.v = torch.nn.Conv2d(in_channels,
|
||||
in_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0)
|
||||
self.proj_out = torch.nn.Conv2d(in_channels,
|
||||
in_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0)
|
||||
|
||||
def forward(self, x):
|
||||
h_ = x
|
||||
h_ = self.norm(h_)
|
||||
q = self.q(h_)
|
||||
k = self.k(h_)
|
||||
v = self.v(h_)
|
||||
|
||||
# compute attention
|
||||
b,c,h,w = q.shape
|
||||
q = rearrange(q, 'b c h w -> b (h w) c')
|
||||
k = rearrange(k, 'b c h w -> b c (h w)')
|
||||
w_ = torch.einsum('bij,bjk->bik', q, k)
|
||||
|
||||
w_ = w_ * (int(c)**(-0.5))
|
||||
w_ = torch.nn.functional.softmax(w_, dim=2)
|
||||
|
||||
# attend to values
|
||||
v = rearrange(v, 'b c h w -> b c (h w)')
|
||||
w_ = rearrange(w_, 'b i j -> b j i')
|
||||
h_ = torch.einsum('bij,bjk->bik', v, w_)
|
||||
h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h)
|
||||
h_ = self.proj_out(h_)
|
||||
|
||||
return x+h_
|
||||
|
||||
|
||||
def forward(self, hidden_states):
|
||||
hidden_states, gate = self.proj(hidden_states).chunk(2, dim=-1)
|
||||
return hidden_states * F.gelu(gate)
|
||||
'''
|
||||
class CrossAttention(nn.Module):
|
||||
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):
|
||||
super().__init__()
|
||||
@ -172,48 +384,45 @@ class CrossAttention(nn.Module):
|
||||
|
||||
self.cross_attention_callback = None
|
||||
|
||||
def einsum_op_compvis(self, q, k, v):
|
||||
s = einsum('b i d, b j d -> b i j', q, k)
|
||||
s = s.softmax(dim=-1, dtype=s.dtype)
|
||||
return einsum('b i j, b j d -> b i d', s, v)
|
||||
|
||||
def einsum_op_slice_0(self, q, k, v, slice_size):
|
||||
def einsum_op_slice_dim0(self, q, k, v, slice_size, callback):
|
||||
r = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
|
||||
for i in range(0, q.shape[0], slice_size):
|
||||
end = i + slice_size
|
||||
r[i:end] = self.einsum_op_compvis(q[i:end], k[i:end], v[i:end])
|
||||
r[i:end] = callback(q[i:end], k[i:end], v[i:end], offset=i)
|
||||
return r
|
||||
|
||||
def einsum_op_slice_1(self, q, k, v, slice_size):
|
||||
def einsum_op_slice_dim1(self, q, k, v, slice_size, callback):
|
||||
r = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
|
||||
for i in range(0, q.shape[1], slice_size):
|
||||
end = i + slice_size
|
||||
r[:, i:end] = self.einsum_op_compvis(q[:, i:end], k, v)
|
||||
r[:, i:end] = callback(q[:, i:end], k, v, offset=i)
|
||||
return r
|
||||
|
||||
def einsum_op_mps_v1(self, q, k, v):
|
||||
def einsum_op_mps_v1(self, q, k, v, callback):
|
||||
if q.shape[1] <= 4096: # (512x512) max q.shape[1]: 4096
|
||||
return self.einsum_op_compvis(q, k, v)
|
||||
return callback(q, k, v)
|
||||
else:
|
||||
slice_size = math.floor(2**30 / (q.shape[0] * q.shape[1]))
|
||||
return self.einsum_op_slice_1(q, k, v, slice_size)
|
||||
return self.einsum_op_slice_dim1(q, k, v, slice_size, callback)
|
||||
|
||||
def einsum_op_mps_v2(self, q, k, v):
|
||||
def einsum_op_mps_v2(self, q, k, v, callback):
|
||||
if self.mem_total_gb > 8 and q.shape[1] <= 4096:
|
||||
return self.einsum_op_compvis(q, k, v)
|
||||
return callback(q, k, v, offset=0)
|
||||
else:
|
||||
return self.einsum_op_slice_0(q, k, v, 1)
|
||||
return self.einsum_op_slice_dim0(q, k, v, 1, callback)
|
||||
|
||||
def einsum_op_tensor_mem(self, q, k, v, max_tensor_mb):
|
||||
def einsum_op_tensor_mem(self, q, k, v, max_tensor_mb, callback):
|
||||
size_mb = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size() // (1 << 20)
|
||||
if size_mb <= max_tensor_mb:
|
||||
return self.einsum_op_compvis(q, k, v)
|
||||
return callback(q, k, v, offset=0)
|
||||
div = 1 << int((size_mb - 1) / max_tensor_mb).bit_length()
|
||||
if div <= q.shape[0]:
|
||||
return self.einsum_op_slice_0(q, k, v, q.shape[0] // div)
|
||||
return self.einsum_op_slice_1(q, k, v, max(q.shape[1] // div, 1))
|
||||
print("warning: untested call to einsum_op_slice_dim0")
|
||||
return self.einsum_op_slice_dim0(q, k, v, q.shape[0] // div, callback)
|
||||
print("warning: untested call to einsum_op_slice_dim1")
|
||||
return self.einsum_op_slice_dim1(q, k, v, max(q.shape[1] // div, 1), callback)
|
||||
|
||||
def einsum_op_cuda(self, q, k, v):
|
||||
def einsum_op_cuda(self, q, k, v, callback):
|
||||
stats = torch.cuda.memory_stats(q.device)
|
||||
mem_active = stats['active_bytes.all.current']
|
||||
mem_reserved = stats['reserved_bytes.all.current']
|
||||
@ -221,20 +430,26 @@ class CrossAttention(nn.Module):
|
||||
mem_free_torch = mem_reserved - mem_active
|
||||
mem_free_total = mem_free_cuda + mem_free_torch
|
||||
# Divide factor of safety as there's copying and fragmentation
|
||||
return self.einsum_op_tensor_mem(q, k, v, mem_free_total / 3.3 / (1 << 20))
|
||||
return self.einsum_op_tensor_mem(q, k, v, mem_free_total / 3.3 / (1 << 20), callback)
|
||||
|
||||
def get_attention_mem_efficient(self, q, k, v, callback):
|
||||
"""
|
||||
Calculate attention by slicing q, k, and v for memory efficiency then calling
|
||||
callback(q, k, v, offset=offset)
|
||||
multiple times if necessary. The offset argument is something
|
||||
"""
|
||||
|
||||
def einsum_op(self, q, k, v):
|
||||
if q.device.type == 'cuda':
|
||||
return self.einsum_op_cuda(q, k, v)
|
||||
return self.einsum_op_cuda(q, k, v, callback)
|
||||
|
||||
if q.device.type == 'mps':
|
||||
if self.mem_total_gb >= 32:
|
||||
return self.einsum_op_mps_v1(q, k, v)
|
||||
return self.einsum_op_mps_v2(q, k, v)
|
||||
return self.einsum_op_mps_v1(q, k, v, callback)
|
||||
return self.einsum_op_mps_v2(q, k, v, callback)
|
||||
|
||||
# Smaller slices are faster due to L2/L3/SLC caches.
|
||||
# Tested on i7 with 8MB L3 cache.
|
||||
return self.einsum_op_tensor_mem(q, k, v, 32)
|
||||
return self.einsum_op_tensor_mem(q, k, v, 32, callback)
|
||||
|
||||
def forward(self, x, context=None, mask=None):
|
||||
h = self.heads
|
||||
@ -247,14 +462,24 @@ class CrossAttention(nn.Module):
|
||||
|
||||
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
|
||||
|
||||
if self.cross_attention_callback is not None:
|
||||
r = self.cross_attention_callback(q, k, v)
|
||||
else:
|
||||
r = self.einsum_op(q, k, v)
|
||||
def default_attention_calculator(q, k, v, **kwargs):
|
||||
# calculate attention scores
|
||||
attention_scores = einsum('b i d, b j d -> b i j', q, k)
|
||||
# calculate attenion slice by taking the best scores for each latent pixel
|
||||
attention_slice = attention_scores.softmax(dim=-1, dtype=attention_scores.dtype)
|
||||
return einsum('b i j, b j d -> b i d', attention_slice, v)
|
||||
|
||||
attention_calculator = \
|
||||
self.custom_attention_calculator if self.custom_attention_calculator is not None \
|
||||
else default_attention_calculator
|
||||
|
||||
r = self.get_attention_mem_efficient(q, k, v, attention_calculator)
|
||||
|
||||
hidden_states = rearrange(r, '(b h) n d -> b n (h d)', h=h)
|
||||
return self.to_out(hidden_states)
|
||||
|
||||
|
||||
|
||||
class BasicTransformerBlock(nn.Module):
|
||||
def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True):
|
||||
super().__init__()
|
||||
@ -322,3 +547,4 @@ class SpatialTransformer(nn.Module):
|
||||
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w)
|
||||
x = self.proj_out(x)
|
||||
return x + x_in
|
||||
'''
|
@ -8,7 +8,7 @@ import numpy as np
|
||||
from einops import rearrange
|
||||
|
||||
from ldm.util import instantiate_from_config
|
||||
from ldm.modules.attention import LinearAttention
|
||||
#from ldm.modules.attention import LinearAttention
|
||||
|
||||
import psutil
|
||||
|
||||
@ -151,10 +151,10 @@ class ResnetBlock(nn.Module):
|
||||
|
||||
return x + h
|
||||
|
||||
class LinAttnBlock(LinearAttention):
|
||||
"""to match AttnBlock usage"""
|
||||
def __init__(self, in_channels):
|
||||
super().__init__(dim=in_channels, heads=1, dim_head=in_channels)
|
||||
#class LinAttnBlock(LinearAttention):
|
||||
# """to match AttnBlock usage"""
|
||||
# def __init__(self, in_channels):
|
||||
# super().__init__(dim=in_channels, heads=1, dim_head=in_channels)
|
||||
|
||||
|
||||
class AttnBlock(nn.Module):
|
||||
|
@ -449,7 +449,7 @@ class FrozenCLIPEmbedder(AbstractEncoder):
|
||||
tokens = batch_encoding['input_ids'].to(self.device)
|
||||
z = self.transformer(input_ids=tokens, **kwargs)
|
||||
|
||||
return z
|
||||
return z, tokens
|
||||
|
||||
def encode(self, text, **kwargs):
|
||||
return self(text, **kwargs)
|
||||
|
Loading…
Reference in New Issue
Block a user