Added HED, LineArt, and OpenPose ControlNet nodes

This commit is contained in:
user1 2023-05-04 22:40:50 -07:00 committed by Kent Keirsey
parent dc12fa6cd6
commit 21251ce12c

View File

@ -81,7 +81,8 @@ class PreprocessedControlInvocation(BaseInvocation, PILInvocationConfig):
) )
# image type should be PIL.PngImagePlugin.PngImageFile ? # image type should be PIL.PngImagePlugin.PngImageFile ?
processed_image = self.run_processor(image) processed_image = self.run_processor(image)
image_type = ImageType.INTERMEDIATE # image_type = ImageType.INTERMEDIATE
image_type = ImageType.RESULT
image_name = context.services.images.create_name( image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id context.graph_execution_state_id, self.id
) )
@ -124,3 +125,77 @@ class CannyControlInvocation(PreprocessedControlInvocation, PILInvocationConfig)
return processed_image return processed_image
class HedProcessorInvocation(PreprocessedControlInvocation, PILInvocationConfig):
"""Applies HED edge detection to image"""
# fmt: off
type: Literal["hed_control"] = "hed_control"
# Inputs
detect_resolution: int = Field(default=512, ge=0, description="pixel resolution for edge detection")
image_resolution: int = Field(default=512, ge=0, description="pixel resolution for output image")
safe: bool = Field(default=False, description="whether to use safe mode")
scribble: bool = Field(default=False, description="whether to use scribble mode")
return_pil: bool = Field(default=True, description="whether to return PIL image")
# fmt: on
def run_processor(self, image):
print("**** running HED processor ****")
hed_processor = HEDdetector.from_pretrained("lllyasviel/Annotators")
processed_image = hed_processor(image,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution,
safe=self.safe,
return_pil=self.return_pil,
scribble=self.scribble,
)
return processed_image
class LineartProcessorInvocation(PreprocessedControlInvocation, PILInvocationConfig):
"""Applies line art processing to image"""
# fmt: off
type: Literal["lineart_control"] = "lineart_control"
# Inputs
detect_resolution: int = Field(default=512, ge=0, description="pixel resolution for edge detection")
image_resolution: int = Field(default=512, ge=0, description="pixel resolution for output image")
coarse: bool = Field(default=False, description="whether to use coarse mode")
return_pil: bool = Field(default=True, description="whether to return PIL image")
# fmt: on
def run_processor(self, image):
print("**** running Lineart processor ****")
print("image type: ", type(image))
lineart_processor = LineartDetector.from_pretrained("lllyasviel/Annotators")
processed_image = lineart_processor(image,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution,
return_pil=self.return_pil,
coarse=self.coarse)
return processed_image
class OpenposeProcessorInvocation(PreprocessedControlInvocation, PILInvocationConfig):
"""Applies Openpose processing to image"""
# fmt: off
type: Literal["openpose_control"] = "openpose_control"
# Inputs
hand_and_face: bool = Field(default=False, description="whether to use hands and face mode")
detect_resolution: int = Field(default=512, ge=0, description="pixel resolution for edge detection")
image_resolution: int = Field(default=512, ge=0, description="pixel resolution for output image")
return_pil: bool = Field(default=True, description="whether to return PIL image")
# fmt: on
def run_processor(self, image):
print("**** running Openpose processor ****")
print("image type: ", type(image))
openpose_processor = OpenposeDetector.from_pretrained("lllyasviel/Annotators")
processed_image = openpose_processor(image,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution,
hand_and_face=self.hand_and_face,
return_pil=self.return_pil)
return processed_image