mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
changes to base class for controlnet nodes
This commit is contained in:
parent
f2f4c37f19
commit
dc12fa6cd6
@ -9,12 +9,24 @@ from .baseinvocation import (
|
||||
InvocationConfig,
|
||||
)
|
||||
|
||||
from controlnet_aux import CannyDetector
|
||||
from controlnet_aux import (
|
||||
CannyDetector,
|
||||
HEDdetector,
|
||||
LineartDetector,
|
||||
LineartAnimeDetector,
|
||||
MidasDetector,
|
||||
MLSDdetector,
|
||||
NormalBaeDetector,
|
||||
OpenposeDetector,
|
||||
PidiNetDetector,
|
||||
ContentShuffleDetector,
|
||||
# StyleShuffleDetector,
|
||||
ZoeDetector)
|
||||
|
||||
from .image import ImageOutput, build_image_output, PILInvocationConfig
|
||||
|
||||
|
||||
class ControlField(BaseModel):
|
||||
|
||||
image: ImageField = Field(default=None, description="processed image")
|
||||
# width: Optional[int] = Field(default=None, description="The width of the image in pixels")
|
||||
# height: Optional[int] = Field(default=None, description="The height of the image in pixels")
|
||||
@ -38,66 +50,69 @@ class ControlOutput(BaseInvocationOutput):
|
||||
# image: ImageField = Field(default=None, description="outputs just them image info (which is also included in control output)")
|
||||
# fmt: on
|
||||
|
||||
|
||||
class PreprocessedControlInvocation(BaseInvocation, PILInvocationConfig):
|
||||
"""Base class for invocations that preprocess images for ControlNet"""
|
||||
"""Base class for invocations that preprocess images for ControlNet"""
|
||||
|
||||
# fmt: off
|
||||
type: Literal["preprocessed_control"] = "preprocessed_control"
|
||||
# fmt: off
|
||||
type: Literal["preprocessed_control"] = "preprocessed_control"
|
||||
|
||||
# Inputs
|
||||
image: ImageField = Field(default=None, description="image to process")
|
||||
control_model: str = Field(default=None, description="control model to use")
|
||||
control_weight: float = Field(default=0.5, ge=0, le=1, description="control weight")
|
||||
# begin_step_percent: float = Field(default=0, ge=0, le=1,
|
||||
# description="% of total steps at which controlnet is first applied")
|
||||
# end_step_percent: float = Field(default=1, ge=0, le=1,
|
||||
# description="% of total steps at which controlnet is last applied")
|
||||
# guess_mode: bool = Field(default=False, description="use guess mode (controlnet ignores prompt)")
|
||||
# fmt: on
|
||||
# Inputs
|
||||
image: ImageField = Field(default=None, description="image to process")
|
||||
control_model: str = Field(default=None, description="control model to use")
|
||||
control_weight: float = Field(default=0.5, ge=0, le=1, description="control weight")
|
||||
|
||||
# This super class handles invoke() call, which in turn calls run_processor(image)
|
||||
# subclasses override run_processor instead of implementing their own invoke()
|
||||
def run_processor(self, image):
|
||||
# super class pass through of image
|
||||
return image
|
||||
# begin_step_percent: float = Field(default=0, ge=0, le=1,
|
||||
# description="% of total steps at which controlnet is first applied")
|
||||
# end_step_percent: float = Field(default=1, ge=0, le=1,
|
||||
# description="% of total steps at which controlnet is last applied")
|
||||
# guess_mode: bool = Field(default=False, description="use guess mode (controlnet ignores prompt)")
|
||||
# fmt: on
|
||||
|
||||
def invoke(self, context: InvocationContext) -> ControlOutput:
|
||||
image = context.services.images.get(
|
||||
self.image.image_type, self.image.image_name
|
||||
)
|
||||
# image type should be PIL.PngImagePlugin.PngImageFile ?
|
||||
processed_image = self.run_processor(image)
|
||||
image_type = ImageType.INTERMEDIATE
|
||||
image_name = context.services.images.create_name(
|
||||
context.graph_execution_state_id, self.id
|
||||
)
|
||||
metadata = context.services.metadata.build_metadata(
|
||||
session_id=context.graph_execution_state_id, node=self
|
||||
)
|
||||
context.services.images.save(image_type, image_name, processed_image, metadata)
|
||||
# This super class handles invoke() call, which in turn calls run_processor(image)
|
||||
# subclasses override run_processor instead of implementing their own invoke()
|
||||
def run_processor(self, image):
|
||||
# superclass just passes through image without processing
|
||||
return image
|
||||
|
||||
"""Builds an ImageOutput and its ImageField"""
|
||||
image_field = ImageField(
|
||||
image_name=image_name,
|
||||
image_type=image_type,
|
||||
)
|
||||
return ControlOutput(
|
||||
control=ControlField(
|
||||
image=image_field,
|
||||
control_model=self.control_model,
|
||||
control_weight=self.control_weight,
|
||||
)
|
||||
)
|
||||
def invoke(self, context: InvocationContext) -> ControlOutput:
|
||||
image = context.services.images.get(
|
||||
self.image.image_type, self.image.image_name
|
||||
)
|
||||
# image type should be PIL.PngImagePlugin.PngImageFile ?
|
||||
processed_image = self.run_processor(image)
|
||||
image_type = ImageType.INTERMEDIATE
|
||||
image_name = context.services.images.create_name(
|
||||
context.graph_execution_state_id, self.id
|
||||
)
|
||||
metadata = context.services.metadata.build_metadata(
|
||||
session_id=context.graph_execution_state_id, node=self
|
||||
)
|
||||
context.services.images.save(image_type, image_name, processed_image, metadata)
|
||||
|
||||
"""Builds an ImageOutput and its ImageField"""
|
||||
image_field = ImageField(
|
||||
image_name=image_name,
|
||||
image_type=image_type,
|
||||
)
|
||||
return ControlOutput(
|
||||
control=ControlField(
|
||||
image=image_field,
|
||||
control_model=self.control_model,
|
||||
control_weight=self.control_weight,
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
class CannyControlInvocation(PreprocessedControlInvocation, PILInvocationConfig):
|
||||
"""Canny edge detection for ControlNet"""
|
||||
|
||||
# fmt: off
|
||||
type: Literal["cannycontrol"] = "cannycontrol"
|
||||
type: Literal["canny_control"] = "canny_control"
|
||||
# Inputs
|
||||
low_threshold: float = Field(default=100, ge=0, description="low threshold of Canny pixel gradient")
|
||||
high_threshold: float = Field(default=200, ge=0, description="high threshold of Canny pixel gradient")
|
||||
|
||||
# fmt: on
|
||||
|
||||
def run_processor(self, image):
|
||||
|
Loading…
Reference in New Issue
Block a user