mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Update UI To Use New Model Manager (#3548)
PR for the Model Manager UI work related to 3.0 [DONE] - Update ModelType Config names to be specific so that the front end can parse them correctly. - Rebuild frontend schema to reflect these changes. - Update Linear UI Text To Image and Image to Image to work with the new model loader. - Updated the ModelInput component in the Node Editor to work with the new changes. [TODO REMEMBER] - Add proper types for ModelLoaderType in `ModelSelect.tsx` [TODO] - Everything else.
This commit is contained in:
commit
22c337b1aa
@ -7,8 +7,8 @@ from fastapi.routing import APIRouter, HTTPException
|
||||
from pydantic import BaseModel, Field, parse_obj_as
|
||||
from ..dependencies import ApiDependencies
|
||||
from invokeai.backend import BaseModelType, ModelType
|
||||
from invokeai.backend.model_management.models import get_all_model_configs
|
||||
MODEL_CONFIGS = Union[tuple(get_all_model_configs())]
|
||||
from invokeai.backend.model_management.models import OPENAPI_MODEL_CONFIGS
|
||||
MODEL_CONFIGS = Union[tuple(OPENAPI_MODEL_CONFIGS)]
|
||||
|
||||
models_router = APIRouter(prefix="/v1/models", tags=["models"])
|
||||
|
||||
@ -62,8 +62,7 @@ class ConvertedModelResponse(BaseModel):
|
||||
info: DiffusersModelInfo = Field(description="The converted model info")
|
||||
|
||||
class ModelsList(BaseModel):
|
||||
models: Dict[BaseModelType, Dict[ModelType, Dict[str, MODEL_CONFIGS]]] # TODO: debug/discuss with frontend
|
||||
#models: dict[SDModelType, dict[str, Annotated[Union[(DiffusersModelInfo,CkptModelInfo,SafetensorsModelInfo)], Field(discriminator="format")]]]
|
||||
models: list[MODEL_CONFIGS]
|
||||
|
||||
|
||||
@models_router.get(
|
||||
@ -72,10 +71,10 @@ class ModelsList(BaseModel):
|
||||
responses={200: {"model": ModelsList }},
|
||||
)
|
||||
async def list_models(
|
||||
base_model: BaseModelType = Query(
|
||||
base_model: Optional[BaseModelType] = Query(
|
||||
default=None, description="Base model"
|
||||
),
|
||||
model_type: ModelType = Query(
|
||||
model_type: Optional[ModelType] = Query(
|
||||
default=None, description="The type of model to get"
|
||||
),
|
||||
) -> ModelsList:
|
||||
|
@ -120,6 +120,22 @@ def custom_openapi():
|
||||
|
||||
invoker_schema["output"] = outputs_ref
|
||||
|
||||
from invokeai.backend.model_management.models import get_model_config_enums
|
||||
for model_config_format_enum in set(get_model_config_enums()):
|
||||
name = model_config_format_enum.__qualname__
|
||||
|
||||
if name in openapi_schema["components"]["schemas"]:
|
||||
# print(f"Config with name {name} already defined")
|
||||
continue
|
||||
|
||||
# "BaseModelType":{"title":"BaseModelType","description":"An enumeration.","enum":["sd-1","sd-2"],"type":"string"}
|
||||
openapi_schema["components"]["schemas"][name] = dict(
|
||||
title=name,
|
||||
description="An enumeration.",
|
||||
type="string",
|
||||
enum=list(v.value for v in model_config_format_enum),
|
||||
)
|
||||
|
||||
app.openapi_schema = openapi_schema
|
||||
return app.openapi_schema
|
||||
|
||||
|
@ -43,12 +43,19 @@ class ModelLoaderOutput(BaseInvocationOutput):
|
||||
#fmt: on
|
||||
|
||||
|
||||
class SD1ModelLoaderInvocation(BaseInvocation):
|
||||
"""Loading submodels of selected model."""
|
||||
class PipelineModelField(BaseModel):
|
||||
"""Pipeline model field"""
|
||||
|
||||
type: Literal["sd1_model_loader"] = "sd1_model_loader"
|
||||
model_name: str = Field(description="Name of the model")
|
||||
base_model: BaseModelType = Field(description="Base model")
|
||||
|
||||
model_name: str = Field(default="", description="Model to load")
|
||||
|
||||
class PipelineModelLoaderInvocation(BaseInvocation):
|
||||
"""Loads a pipeline model, outputting its submodels."""
|
||||
|
||||
type: Literal["pipeline_model_loader"] = "pipeline_model_loader"
|
||||
|
||||
model: PipelineModelField = Field(description="The model to load")
|
||||
# TODO: precision?
|
||||
|
||||
# Schema customisation
|
||||
@ -57,22 +64,24 @@ class SD1ModelLoaderInvocation(BaseInvocation):
|
||||
"ui": {
|
||||
"tags": ["model", "loader"],
|
||||
"type_hints": {
|
||||
"model_name": "model" # TODO: rename to model_name?
|
||||
"model": "model"
|
||||
}
|
||||
},
|
||||
}
|
||||
|
||||
def invoke(self, context: InvocationContext) -> ModelLoaderOutput:
|
||||
|
||||
base_model = BaseModelType.StableDiffusion1 # TODO:
|
||||
base_model = self.model.base_model
|
||||
model_name = self.model.model_name
|
||||
model_type = ModelType.Pipeline
|
||||
|
||||
# TODO: not found exceptions
|
||||
if not context.services.model_manager.model_exists(
|
||||
model_name=self.model_name,
|
||||
model_name=model_name,
|
||||
base_model=base_model,
|
||||
model_type=ModelType.Pipeline,
|
||||
model_type=model_type,
|
||||
):
|
||||
raise Exception(f"Unkown model name: {self.model_name}!")
|
||||
raise Exception(f"Unknown {base_model} {model_type} model: {model_name}")
|
||||
|
||||
"""
|
||||
if not context.services.model_manager.model_exists(
|
||||
@ -107,142 +116,39 @@ class SD1ModelLoaderInvocation(BaseInvocation):
|
||||
return ModelLoaderOutput(
|
||||
unet=UNetField(
|
||||
unet=ModelInfo(
|
||||
model_name=self.model_name,
|
||||
model_name=model_name,
|
||||
base_model=base_model,
|
||||
model_type=ModelType.Pipeline,
|
||||
model_type=model_type,
|
||||
submodel=SubModelType.UNet,
|
||||
),
|
||||
scheduler=ModelInfo(
|
||||
model_name=self.model_name,
|
||||
model_name=model_name,
|
||||
base_model=base_model,
|
||||
model_type=ModelType.Pipeline,
|
||||
model_type=model_type,
|
||||
submodel=SubModelType.Scheduler,
|
||||
),
|
||||
loras=[],
|
||||
),
|
||||
clip=ClipField(
|
||||
tokenizer=ModelInfo(
|
||||
model_name=self.model_name,
|
||||
model_name=model_name,
|
||||
base_model=base_model,
|
||||
model_type=ModelType.Pipeline,
|
||||
model_type=model_type,
|
||||
submodel=SubModelType.Tokenizer,
|
||||
),
|
||||
text_encoder=ModelInfo(
|
||||
model_name=self.model_name,
|
||||
model_name=model_name,
|
||||
base_model=base_model,
|
||||
model_type=ModelType.Pipeline,
|
||||
model_type=model_type,
|
||||
submodel=SubModelType.TextEncoder,
|
||||
),
|
||||
loras=[],
|
||||
),
|
||||
vae=VaeField(
|
||||
vae=ModelInfo(
|
||||
model_name=self.model_name,
|
||||
model_name=model_name,
|
||||
base_model=base_model,
|
||||
model_type=ModelType.Pipeline,
|
||||
submodel=SubModelType.Vae,
|
||||
),
|
||||
)
|
||||
)
|
||||
|
||||
# TODO: optimize(less code copy)
|
||||
class SD2ModelLoaderInvocation(BaseInvocation):
|
||||
"""Loading submodels of selected model."""
|
||||
|
||||
type: Literal["sd2_model_loader"] = "sd2_model_loader"
|
||||
|
||||
model_name: str = Field(default="", description="Model to load")
|
||||
# TODO: precision?
|
||||
|
||||
# Schema customisation
|
||||
class Config(InvocationConfig):
|
||||
schema_extra = {
|
||||
"ui": {
|
||||
"tags": ["model", "loader"],
|
||||
"type_hints": {
|
||||
"model_name": "model" # TODO: rename to model_name?
|
||||
}
|
||||
},
|
||||
}
|
||||
|
||||
def invoke(self, context: InvocationContext) -> ModelLoaderOutput:
|
||||
|
||||
base_model = BaseModelType.StableDiffusion2 # TODO:
|
||||
|
||||
# TODO: not found exceptions
|
||||
if not context.services.model_manager.model_exists(
|
||||
model_name=self.model_name,
|
||||
base_model=base_model,
|
||||
model_type=ModelType.Pipeline,
|
||||
):
|
||||
raise Exception(f"Unkown model name: {self.model_name}!")
|
||||
|
||||
"""
|
||||
if not context.services.model_manager.model_exists(
|
||||
model_name=self.model_name,
|
||||
model_type=SDModelType.Diffusers,
|
||||
submodel=SDModelType.Tokenizer,
|
||||
):
|
||||
raise Exception(
|
||||
f"Failed to find tokenizer submodel in {self.model_name}! Check if model corrupted"
|
||||
)
|
||||
|
||||
if not context.services.model_manager.model_exists(
|
||||
model_name=self.model_name,
|
||||
model_type=SDModelType.Diffusers,
|
||||
submodel=SDModelType.TextEncoder,
|
||||
):
|
||||
raise Exception(
|
||||
f"Failed to find text_encoder submodel in {self.model_name}! Check if model corrupted"
|
||||
)
|
||||
|
||||
if not context.services.model_manager.model_exists(
|
||||
model_name=self.model_name,
|
||||
model_type=SDModelType.Diffusers,
|
||||
submodel=SDModelType.UNet,
|
||||
):
|
||||
raise Exception(
|
||||
f"Failed to find unet submodel from {self.model_name}! Check if model corrupted"
|
||||
)
|
||||
"""
|
||||
|
||||
|
||||
return ModelLoaderOutput(
|
||||
unet=UNetField(
|
||||
unet=ModelInfo(
|
||||
model_name=self.model_name,
|
||||
base_model=base_model,
|
||||
model_type=ModelType.Pipeline,
|
||||
submodel=SubModelType.UNet,
|
||||
),
|
||||
scheduler=ModelInfo(
|
||||
model_name=self.model_name,
|
||||
base_model=base_model,
|
||||
model_type=ModelType.Pipeline,
|
||||
submodel=SubModelType.Scheduler,
|
||||
),
|
||||
loras=[],
|
||||
),
|
||||
clip=ClipField(
|
||||
tokenizer=ModelInfo(
|
||||
model_name=self.model_name,
|
||||
base_model=base_model,
|
||||
model_type=ModelType.Pipeline,
|
||||
submodel=SubModelType.Tokenizer,
|
||||
),
|
||||
text_encoder=ModelInfo(
|
||||
model_name=self.model_name,
|
||||
base_model=base_model,
|
||||
model_type=ModelType.Pipeline,
|
||||
submodel=SubModelType.TextEncoder,
|
||||
),
|
||||
loras=[],
|
||||
),
|
||||
vae=VaeField(
|
||||
vae=ModelInfo(
|
||||
model_name=self.model_name,
|
||||
base_model=base_model,
|
||||
model_type=ModelType.Pipeline,
|
||||
model_type=model_type,
|
||||
submodel=SubModelType.Vae,
|
||||
),
|
||||
)
|
||||
|
@ -5,7 +5,7 @@ from __future__ import annotations
|
||||
import torch
|
||||
from abc import ABC, abstractmethod
|
||||
from pathlib import Path
|
||||
from typing import Union, Callable, List, Tuple, types, TYPE_CHECKING
|
||||
from typing import Optional, Union, Callable, List, Tuple, types, TYPE_CHECKING
|
||||
from dataclasses import dataclass
|
||||
|
||||
from invokeai.backend.model_management.model_manager import (
|
||||
@ -69,19 +69,6 @@ class ModelManagerServiceBase(ABC):
|
||||
) -> bool:
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def default_model(self) -> Optional[Tuple[str, BaseModelType, ModelType]]:
|
||||
"""
|
||||
Returns the name and typeof the default model, or None
|
||||
if none is defined.
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def set_default_model(self, model_name: str, base_model: BaseModelType, model_type: ModelType):
|
||||
"""Sets the default model to the indicated name."""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def model_info(self, model_name: str, base_model: BaseModelType, model_type: ModelType) -> dict:
|
||||
"""
|
||||
@ -270,17 +257,6 @@ class ModelManagerService(ModelManagerServiceBase):
|
||||
model_type,
|
||||
)
|
||||
|
||||
def default_model(self) -> Optional[Tuple[str, BaseModelType, ModelType]]:
|
||||
"""
|
||||
Returns the name of the default model, or None
|
||||
if none is defined.
|
||||
"""
|
||||
return self.mgr.default_model()
|
||||
|
||||
def set_default_model(self, model_name: str, base_model: BaseModelType, model_type: ModelType):
|
||||
"""Sets the default model to the indicated name."""
|
||||
self.mgr.set_default_model(model_name, base_model, model_type)
|
||||
|
||||
def model_info(self, model_name: str, base_model: BaseModelType, model_type: ModelType) -> dict:
|
||||
"""
|
||||
Given a model name returns a dict-like (OmegaConf) object describing it.
|
||||
@ -297,21 +273,10 @@ class ModelManagerService(ModelManagerServiceBase):
|
||||
self,
|
||||
base_model: Optional[BaseModelType] = None,
|
||||
model_type: Optional[ModelType] = None
|
||||
) -> dict:
|
||||
) -> list[dict]:
|
||||
# ) -> dict:
|
||||
"""
|
||||
Return a dict of models in the format:
|
||||
{ model_type1:
|
||||
{ model_name1: {'status': 'active'|'cached'|'not loaded',
|
||||
'model_name' : name,
|
||||
'model_type' : SDModelType,
|
||||
'description': description,
|
||||
'format': 'folder'|'safetensors'|'ckpt'
|
||||
},
|
||||
model_name2: { etc }
|
||||
},
|
||||
model_type2:
|
||||
{ model_name_n: etc
|
||||
}
|
||||
Return a list of models.
|
||||
"""
|
||||
return self.mgr.list_models(base_model, model_type)
|
||||
|
||||
|
@ -266,6 +266,8 @@ class ModelManager(object):
|
||||
for model_key, model_config in config.items():
|
||||
model_name, base_model, model_type = self.parse_key(model_key)
|
||||
model_class = MODEL_CLASSES[base_model][model_type]
|
||||
# alias for config file
|
||||
model_config["model_format"] = model_config.pop("format")
|
||||
self.models[model_key] = model_class.create_config(**model_config)
|
||||
|
||||
# check config version number and update on disk/RAM if necessary
|
||||
@ -445,38 +447,6 @@ class ModelManager(object):
|
||||
_cache = self.cache,
|
||||
)
|
||||
|
||||
def default_model(self) -> Optional[Tuple[str, BaseModelType, ModelType]]:
|
||||
"""
|
||||
Returns the name of the default model, or None
|
||||
if none is defined.
|
||||
"""
|
||||
for model_key, model_config in self.models.items():
|
||||
if model_config.default:
|
||||
return self.parse_key(model_key)
|
||||
|
||||
for model_key, _ in self.models.items():
|
||||
return self.parse_key(model_key)
|
||||
else:
|
||||
return None # TODO: or redo as (None, None, None)
|
||||
|
||||
def set_default_model(
|
||||
self,
|
||||
model_name: str,
|
||||
base_model: BaseModelType,
|
||||
model_type: ModelType,
|
||||
) -> None:
|
||||
"""
|
||||
Set the default model. The change will not take
|
||||
effect until you call model_manager.commit()
|
||||
"""
|
||||
|
||||
model_key = self.model_key(model_name, base_model, model_type)
|
||||
if model_key not in self.models:
|
||||
raise Exception(f"Unknown model: {model_key}")
|
||||
|
||||
for cur_model_key, config in self.models.items():
|
||||
config.default = cur_model_key == model_key
|
||||
|
||||
def model_info(
|
||||
self,
|
||||
model_name: str,
|
||||
@ -503,9 +473,9 @@ class ModelManager(object):
|
||||
self,
|
||||
base_model: Optional[BaseModelType] = None,
|
||||
model_type: Optional[ModelType] = None,
|
||||
) -> Dict[str, Dict[str, str]]:
|
||||
) -> list[dict]:
|
||||
"""
|
||||
Return a dict of models, in format [base_model][model_type][model_name]
|
||||
Return a list of models.
|
||||
|
||||
Please use model_manager.models() to get all the model names,
|
||||
model_manager.model_info('model-name') to get the stanza for the model
|
||||
@ -513,7 +483,7 @@ class ModelManager(object):
|
||||
object derived from models.yaml
|
||||
"""
|
||||
|
||||
models = dict()
|
||||
models = []
|
||||
for model_key in sorted(self.models, key=str.casefold):
|
||||
model_config = self.models[model_key]
|
||||
|
||||
@ -523,18 +493,16 @@ class ModelManager(object):
|
||||
if model_type is not None and cur_model_type != model_type:
|
||||
continue
|
||||
|
||||
if cur_base_model not in models:
|
||||
models[cur_base_model] = dict()
|
||||
if cur_model_type not in models[cur_base_model]:
|
||||
models[cur_base_model][cur_model_type] = dict()
|
||||
|
||||
models[cur_base_model][cur_model_type][cur_model_name] = dict(
|
||||
model_dict = dict(
|
||||
**model_config.dict(exclude_defaults=True),
|
||||
# OpenAPIModelInfoBase
|
||||
name=cur_model_name,
|
||||
base_model=cur_base_model,
|
||||
type=cur_model_type,
|
||||
)
|
||||
|
||||
models.append(model_dict)
|
||||
|
||||
return models
|
||||
|
||||
def print_models(self) -> None:
|
||||
@ -646,7 +614,9 @@ class ModelManager(object):
|
||||
model_class = MODEL_CLASSES[base_model][model_type]
|
||||
if model_class.save_to_config:
|
||||
# TODO: or exclude_unset better fits here?
|
||||
data_to_save[model_key] = model_config.dict(exclude_defaults=True)
|
||||
data_to_save[model_key] = model_config.dict(exclude_defaults=True, exclude={"error"})
|
||||
# alias for config file
|
||||
data_to_save[model_key]["format"] = data_to_save[model_key].pop("model_format")
|
||||
|
||||
yaml_str = OmegaConf.to_yaml(data_to_save)
|
||||
config_file_path = conf_file or self.config_path
|
||||
|
@ -1,3 +1,7 @@
|
||||
import inspect
|
||||
from enum import Enum
|
||||
from pydantic import BaseModel
|
||||
from typing import Literal, get_origin
|
||||
from .base import BaseModelType, ModelType, SubModelType, ModelBase, ModelConfigBase, ModelVariantType, SchedulerPredictionType, ModelError, SilenceWarnings
|
||||
from .stable_diffusion import StableDiffusion1Model, StableDiffusion2Model
|
||||
from .vae import VaeModel
|
||||
@ -29,10 +33,63 @@ MODEL_CLASSES = {
|
||||
#},
|
||||
}
|
||||
|
||||
def get_all_model_configs():
|
||||
configs = set()
|
||||
for models in MODEL_CLASSES.values():
|
||||
for _, model in models.items():
|
||||
configs.update(model._get_configs().values())
|
||||
configs.discard(None)
|
||||
return list(configs) # TODO: set, list or tuple
|
||||
MODEL_CONFIGS = list()
|
||||
OPENAPI_MODEL_CONFIGS = list()
|
||||
|
||||
class OpenAPIModelInfoBase(BaseModel):
|
||||
name: str
|
||||
base_model: BaseModelType
|
||||
type: ModelType
|
||||
|
||||
|
||||
for base_model, models in MODEL_CLASSES.items():
|
||||
for model_type, model_class in models.items():
|
||||
model_configs = set(model_class._get_configs().values())
|
||||
model_configs.discard(None)
|
||||
MODEL_CONFIGS.extend(model_configs)
|
||||
|
||||
for cfg in model_configs:
|
||||
model_name, cfg_name = cfg.__qualname__.split('.')[-2:]
|
||||
openapi_cfg_name = model_name + cfg_name
|
||||
if openapi_cfg_name in vars():
|
||||
continue
|
||||
|
||||
api_wrapper = type(openapi_cfg_name, (cfg, OpenAPIModelInfoBase), dict(
|
||||
__annotations__ = dict(
|
||||
type=Literal[model_type.value],
|
||||
),
|
||||
))
|
||||
|
||||
#globals()[openapi_cfg_name] = api_wrapper
|
||||
vars()[openapi_cfg_name] = api_wrapper
|
||||
OPENAPI_MODEL_CONFIGS.append(api_wrapper)
|
||||
|
||||
def get_model_config_enums():
|
||||
enums = list()
|
||||
|
||||
for model_config in MODEL_CONFIGS:
|
||||
fields = inspect.get_annotations(model_config)
|
||||
try:
|
||||
field = fields["model_format"]
|
||||
except:
|
||||
raise Exception("format field not found")
|
||||
|
||||
# model_format: None
|
||||
# model_format: SomeModelFormat
|
||||
# model_format: Literal[SomeModelFormat.Diffusers]
|
||||
# model_format: Literal[SomeModelFormat.Diffusers, SomeModelFormat.Checkpoint]
|
||||
|
||||
if isinstance(field, type) and issubclass(field, str) and issubclass(field, Enum):
|
||||
enums.append(field)
|
||||
|
||||
elif get_origin(field) is Literal and all(isinstance(arg, str) and isinstance(arg, Enum) for arg in field.__args__):
|
||||
enums.append(type(field.__args__[0]))
|
||||
|
||||
elif field is None:
|
||||
pass
|
||||
|
||||
else:
|
||||
raise Exception(f"Unsupported format definition in {model_configs.__qualname__}")
|
||||
|
||||
return enums
|
||||
|
||||
|
@ -48,12 +48,10 @@ class ModelError(str, Enum):
|
||||
|
||||
class ModelConfigBase(BaseModel):
|
||||
path: str # or Path
|
||||
#name: str # not included as present in model key
|
||||
description: Optional[str] = Field(None)
|
||||
format: Optional[str] = Field(None)
|
||||
default: Optional[bool] = Field(False)
|
||||
model_format: Optional[str] = Field(None)
|
||||
# do not save to config
|
||||
error: Optional[ModelError] = Field(None, exclude=True)
|
||||
error: Optional[ModelError] = Field(None)
|
||||
|
||||
class Config:
|
||||
use_enum_values = True
|
||||
@ -94,6 +92,11 @@ class ModelBase(metaclass=ABCMeta):
|
||||
def _hf_definition_to_type(self, subtypes: List[str]) -> Type:
|
||||
if len(subtypes) < 2:
|
||||
raise Exception("Invalid subfolder definition!")
|
||||
if all(t is None for t in subtypes):
|
||||
return None
|
||||
elif any(t is None for t in subtypes):
|
||||
raise Exception(f"Unsupported definition: {subtypes}")
|
||||
|
||||
if subtypes[0] in ["diffusers", "transformers"]:
|
||||
res_type = sys.modules[subtypes[0]]
|
||||
subtypes = subtypes[1:]
|
||||
@ -122,47 +125,41 @@ class ModelBase(metaclass=ABCMeta):
|
||||
continue
|
||||
|
||||
fields = inspect.get_annotations(value)
|
||||
if "format" not in fields:
|
||||
raise Exception("Invalid config definition - format field not found")
|
||||
try:
|
||||
field = fields["model_format"]
|
||||
except:
|
||||
raise Exception(f"Invalid config definition - format field not found({cls.__qualname__})")
|
||||
|
||||
format_type = typing.get_origin(fields["format"])
|
||||
if format_type not in {None, Literal, Union}:
|
||||
raise Exception(f"Invalid config definition - unknown format type: {fields['format']}")
|
||||
if isinstance(field, type) and issubclass(field, str) and issubclass(field, Enum):
|
||||
for model_format in field:
|
||||
configs[model_format.value] = value
|
||||
|
||||
if format_type is Union and not all(typing.get_origin(v) in {None, Literal} for v in fields["format"].__args__):
|
||||
raise Exception(f"Invalid config definition - unknown format type: {fields['format']}")
|
||||
elif typing.get_origin(field) is Literal and all(isinstance(arg, str) and isinstance(arg, Enum) for arg in field.__args__):
|
||||
for model_format in field.__args__:
|
||||
configs[model_format.value] = value
|
||||
|
||||
elif field is None:
|
||||
configs[None] = value
|
||||
|
||||
if format_type == Union:
|
||||
f_fields = fields["format"].__args__
|
||||
else:
|
||||
f_fields = (fields["format"],)
|
||||
|
||||
|
||||
for field in f_fields:
|
||||
if field is None:
|
||||
format_name = None
|
||||
else:
|
||||
format_name = field.__args__[0]
|
||||
|
||||
configs[format_name] = value # TODO: error when override(multiple)?
|
||||
|
||||
raise Exception(f"Unsupported format definition in {cls.__qualname__}")
|
||||
|
||||
cls.__configs = configs
|
||||
return cls.__configs
|
||||
|
||||
@classmethod
|
||||
def create_config(cls, **kwargs) -> ModelConfigBase:
|
||||
if "format" not in kwargs:
|
||||
raise Exception("Field 'format' not found in model config")
|
||||
if "model_format" not in kwargs:
|
||||
raise Exception("Field 'model_format' not found in model config")
|
||||
|
||||
configs = cls._get_configs()
|
||||
return configs[kwargs["format"]](**kwargs)
|
||||
return configs[kwargs["model_format"]](**kwargs)
|
||||
|
||||
@classmethod
|
||||
def probe_config(cls, path: str, **kwargs) -> ModelConfigBase:
|
||||
return cls.create_config(
|
||||
path=path,
|
||||
format=cls.detect_format(path),
|
||||
model_format=cls.detect_format(path),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
|
@ -1,5 +1,6 @@
|
||||
import os
|
||||
import torch
|
||||
from enum import Enum
|
||||
from pathlib import Path
|
||||
from typing import Optional, Union, Literal
|
||||
from .base import (
|
||||
@ -14,12 +15,16 @@ from .base import (
|
||||
classproperty,
|
||||
)
|
||||
|
||||
class ControlNetModelFormat(str, Enum):
|
||||
Checkpoint = "checkpoint"
|
||||
Diffusers = "diffusers"
|
||||
|
||||
class ControlNetModel(ModelBase):
|
||||
#model_class: Type
|
||||
#model_size: int
|
||||
|
||||
class Config(ModelConfigBase):
|
||||
format: Union[Literal["checkpoint"], Literal["diffusers"]]
|
||||
model_format: ControlNetModelFormat
|
||||
|
||||
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
|
||||
assert model_type == ModelType.ControlNet
|
||||
@ -69,9 +74,9 @@ class ControlNetModel(ModelBase):
|
||||
@classmethod
|
||||
def detect_format(cls, path: str):
|
||||
if os.path.isdir(path):
|
||||
return "diffusers"
|
||||
return ControlNetModelFormat.Diffusers
|
||||
else:
|
||||
return "checkpoint"
|
||||
return ControlNetModelFormat.Checkpoint
|
||||
|
||||
@classmethod
|
||||
def convert_if_required(
|
||||
@ -81,7 +86,7 @@ class ControlNetModel(ModelBase):
|
||||
config: ModelConfigBase, # empty config or config of parent model
|
||||
base_model: BaseModelType,
|
||||
) -> str:
|
||||
if cls.detect_format(model_path) != "diffusers":
|
||||
raise NotImlemetedError("Checkpoint controlnet models currently unsupported")
|
||||
if cls.detect_format(model_path) != ControlNetModelFormat.Diffusers:
|
||||
raise NotImplementedError("Checkpoint controlnet models currently unsupported")
|
||||
else:
|
||||
return model_path
|
||||
|
@ -1,5 +1,6 @@
|
||||
import os
|
||||
import torch
|
||||
from enum import Enum
|
||||
from typing import Optional, Union, Literal
|
||||
from .base import (
|
||||
ModelBase,
|
||||
@ -12,11 +13,15 @@ from .base import (
|
||||
# TODO: naming
|
||||
from ..lora import LoRAModel as LoRAModelRaw
|
||||
|
||||
class LoRAModelFormat(str, Enum):
|
||||
LyCORIS = "lycoris"
|
||||
Diffusers = "diffusers"
|
||||
|
||||
class LoRAModel(ModelBase):
|
||||
#model_size: int
|
||||
|
||||
class Config(ModelConfigBase):
|
||||
format: Union[Literal["lycoris"], Literal["diffusers"]]
|
||||
model_format: LoRAModelFormat # TODO:
|
||||
|
||||
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
|
||||
assert model_type == ModelType.Lora
|
||||
@ -52,9 +57,9 @@ class LoRAModel(ModelBase):
|
||||
@classmethod
|
||||
def detect_format(cls, path: str):
|
||||
if os.path.isdir(path):
|
||||
return "diffusers"
|
||||
return LoRAModelFormat.Diffusers
|
||||
else:
|
||||
return "lycoris"
|
||||
return LoRAModelFormat.LyCORIS
|
||||
|
||||
@classmethod
|
||||
def convert_if_required(
|
||||
@ -64,7 +69,7 @@ class LoRAModel(ModelBase):
|
||||
config: ModelConfigBase,
|
||||
base_model: BaseModelType,
|
||||
) -> str:
|
||||
if cls.detect_format(model_path) == "diffusers":
|
||||
if cls.detect_format(model_path) == LoRAModelFormat.Diffusers:
|
||||
# TODO: add diffusers lora when it stabilizes a bit
|
||||
raise NotImplementedError("Diffusers lora not supported")
|
||||
else:
|
||||
|
@ -1,5 +1,6 @@
|
||||
import os
|
||||
import json
|
||||
from enum import Enum
|
||||
from pydantic import Field
|
||||
from pathlib import Path
|
||||
from typing import Literal, Optional, Union
|
||||
@ -19,16 +20,19 @@ from .base import (
|
||||
from invokeai.app.services.config import InvokeAIAppConfig
|
||||
from omegaconf import OmegaConf
|
||||
|
||||
class StableDiffusion1ModelFormat(str, Enum):
|
||||
Checkpoint = "checkpoint"
|
||||
Diffusers = "diffusers"
|
||||
|
||||
class StableDiffusion1Model(DiffusersModel):
|
||||
|
||||
class DiffusersConfig(ModelConfigBase):
|
||||
format: Literal["diffusers"]
|
||||
model_format: Literal[StableDiffusion1ModelFormat.Diffusers]
|
||||
vae: Optional[str] = Field(None)
|
||||
variant: ModelVariantType
|
||||
|
||||
class CheckpointConfig(ModelConfigBase):
|
||||
format: Literal["checkpoint"]
|
||||
model_format: Literal[StableDiffusion1ModelFormat.Checkpoint]
|
||||
vae: Optional[str] = Field(None)
|
||||
config: Optional[str] = Field(None)
|
||||
variant: ModelVariantType
|
||||
@ -47,7 +51,7 @@ class StableDiffusion1Model(DiffusersModel):
|
||||
def probe_config(cls, path: str, **kwargs):
|
||||
model_format = cls.detect_format(path)
|
||||
ckpt_config_path = kwargs.get("config", None)
|
||||
if model_format == "checkpoint":
|
||||
if model_format == StableDiffusion1ModelFormat.Checkpoint:
|
||||
if ckpt_config_path:
|
||||
ckpt_config = OmegaConf.load(ckpt_config_path)
|
||||
ckpt_config["model"]["params"]["unet_config"]["params"]["in_channels"]
|
||||
@ -57,7 +61,7 @@ class StableDiffusion1Model(DiffusersModel):
|
||||
checkpoint = checkpoint.get('state_dict', checkpoint)
|
||||
in_channels = checkpoint["model.diffusion_model.input_blocks.0.0.weight"].shape[1]
|
||||
|
||||
elif model_format == "diffusers":
|
||||
elif model_format == StableDiffusion1ModelFormat.Diffusers:
|
||||
unet_config_path = os.path.join(path, "unet", "config.json")
|
||||
if os.path.exists(unet_config_path):
|
||||
with open(unet_config_path, "r") as f:
|
||||
@ -80,7 +84,7 @@ class StableDiffusion1Model(DiffusersModel):
|
||||
|
||||
return cls.create_config(
|
||||
path=path,
|
||||
format=model_format,
|
||||
model_format=model_format,
|
||||
|
||||
config=ckpt_config_path,
|
||||
variant=variant,
|
||||
@ -93,9 +97,9 @@ class StableDiffusion1Model(DiffusersModel):
|
||||
@classmethod
|
||||
def detect_format(cls, model_path: str):
|
||||
if os.path.isdir(model_path):
|
||||
return "diffusers"
|
||||
return StableDiffusion1ModelFormat.Diffusers
|
||||
else:
|
||||
return "checkpoint"
|
||||
return StableDiffusion1ModelFormat.Checkpoint
|
||||
|
||||
@classmethod
|
||||
def convert_if_required(
|
||||
@ -116,19 +120,22 @@ class StableDiffusion1Model(DiffusersModel):
|
||||
else:
|
||||
return model_path
|
||||
|
||||
class StableDiffusion2ModelFormat(str, Enum):
|
||||
Checkpoint = "checkpoint"
|
||||
Diffusers = "diffusers"
|
||||
|
||||
class StableDiffusion2Model(DiffusersModel):
|
||||
|
||||
# TODO: check that configs overwriten properly
|
||||
class DiffusersConfig(ModelConfigBase):
|
||||
format: Literal["diffusers"]
|
||||
model_format: Literal[StableDiffusion2ModelFormat.Diffusers]
|
||||
vae: Optional[str] = Field(None)
|
||||
variant: ModelVariantType
|
||||
prediction_type: SchedulerPredictionType
|
||||
upcast_attention: bool
|
||||
|
||||
class CheckpointConfig(ModelConfigBase):
|
||||
format: Literal["checkpoint"]
|
||||
model_format: Literal[StableDiffusion2ModelFormat.Checkpoint]
|
||||
vae: Optional[str] = Field(None)
|
||||
config: Optional[str] = Field(None)
|
||||
variant: ModelVariantType
|
||||
@ -149,7 +156,7 @@ class StableDiffusion2Model(DiffusersModel):
|
||||
def probe_config(cls, path: str, **kwargs):
|
||||
model_format = cls.detect_format(path)
|
||||
ckpt_config_path = kwargs.get("config", None)
|
||||
if model_format == "checkpoint":
|
||||
if model_format == StableDiffusion2ModelFormat.Checkpoint:
|
||||
if ckpt_config_path:
|
||||
ckpt_config = OmegaConf.load(ckpt_config_path)
|
||||
ckpt_config["model"]["params"]["unet_config"]["params"]["in_channels"]
|
||||
@ -159,7 +166,7 @@ class StableDiffusion2Model(DiffusersModel):
|
||||
checkpoint = checkpoint.get('state_dict', checkpoint)
|
||||
in_channels = checkpoint["model.diffusion_model.input_blocks.0.0.weight"].shape[1]
|
||||
|
||||
elif model_format == "diffusers":
|
||||
elif model_format == StableDiffusion2ModelFormat.Diffusers:
|
||||
unet_config_path = os.path.join(path, "unet", "config.json")
|
||||
if os.path.exists(unet_config_path):
|
||||
with open(unet_config_path, "r") as f:
|
||||
@ -191,7 +198,7 @@ class StableDiffusion2Model(DiffusersModel):
|
||||
|
||||
return cls.create_config(
|
||||
path=path,
|
||||
format=model_format,
|
||||
model_format=model_format,
|
||||
|
||||
config=ckpt_config_path,
|
||||
variant=variant,
|
||||
@ -206,9 +213,9 @@ class StableDiffusion2Model(DiffusersModel):
|
||||
@classmethod
|
||||
def detect_format(cls, model_path: str):
|
||||
if os.path.isdir(model_path):
|
||||
return "diffusers"
|
||||
return StableDiffusion2ModelFormat.Diffusers
|
||||
else:
|
||||
return "checkpoint"
|
||||
return StableDiffusion2ModelFormat.Checkpoint
|
||||
|
||||
@classmethod
|
||||
def convert_if_required(
|
||||
@ -281,8 +288,8 @@ def _convert_ckpt_and_cache(
|
||||
prediction_type = SchedulerPredictionType.Epsilon
|
||||
|
||||
elif version == BaseModelType.StableDiffusion2:
|
||||
upcast_attention = config.upcast_attention
|
||||
prediction_type = config.prediction_type
|
||||
upcast_attention = model_config.upcast_attention
|
||||
prediction_type = model_config.prediction_type
|
||||
|
||||
else:
|
||||
raise Exception(f"Unknown model provided: {version}")
|
||||
|
@ -16,7 +16,7 @@ class TextualInversionModel(ModelBase):
|
||||
#model_size: int
|
||||
|
||||
class Config(ModelConfigBase):
|
||||
format: None
|
||||
model_format: None
|
||||
|
||||
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
|
||||
assert model_type == ModelType.TextualInversion
|
||||
|
@ -1,5 +1,7 @@
|
||||
import os
|
||||
import torch
|
||||
import safetensors
|
||||
from enum import Enum
|
||||
from pathlib import Path
|
||||
from typing import Optional, Union, Literal
|
||||
from .base import (
|
||||
@ -18,12 +20,16 @@ from invokeai.app.services.config import InvokeAIAppConfig
|
||||
from diffusers.utils import is_safetensors_available
|
||||
from omegaconf import OmegaConf
|
||||
|
||||
class VaeModelFormat(str, Enum):
|
||||
Checkpoint = "checkpoint"
|
||||
Diffusers = "diffusers"
|
||||
|
||||
class VaeModel(ModelBase):
|
||||
#vae_class: Type
|
||||
#model_size: int
|
||||
|
||||
class Config(ModelConfigBase):
|
||||
format: Union[Literal["checkpoint"], Literal["diffusers"]]
|
||||
model_format: VaeModelFormat
|
||||
|
||||
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
|
||||
assert model_type == ModelType.Vae
|
||||
@ -70,9 +76,9 @@ class VaeModel(ModelBase):
|
||||
@classmethod
|
||||
def detect_format(cls, path: str):
|
||||
if os.path.isdir(path):
|
||||
return "diffusers"
|
||||
return VaeModelFormat.Diffusers
|
||||
else:
|
||||
return "checkpoint"
|
||||
return VaeModelFormat.Checkpoint
|
||||
|
||||
@classmethod
|
||||
def convert_if_required(
|
||||
@ -82,7 +88,7 @@ class VaeModel(ModelBase):
|
||||
config: ModelConfigBase, # empty config or config of parent model
|
||||
base_model: BaseModelType,
|
||||
) -> str:
|
||||
if cls.detect_format(model_path) != "diffusers":
|
||||
if cls.detect_format(model_path) == VaeModelFormat.Checkpoint:
|
||||
return _convert_vae_ckpt_and_cache(
|
||||
weights_path=model_path,
|
||||
output_path=output_path,
|
||||
|
@ -24,6 +24,7 @@ import Toaster from './Toaster';
|
||||
import DeleteImageModal from 'features/gallery/components/DeleteImageModal';
|
||||
import { requestCanvasRescale } from 'features/canvas/store/thunks/requestCanvasScale';
|
||||
import UpdateImageBoardModal from '../../features/gallery/components/Boards/UpdateImageBoardModal';
|
||||
import { useListModelsQuery } from 'services/apiSlice';
|
||||
|
||||
const DEFAULT_CONFIG = {};
|
||||
|
||||
@ -46,6 +47,18 @@ const App = ({
|
||||
|
||||
const isApplicationReady = useIsApplicationReady();
|
||||
|
||||
const { data: pipelineModels } = useListModelsQuery({
|
||||
model_type: 'pipeline',
|
||||
});
|
||||
const { data: controlnetModels } = useListModelsQuery({
|
||||
model_type: 'controlnet',
|
||||
});
|
||||
const { data: vaeModels } = useListModelsQuery({ model_type: 'vae' });
|
||||
const { data: loraModels } = useListModelsQuery({ model_type: 'lora' });
|
||||
const { data: embeddingModels } = useListModelsQuery({
|
||||
model_type: 'embedding',
|
||||
});
|
||||
|
||||
const [loadingOverridden, setLoadingOverridden] = useState(false);
|
||||
|
||||
const dispatch = useAppDispatch();
|
||||
|
@ -5,7 +5,6 @@ import { lightboxPersistDenylist } from 'features/lightbox/store/lightboxPersist
|
||||
import { nodesPersistDenylist } from 'features/nodes/store/nodesPersistDenylist';
|
||||
import { generationPersistDenylist } from 'features/parameters/store/generationPersistDenylist';
|
||||
import { postprocessingPersistDenylist } from 'features/parameters/store/postprocessingPersistDenylist';
|
||||
import { modelsPersistDenylist } from 'features/system/store/modelsPersistDenylist';
|
||||
import { systemPersistDenylist } from 'features/system/store/systemPersistDenylist';
|
||||
import { uiPersistDenylist } from 'features/ui/store/uiPersistDenylist';
|
||||
import { omit } from 'lodash-es';
|
||||
@ -18,7 +17,6 @@ const serializationDenylist: {
|
||||
gallery: galleryPersistDenylist,
|
||||
generation: generationPersistDenylist,
|
||||
lightbox: lightboxPersistDenylist,
|
||||
models: modelsPersistDenylist,
|
||||
nodes: nodesPersistDenylist,
|
||||
postprocessing: postprocessingPersistDenylist,
|
||||
system: systemPersistDenylist,
|
||||
|
@ -7,7 +7,6 @@ import { initialNodesState } from 'features/nodes/store/nodesSlice';
|
||||
import { initialGenerationState } from 'features/parameters/store/generationSlice';
|
||||
import { initialPostprocessingState } from 'features/parameters/store/postprocessingSlice';
|
||||
import { initialConfigState } from 'features/system/store/configSlice';
|
||||
import { initialModelsState } from 'features/system/store/modelSlice';
|
||||
import { initialSystemState } from 'features/system/store/systemSlice';
|
||||
import { initialHotkeysState } from 'features/ui/store/hotkeysSlice';
|
||||
import { initialUIState } from 'features/ui/store/uiSlice';
|
||||
@ -21,7 +20,6 @@ const initialStates: {
|
||||
gallery: initialGalleryState,
|
||||
generation: initialGenerationState,
|
||||
lightbox: initialLightboxState,
|
||||
models: initialModelsState,
|
||||
nodes: initialNodesState,
|
||||
postprocessing: initialPostprocessingState,
|
||||
system: initialSystemState,
|
||||
|
@ -1,9 +1,8 @@
|
||||
import { startAppListening } from '../..';
|
||||
import { log } from 'app/logging/useLogger';
|
||||
import { appSocketConnected, socketConnected } from 'services/events/actions';
|
||||
import { receivedPageOfImages } from 'services/thunks/image';
|
||||
import { receivedModels } from 'services/thunks/model';
|
||||
import { receivedOpenAPISchema } from 'services/thunks/schema';
|
||||
import { startAppListening } from '../..';
|
||||
|
||||
const moduleLog = log.child({ namespace: 'socketio' });
|
||||
|
||||
@ -15,7 +14,7 @@ export const addSocketConnectedEventListener = () => {
|
||||
|
||||
moduleLog.debug({ timestamp }, 'Connected');
|
||||
|
||||
const { models, nodes, config, images } = getState();
|
||||
const { nodes, config, images } = getState();
|
||||
|
||||
const { disabledTabs } = config;
|
||||
|
||||
@ -28,10 +27,6 @@ export const addSocketConnectedEventListener = () => {
|
||||
);
|
||||
}
|
||||
|
||||
if (!models.ids.length) {
|
||||
dispatch(receivedModels());
|
||||
}
|
||||
|
||||
if (!nodes.schema && !disabledTabs.includes('nodes')) {
|
||||
dispatch(receivedOpenAPISchema());
|
||||
}
|
||||
|
@ -5,34 +5,32 @@ import {
|
||||
configureStore,
|
||||
} from '@reduxjs/toolkit';
|
||||
|
||||
import { rememberReducer, rememberEnhancer } from 'redux-remember';
|
||||
import dynamicMiddlewares from 'redux-dynamic-middlewares';
|
||||
import { rememberEnhancer, rememberReducer } from 'redux-remember';
|
||||
|
||||
import canvasReducer from 'features/canvas/store/canvasSlice';
|
||||
import controlNetReducer from 'features/controlNet/store/controlNetSlice';
|
||||
import galleryReducer from 'features/gallery/store/gallerySlice';
|
||||
import imagesReducer from 'features/gallery/store/imagesSlice';
|
||||
import lightboxReducer from 'features/lightbox/store/lightboxSlice';
|
||||
import generationReducer from 'features/parameters/store/generationSlice';
|
||||
import controlNetReducer from 'features/controlNet/store/controlNetSlice';
|
||||
import postprocessingReducer from 'features/parameters/store/postprocessingSlice';
|
||||
import systemReducer from 'features/system/store/systemSlice';
|
||||
// import sessionReducer from 'features/system/store/sessionSlice';
|
||||
import configReducer from 'features/system/store/configSlice';
|
||||
import uiReducer from 'features/ui/store/uiSlice';
|
||||
import hotkeysReducer from 'features/ui/store/hotkeysSlice';
|
||||
import modelsReducer from 'features/system/store/modelSlice';
|
||||
import nodesReducer from 'features/nodes/store/nodesSlice';
|
||||
import boardsReducer from 'features/gallery/store/boardSlice';
|
||||
import configReducer from 'features/system/store/configSlice';
|
||||
import hotkeysReducer from 'features/ui/store/hotkeysSlice';
|
||||
import uiReducer from 'features/ui/store/uiSlice';
|
||||
|
||||
import { listenerMiddleware } from './middleware/listenerMiddleware';
|
||||
|
||||
import { actionSanitizer } from './middleware/devtools/actionSanitizer';
|
||||
import { stateSanitizer } from './middleware/devtools/stateSanitizer';
|
||||
import { actionsDenylist } from './middleware/devtools/actionsDenylist';
|
||||
|
||||
import { stateSanitizer } from './middleware/devtools/stateSanitizer';
|
||||
import { LOCALSTORAGE_PREFIX } from './constants';
|
||||
import { serialize } from './enhancers/reduxRemember/serialize';
|
||||
import { unserialize } from './enhancers/reduxRemember/unserialize';
|
||||
import { LOCALSTORAGE_PREFIX } from './constants';
|
||||
import { api } from 'services/apiSlice';
|
||||
|
||||
const allReducers = {
|
||||
@ -40,7 +38,6 @@ const allReducers = {
|
||||
gallery: galleryReducer,
|
||||
generation: generationReducer,
|
||||
lightbox: lightboxReducer,
|
||||
models: modelsReducer,
|
||||
nodes: nodesReducer,
|
||||
postprocessing: postprocessingReducer,
|
||||
system: systemReducer,
|
||||
@ -50,8 +47,8 @@ const allReducers = {
|
||||
images: imagesReducer,
|
||||
controlNet: controlNetReducer,
|
||||
boards: boardsReducer,
|
||||
[api.reducerPath]: api.reducer,
|
||||
// session: sessionReducer,
|
||||
[api.reducerPath]: api.reducer,
|
||||
};
|
||||
|
||||
const rootReducer = combineReducers(allReducers);
|
||||
@ -63,7 +60,6 @@ const rememberedKeys: (keyof typeof allReducers)[] = [
|
||||
'gallery',
|
||||
'generation',
|
||||
'lightbox',
|
||||
// 'models',
|
||||
'nodes',
|
||||
'postprocessing',
|
||||
'system',
|
||||
|
@ -1,28 +1,18 @@
|
||||
import { Select } from '@chakra-ui/react';
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import { SelectItem } from '@mantine/core';
|
||||
import { useAppDispatch } from 'app/store/storeHooks';
|
||||
import { fieldValueChanged } from 'features/nodes/store/nodesSlice';
|
||||
import {
|
||||
ModelInputFieldTemplate,
|
||||
ModelInputFieldValue,
|
||||
} from 'features/nodes/types/types';
|
||||
import { selectModelsIds } from 'features/system/store/modelSlice';
|
||||
import { isEqual } from 'lodash-es';
|
||||
import { ChangeEvent, memo } from 'react';
|
||||
import { FieldComponentProps } from './types';
|
||||
|
||||
const availableModelsSelector = createSelector(
|
||||
[selectModelsIds],
|
||||
(allModelNames) => {
|
||||
return { allModelNames };
|
||||
// return map(modelList, (_, name) => name);
|
||||
},
|
||||
{
|
||||
memoizeOptions: {
|
||||
resultEqualityCheck: isEqual,
|
||||
},
|
||||
}
|
||||
);
|
||||
import { memo, useCallback, useEffect, useMemo } from 'react';
|
||||
import { FieldComponentProps } from './types';
|
||||
import { forEach, isString } from 'lodash-es';
|
||||
import { MODEL_TYPE_MAP as BASE_MODEL_NAME_MAP } from 'features/system/components/ModelSelect';
|
||||
import IAIMantineSelect from 'common/components/IAIMantineSelect';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { useListModelsQuery } from 'services/apiSlice';
|
||||
|
||||
const ModelInputFieldComponent = (
|
||||
props: FieldComponentProps<ModelInputFieldValue, ModelInputFieldTemplate>
|
||||
@ -30,28 +20,82 @@ const ModelInputFieldComponent = (
|
||||
const { nodeId, field } = props;
|
||||
|
||||
const dispatch = useAppDispatch();
|
||||
const { t } = useTranslation();
|
||||
|
||||
const { allModelNames } = useAppSelector(availableModelsSelector);
|
||||
const { data: pipelineModels } = useListModelsQuery({
|
||||
model_type: 'pipeline',
|
||||
});
|
||||
|
||||
const handleValueChanged = (e: ChangeEvent<HTMLSelectElement>) => {
|
||||
dispatch(
|
||||
fieldValueChanged({
|
||||
nodeId,
|
||||
fieldName: field.name,
|
||||
value: e.target.value,
|
||||
})
|
||||
);
|
||||
};
|
||||
const data = useMemo(() => {
|
||||
if (!pipelineModels) {
|
||||
return [];
|
||||
}
|
||||
|
||||
const data: SelectItem[] = [];
|
||||
|
||||
forEach(pipelineModels.entities, (model, id) => {
|
||||
if (!model) {
|
||||
return;
|
||||
}
|
||||
|
||||
data.push({
|
||||
value: id,
|
||||
label: model.name,
|
||||
group: BASE_MODEL_NAME_MAP[model.base_model],
|
||||
});
|
||||
});
|
||||
|
||||
return data;
|
||||
}, [pipelineModels]);
|
||||
|
||||
const selectedModel = useMemo(
|
||||
() => pipelineModels?.entities[field.value ?? pipelineModels.ids[0]],
|
||||
[pipelineModels?.entities, pipelineModels?.ids, field.value]
|
||||
);
|
||||
|
||||
const handleValueChanged = useCallback(
|
||||
(v: string | null) => {
|
||||
if (!v) {
|
||||
return;
|
||||
}
|
||||
|
||||
dispatch(
|
||||
fieldValueChanged({
|
||||
nodeId,
|
||||
fieldName: field.name,
|
||||
value: v,
|
||||
})
|
||||
);
|
||||
},
|
||||
[dispatch, field.name, nodeId]
|
||||
);
|
||||
|
||||
useEffect(() => {
|
||||
if (field.value && pipelineModels?.ids.includes(field.value)) {
|
||||
return;
|
||||
}
|
||||
|
||||
const firstModel = pipelineModels?.ids[0];
|
||||
|
||||
if (!isString(firstModel)) {
|
||||
return;
|
||||
}
|
||||
|
||||
handleValueChanged(firstModel);
|
||||
}, [field.value, handleValueChanged, pipelineModels?.ids]);
|
||||
|
||||
return (
|
||||
<Select
|
||||
<IAIMantineSelect
|
||||
tooltip={selectedModel?.description}
|
||||
label={
|
||||
selectedModel?.base_model &&
|
||||
BASE_MODEL_NAME_MAP[selectedModel?.base_model]
|
||||
}
|
||||
value={field.value}
|
||||
placeholder="Pick one"
|
||||
data={data}
|
||||
onChange={handleValueChanged}
|
||||
value={field.value || allModelNames[0]}
|
||||
>
|
||||
{allModelNames.map((option) => (
|
||||
<option key={option}>{option}</option>
|
||||
))}
|
||||
</Select>
|
||||
/>
|
||||
);
|
||||
};
|
||||
|
||||
|
@ -101,21 +101,6 @@ const nodesSlice = createSlice({
|
||||
builder.addCase(receivedOpenAPISchema.fulfilled, (state, action) => {
|
||||
state.schema = action.payload;
|
||||
});
|
||||
|
||||
builder.addCase(imageUrlsReceived.fulfilled, (state, action) => {
|
||||
const { image_name, image_url, thumbnail_url } = action.payload;
|
||||
|
||||
state.nodes.forEach((node) => {
|
||||
forEach(node.data.inputs, (input) => {
|
||||
if (input.type === 'image') {
|
||||
if (input.value?.image_name === image_name) {
|
||||
input.value.image_url = image_url;
|
||||
input.value.thumbnail_url = thumbnail_url;
|
||||
}
|
||||
}
|
||||
});
|
||||
});
|
||||
});
|
||||
},
|
||||
});
|
||||
|
||||
|
@ -23,6 +23,7 @@ import {
|
||||
} from './constants';
|
||||
import { set } from 'lodash-es';
|
||||
import { addControlNetToLinearGraph } from '../addControlNetToLinearGraph';
|
||||
import { modelIdToPipelineModelField } from '../modelIdToPipelineModelField';
|
||||
|
||||
const moduleLog = log.child({ namespace: 'nodes' });
|
||||
|
||||
@ -36,7 +37,7 @@ export const buildCanvasImageToImageGraph = (
|
||||
const {
|
||||
positivePrompt,
|
||||
negativePrompt,
|
||||
model: model_name,
|
||||
model: modelId,
|
||||
cfgScale: cfg_scale,
|
||||
scheduler,
|
||||
steps,
|
||||
@ -49,6 +50,8 @@ export const buildCanvasImageToImageGraph = (
|
||||
// The bounding box determines width and height, not the width and height params
|
||||
const { width, height } = state.canvas.boundingBoxDimensions;
|
||||
|
||||
const model = modelIdToPipelineModelField(modelId);
|
||||
|
||||
/**
|
||||
* The easiest way to build linear graphs is to do it in the node editor, then copy and paste the
|
||||
* full graph here as a template. Then use the parameters from app state and set friendlier node
|
||||
@ -85,9 +88,9 @@ export const buildCanvasImageToImageGraph = (
|
||||
id: NOISE,
|
||||
},
|
||||
[MODEL_LOADER]: {
|
||||
type: 'sd1_model_loader',
|
||||
type: 'pipeline_model_loader',
|
||||
id: MODEL_LOADER,
|
||||
model_name,
|
||||
model,
|
||||
},
|
||||
[LATENTS_TO_IMAGE]: {
|
||||
type: 'l2i',
|
||||
|
@ -17,6 +17,7 @@ import {
|
||||
INPAINT_GRAPH,
|
||||
INPAINT,
|
||||
} from './constants';
|
||||
import { modelIdToPipelineModelField } from '../modelIdToPipelineModelField';
|
||||
|
||||
const moduleLog = log.child({ namespace: 'nodes' });
|
||||
|
||||
@ -31,7 +32,7 @@ export const buildCanvasInpaintGraph = (
|
||||
const {
|
||||
positivePrompt,
|
||||
negativePrompt,
|
||||
model: model_name,
|
||||
model: modelId,
|
||||
cfgScale: cfg_scale,
|
||||
scheduler,
|
||||
steps,
|
||||
@ -54,6 +55,8 @@ export const buildCanvasInpaintGraph = (
|
||||
// We may need to set the inpaint width and height to scale the image
|
||||
const { scaledBoundingBoxDimensions, boundingBoxScaleMethod } = state.canvas;
|
||||
|
||||
const model = modelIdToPipelineModelField(modelId);
|
||||
|
||||
const graph: NonNullableGraph = {
|
||||
id: INPAINT_GRAPH,
|
||||
nodes: {
|
||||
@ -99,9 +102,9 @@ export const buildCanvasInpaintGraph = (
|
||||
prompt: negativePrompt,
|
||||
},
|
||||
[MODEL_LOADER]: {
|
||||
type: 'sd1_model_loader',
|
||||
type: 'pipeline_model_loader',
|
||||
id: MODEL_LOADER,
|
||||
model_name,
|
||||
model,
|
||||
},
|
||||
[RANGE_OF_SIZE]: {
|
||||
type: 'range_of_size',
|
||||
|
@ -14,6 +14,7 @@ import {
|
||||
TEXT_TO_LATENTS,
|
||||
} from './constants';
|
||||
import { addControlNetToLinearGraph } from '../addControlNetToLinearGraph';
|
||||
import { modelIdToPipelineModelField } from '../modelIdToPipelineModelField';
|
||||
|
||||
/**
|
||||
* Builds the Canvas tab's Text to Image graph.
|
||||
@ -24,7 +25,7 @@ export const buildCanvasTextToImageGraph = (
|
||||
const {
|
||||
positivePrompt,
|
||||
negativePrompt,
|
||||
model: model_name,
|
||||
model: modelId,
|
||||
cfgScale: cfg_scale,
|
||||
scheduler,
|
||||
steps,
|
||||
@ -36,6 +37,8 @@ export const buildCanvasTextToImageGraph = (
|
||||
// The bounding box determines width and height, not the width and height params
|
||||
const { width, height } = state.canvas.boundingBoxDimensions;
|
||||
|
||||
const model = modelIdToPipelineModelField(modelId);
|
||||
|
||||
/**
|
||||
* The easiest way to build linear graphs is to do it in the node editor, then copy and paste the
|
||||
* full graph here as a template. Then use the parameters from app state and set friendlier node
|
||||
@ -80,9 +83,9 @@ export const buildCanvasTextToImageGraph = (
|
||||
steps,
|
||||
},
|
||||
[MODEL_LOADER]: {
|
||||
type: 'sd1_model_loader',
|
||||
type: 'pipeline_model_loader',
|
||||
id: MODEL_LOADER,
|
||||
model_name,
|
||||
model,
|
||||
},
|
||||
[LATENTS_TO_IMAGE]: {
|
||||
type: 'l2i',
|
||||
|
@ -22,6 +22,7 @@ import {
|
||||
} from './constants';
|
||||
import { set } from 'lodash-es';
|
||||
import { addControlNetToLinearGraph } from '../addControlNetToLinearGraph';
|
||||
import { modelIdToPipelineModelField } from '../modelIdToPipelineModelField';
|
||||
|
||||
const moduleLog = log.child({ namespace: 'nodes' });
|
||||
|
||||
@ -34,7 +35,7 @@ export const buildLinearImageToImageGraph = (
|
||||
const {
|
||||
positivePrompt,
|
||||
negativePrompt,
|
||||
model: model_name,
|
||||
model: modelId,
|
||||
cfgScale: cfg_scale,
|
||||
scheduler,
|
||||
steps,
|
||||
@ -62,6 +63,8 @@ export const buildLinearImageToImageGraph = (
|
||||
throw new Error('No initial image found in state');
|
||||
}
|
||||
|
||||
const model = modelIdToPipelineModelField(modelId);
|
||||
|
||||
// copy-pasted graph from node editor, filled in with state values & friendly node ids
|
||||
const graph: NonNullableGraph = {
|
||||
id: IMAGE_TO_IMAGE_GRAPH,
|
||||
@ -89,9 +92,9 @@ export const buildLinearImageToImageGraph = (
|
||||
id: NOISE,
|
||||
},
|
||||
[MODEL_LOADER]: {
|
||||
type: 'sd1_model_loader',
|
||||
type: 'pipeline_model_loader',
|
||||
id: MODEL_LOADER,
|
||||
model_name,
|
||||
model,
|
||||
},
|
||||
[LATENTS_TO_IMAGE]: {
|
||||
type: 'l2i',
|
||||
|
@ -1,6 +1,10 @@
|
||||
import { RootState } from 'app/store/store';
|
||||
import { NonNullableGraph } from 'features/nodes/types/types';
|
||||
import { RandomIntInvocation, RangeOfSizeInvocation } from 'services/api';
|
||||
import {
|
||||
BaseModelType,
|
||||
RandomIntInvocation,
|
||||
RangeOfSizeInvocation,
|
||||
} from 'services/api';
|
||||
import {
|
||||
ITERATE,
|
||||
LATENTS_TO_IMAGE,
|
||||
@ -14,6 +18,7 @@ import {
|
||||
TEXT_TO_LATENTS,
|
||||
} from './constants';
|
||||
import { addControlNetToLinearGraph } from '../addControlNetToLinearGraph';
|
||||
import { modelIdToPipelineModelField } from '../modelIdToPipelineModelField';
|
||||
|
||||
type TextToImageGraphOverrides = {
|
||||
width: number;
|
||||
@ -27,7 +32,7 @@ export const buildLinearTextToImageGraph = (
|
||||
const {
|
||||
positivePrompt,
|
||||
negativePrompt,
|
||||
model: model_name,
|
||||
model: modelId,
|
||||
cfgScale: cfg_scale,
|
||||
scheduler,
|
||||
steps,
|
||||
@ -38,6 +43,8 @@ export const buildLinearTextToImageGraph = (
|
||||
shouldRandomizeSeed,
|
||||
} = state.generation;
|
||||
|
||||
const model = modelIdToPipelineModelField(modelId);
|
||||
|
||||
/**
|
||||
* The easiest way to build linear graphs is to do it in the node editor, then copy and paste the
|
||||
* full graph here as a template. Then use the parameters from app state and set friendlier node
|
||||
@ -82,9 +89,9 @@ export const buildLinearTextToImageGraph = (
|
||||
steps,
|
||||
},
|
||||
[MODEL_LOADER]: {
|
||||
type: 'sd1_model_loader',
|
||||
type: 'pipeline_model_loader',
|
||||
id: MODEL_LOADER,
|
||||
model_name,
|
||||
model,
|
||||
},
|
||||
[LATENTS_TO_IMAGE]: {
|
||||
type: 'l2i',
|
||||
|
@ -1,9 +1,10 @@
|
||||
import { Graph } from 'services/api';
|
||||
import { v4 as uuidv4 } from 'uuid';
|
||||
import { cloneDeep, forEach, omit, reduce, values } from 'lodash-es';
|
||||
import { cloneDeep, omit, reduce } from 'lodash-es';
|
||||
import { RootState } from 'app/store/store';
|
||||
import { InputFieldValue } from 'features/nodes/types/types';
|
||||
import { AnyInvocation } from 'services/events/types';
|
||||
import { modelIdToPipelineModelField } from '../modelIdToPipelineModelField';
|
||||
|
||||
/**
|
||||
* We need to do special handling for some fields
|
||||
@ -24,6 +25,12 @@ export const parseFieldValue = (field: InputFieldValue) => {
|
||||
}
|
||||
}
|
||||
|
||||
if (field.type === 'model') {
|
||||
if (field.value) {
|
||||
return modelIdToPipelineModelField(field.value);
|
||||
}
|
||||
}
|
||||
|
||||
return field.value;
|
||||
};
|
||||
|
||||
|
@ -7,7 +7,7 @@ export const NOISE = 'noise';
|
||||
export const RANDOM_INT = 'rand_int';
|
||||
export const RANGE_OF_SIZE = 'range_of_size';
|
||||
export const ITERATE = 'iterate';
|
||||
export const MODEL_LOADER = 'model_loader';
|
||||
export const MODEL_LOADER = 'pipeline_model_loader';
|
||||
export const IMAGE_TO_LATENTS = 'image_to_latents';
|
||||
export const LATENTS_TO_LATENTS = 'latents_to_latents';
|
||||
export const RESIZE = 'resize_image';
|
||||
|
@ -0,0 +1,18 @@
|
||||
import { BaseModelType, PipelineModelField } from 'services/api';
|
||||
|
||||
/**
|
||||
* Crudely converts a model id to a pipeline model field
|
||||
* TODO: Make better
|
||||
*/
|
||||
export const modelIdToPipelineModelField = (
|
||||
modelId: string
|
||||
): PipelineModelField => {
|
||||
const [base_model, model_type, model_name] = modelId.split('/');
|
||||
|
||||
const field: PipelineModelField = {
|
||||
base_model: base_model as BaseModelType,
|
||||
model_name,
|
||||
};
|
||||
|
||||
return field;
|
||||
};
|
@ -6,7 +6,7 @@ import ParamScheduler from './ParamScheduler';
|
||||
const ParamSchedulerAndModel = () => {
|
||||
return (
|
||||
<Flex gap={3} w="full">
|
||||
<Box w="20rem">
|
||||
<Box w="25rem">
|
||||
<ParamScheduler />
|
||||
</Box>
|
||||
<Box w="full">
|
||||
|
@ -1,10 +1,9 @@
|
||||
import type { PayloadAction } from '@reduxjs/toolkit';
|
||||
import { createSlice } from '@reduxjs/toolkit';
|
||||
import { DEFAULT_SCHEDULER_NAME } from 'app/constants';
|
||||
import { configChanged } from 'features/system/store/configSlice';
|
||||
import { clamp, sortBy } from 'lodash-es';
|
||||
import { clamp } from 'lodash-es';
|
||||
import { ImageDTO } from 'services/api';
|
||||
import { imageUrlsReceived } from 'services/thunks/image';
|
||||
import { receivedModels } from 'services/thunks/model';
|
||||
import {
|
||||
CfgScaleParam,
|
||||
HeightParam,
|
||||
@ -17,7 +16,6 @@ import {
|
||||
StrengthParam,
|
||||
WidthParam,
|
||||
} from './parameterZodSchemas';
|
||||
import { DEFAULT_SCHEDULER_NAME } from 'app/constants';
|
||||
|
||||
export interface GenerationState {
|
||||
cfgScale: CfgScaleParam;
|
||||
@ -220,28 +218,12 @@ export const generationSlice = createSlice({
|
||||
},
|
||||
},
|
||||
extraReducers: (builder) => {
|
||||
builder.addCase(receivedModels.fulfilled, (state, action) => {
|
||||
if (!state.model) {
|
||||
const firstModel = sortBy(action.payload, 'name')[0];
|
||||
state.model = firstModel.name;
|
||||
}
|
||||
});
|
||||
|
||||
builder.addCase(configChanged, (state, action) => {
|
||||
const defaultModel = action.payload.sd?.defaultModel;
|
||||
if (defaultModel && !state.model) {
|
||||
state.model = defaultModel;
|
||||
}
|
||||
});
|
||||
|
||||
// builder.addCase(imageUrlsReceived.fulfilled, (state, action) => {
|
||||
// const { image_name, image_url, thumbnail_url } = action.payload;
|
||||
|
||||
// if (state.initialImage?.image_name === image_name) {
|
||||
// state.initialImage.image_url = image_url;
|
||||
// state.initialImage.thumbnail_url = thumbnail_url;
|
||||
// }
|
||||
// });
|
||||
},
|
||||
});
|
||||
|
||||
|
@ -154,3 +154,17 @@ export type StrengthParam = z.infer<typeof zStrength>;
|
||||
*/
|
||||
export const isValidStrength = (val: unknown): val is StrengthParam =>
|
||||
zStrength.safeParse(val).success;
|
||||
|
||||
// /**
|
||||
// * Zod schema for BaseModelType
|
||||
// */
|
||||
// export const zBaseModelType = z.enum(['sd-1', 'sd-2']);
|
||||
// /**
|
||||
// * Type alias for base model type, inferred from its zod schema. Should be identical to the type alias from OpenAPI.
|
||||
// */
|
||||
// export type BaseModelType = z.infer<typeof zBaseModelType>;
|
||||
// /**
|
||||
// * Validates/type-guards a value as a base model type
|
||||
// */
|
||||
// export const isValidBaseModelType = (val: unknown): val is BaseModelType =>
|
||||
// zBaseModelType.safeParse(val).success;
|
||||
|
@ -1,44 +1,59 @@
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { isEqual } from 'lodash-es';
|
||||
import { memo, useCallback } from 'react';
|
||||
import { memo, useCallback, useEffect, useMemo } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
import { RootState } from 'app/store/store';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import IAIMantineSelect, {
|
||||
IAISelectDataType,
|
||||
} from 'common/components/IAIMantineSelect';
|
||||
import { generationSelector } from 'features/parameters/store/generationSelectors';
|
||||
import IAIMantineSelect from 'common/components/IAIMantineSelect';
|
||||
import { modelSelected } from 'features/parameters/store/generationSlice';
|
||||
import { selectModelsAll, selectModelsById } from '../store/modelSlice';
|
||||
|
||||
const selector = createSelector(
|
||||
[(state: RootState) => state, generationSelector],
|
||||
(state, generation) => {
|
||||
const selectedModel = selectModelsById(state, generation.model);
|
||||
import { forEach, isString } from 'lodash-es';
|
||||
import { SelectItem } from '@mantine/core';
|
||||
import { RootState } from 'app/store/store';
|
||||
import { useListModelsQuery } from 'services/apiSlice';
|
||||
|
||||
const modelData = selectModelsAll(state)
|
||||
.map<IAISelectDataType>((m) => ({
|
||||
value: m.name,
|
||||
label: m.name,
|
||||
}))
|
||||
.sort((a, b) => a.label.localeCompare(b.label));
|
||||
return {
|
||||
selectedModel,
|
||||
modelData,
|
||||
};
|
||||
},
|
||||
{
|
||||
memoizeOptions: {
|
||||
resultEqualityCheck: isEqual,
|
||||
},
|
||||
}
|
||||
);
|
||||
export const MODEL_TYPE_MAP = {
|
||||
'sd-1': 'Stable Diffusion 1.x',
|
||||
'sd-2': 'Stable Diffusion 2.x',
|
||||
};
|
||||
|
||||
const ModelSelect = () => {
|
||||
const dispatch = useAppDispatch();
|
||||
const { t } = useTranslation();
|
||||
const { selectedModel, modelData } = useAppSelector(selector);
|
||||
|
||||
const selectedModelId = useAppSelector(
|
||||
(state: RootState) => state.generation.model
|
||||
);
|
||||
|
||||
const { data: pipelineModels } = useListModelsQuery({
|
||||
model_type: 'pipeline',
|
||||
});
|
||||
|
||||
const data = useMemo(() => {
|
||||
if (!pipelineModels) {
|
||||
return [];
|
||||
}
|
||||
|
||||
const data: SelectItem[] = [];
|
||||
|
||||
forEach(pipelineModels.entities, (model, id) => {
|
||||
if (!model) {
|
||||
return;
|
||||
}
|
||||
|
||||
data.push({
|
||||
value: id,
|
||||
label: model.name,
|
||||
group: MODEL_TYPE_MAP[model.base_model],
|
||||
});
|
||||
});
|
||||
|
||||
return data;
|
||||
}, [pipelineModels]);
|
||||
|
||||
const selectedModel = useMemo(
|
||||
() => pipelineModels?.entities[selectedModelId],
|
||||
[pipelineModels?.entities, selectedModelId]
|
||||
);
|
||||
|
||||
const handleChangeModel = useCallback(
|
||||
(v: string | null) => {
|
||||
if (!v) {
|
||||
@ -49,13 +64,27 @@ const ModelSelect = () => {
|
||||
[dispatch]
|
||||
);
|
||||
|
||||
useEffect(() => {
|
||||
if (selectedModelId && pipelineModels?.ids.includes(selectedModelId)) {
|
||||
return;
|
||||
}
|
||||
|
||||
const firstModel = pipelineModels?.ids[0];
|
||||
|
||||
if (!isString(firstModel)) {
|
||||
return;
|
||||
}
|
||||
|
||||
handleChangeModel(firstModel);
|
||||
}, [handleChangeModel, pipelineModels?.ids, selectedModelId]);
|
||||
|
||||
return (
|
||||
<IAIMantineSelect
|
||||
tooltip={selectedModel?.description}
|
||||
label={t('modelManager.model')}
|
||||
value={selectedModel?.name ?? ''}
|
||||
value={selectedModelId}
|
||||
placeholder="Pick one"
|
||||
data={modelData}
|
||||
data={data}
|
||||
onChange={handleChangeModel}
|
||||
/>
|
||||
);
|
||||
|
@ -1,6 +1,5 @@
|
||||
import { SCHEDULER_LABEL_MAP, SCHEDULER_NAMES } from 'app/constants';
|
||||
import { RootState } from 'app/store/store';
|
||||
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import IAIMantineMultiSelect from 'common/components/IAIMantineMultiSelect';
|
||||
import { SchedulerParam } from 'features/parameters/store/parameterZodSchemas';
|
||||
@ -16,6 +15,7 @@ const data = map(SCHEDULER_NAMES, (s) => ({
|
||||
|
||||
export default function SettingsSchedulers() {
|
||||
const dispatch = useAppDispatch();
|
||||
|
||||
const { t } = useTranslation();
|
||||
|
||||
const enabledSchedulers = useAppSelector(
|
||||
|
@ -7,13 +7,12 @@ import { systemSelector } from '../store/systemSelectors';
|
||||
const isApplicationReadySelector = createSelector(
|
||||
[systemSelector, configSelector],
|
||||
(system, config) => {
|
||||
const { wereModelsReceived, wasSchemaParsed } = system;
|
||||
const { wasSchemaParsed } = system;
|
||||
|
||||
const { disabledTabs } = config;
|
||||
|
||||
return {
|
||||
disabledTabs,
|
||||
wereModelsReceived,
|
||||
wasSchemaParsed,
|
||||
};
|
||||
}
|
||||
@ -23,21 +22,17 @@ const isApplicationReadySelector = createSelector(
|
||||
* Checks if the application is ready to be used, i.e. if the initial startup process is finished.
|
||||
*/
|
||||
export const useIsApplicationReady = () => {
|
||||
const { disabledTabs, wereModelsReceived, wasSchemaParsed } = useAppSelector(
|
||||
const { disabledTabs, wasSchemaParsed } = useAppSelector(
|
||||
isApplicationReadySelector
|
||||
);
|
||||
|
||||
const isApplicationReady = useMemo(() => {
|
||||
if (!wereModelsReceived) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!disabledTabs.includes('nodes') && !wasSchemaParsed) {
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}, [disabledTabs, wereModelsReceived, wasSchemaParsed]);
|
||||
}, [disabledTabs, wasSchemaParsed]);
|
||||
|
||||
return isApplicationReady;
|
||||
};
|
||||
|
@ -1,3 +0,0 @@
|
||||
import { RootState } from 'app/store/store';
|
||||
|
||||
export const modelSelector = (state: RootState) => state.models;
|
@ -1,47 +0,0 @@
|
||||
import { createEntityAdapter } from '@reduxjs/toolkit';
|
||||
import { createSlice } from '@reduxjs/toolkit';
|
||||
import { RootState } from 'app/store/store';
|
||||
import { CkptModelInfo, DiffusersModelInfo } from 'services/api';
|
||||
import { receivedModels } from 'services/thunks/model';
|
||||
|
||||
export type Model = (CkptModelInfo | DiffusersModelInfo) & {
|
||||
name: string;
|
||||
};
|
||||
|
||||
export const modelsAdapter = createEntityAdapter<Model>({
|
||||
selectId: (model) => model.name,
|
||||
sortComparer: (a, b) => a.name.localeCompare(b.name),
|
||||
});
|
||||
|
||||
export const initialModelsState = modelsAdapter.getInitialState();
|
||||
|
||||
export type ModelsState = typeof initialModelsState;
|
||||
|
||||
export const modelsSlice = createSlice({
|
||||
name: 'models',
|
||||
initialState: initialModelsState,
|
||||
reducers: {
|
||||
modelAdded: modelsAdapter.upsertOne,
|
||||
},
|
||||
extraReducers(builder) {
|
||||
/**
|
||||
* Received Models - FULFILLED
|
||||
*/
|
||||
builder.addCase(receivedModels.fulfilled, (state, action) => {
|
||||
const models = action.payload;
|
||||
modelsAdapter.setAll(state, models);
|
||||
});
|
||||
},
|
||||
});
|
||||
|
||||
export const {
|
||||
selectAll: selectModelsAll,
|
||||
selectById: selectModelsById,
|
||||
selectEntities: selectModelsEntities,
|
||||
selectIds: selectModelsIds,
|
||||
selectTotal: selectModelsTotal,
|
||||
} = modelsAdapter.getSelectors<RootState>((state) => state.models);
|
||||
|
||||
export const { modelAdded } = modelsSlice.actions;
|
||||
|
||||
export default modelsSlice.reducer;
|
@ -1,6 +0,0 @@
|
||||
import { ModelsState } from './modelSlice';
|
||||
|
||||
/**
|
||||
* Models slice persist denylist
|
||||
*/
|
||||
export const modelsPersistDenylist: (keyof ModelsState)[] = ['entities', 'ids'];
|
@ -1,20 +1,12 @@
|
||||
import { UseToastOptions } from '@chakra-ui/react';
|
||||
import { PayloadAction } from '@reduxjs/toolkit';
|
||||
import { createSlice } from '@reduxjs/toolkit';
|
||||
import { PayloadAction, createSlice } from '@reduxjs/toolkit';
|
||||
import * as InvokeAI from 'app/types/invokeai';
|
||||
|
||||
import { ProgressImage } from 'services/events/types';
|
||||
import { makeToast } from '../../../app/components/Toaster';
|
||||
import { isAnySessionRejected, sessionCanceled } from 'services/thunks/session';
|
||||
import { receivedModels } from 'services/thunks/model';
|
||||
import { parsedOpenAPISchema } from 'features/nodes/store/nodesSlice';
|
||||
import { LogLevelName } from 'roarr';
|
||||
import { InvokeLogLevel } from 'app/logging/useLogger';
|
||||
import { TFuncKey } from 'i18next';
|
||||
import { t } from 'i18next';
|
||||
import { userInvoked } from 'app/store/actions';
|
||||
import { LANGUAGES } from '../components/LanguagePicker';
|
||||
import { imageUploaded } from 'services/thunks/image';
|
||||
import { parsedOpenAPISchema } from 'features/nodes/store/nodesSlice';
|
||||
import { TFuncKey, t } from 'i18next';
|
||||
import { LogLevelName } from 'roarr';
|
||||
import {
|
||||
appSocketConnected,
|
||||
appSocketDisconnected,
|
||||
@ -26,6 +18,11 @@ import {
|
||||
appSocketSubscribed,
|
||||
appSocketUnsubscribed,
|
||||
} from 'services/events/actions';
|
||||
import { ProgressImage } from 'services/events/types';
|
||||
import { imageUploaded } from 'services/thunks/image';
|
||||
import { isAnySessionRejected, sessionCanceled } from 'services/thunks/session';
|
||||
import { makeToast } from '../../../app/components/Toaster';
|
||||
import { LANGUAGES } from '../components/LanguagePicker';
|
||||
|
||||
export type CancelStrategy = 'immediate' | 'scheduled';
|
||||
|
||||
@ -379,13 +376,6 @@ export const systemSlice = createSlice({
|
||||
);
|
||||
});
|
||||
|
||||
/**
|
||||
* Received available models from the backend
|
||||
*/
|
||||
builder.addCase(receivedModels.fulfilled, (state) => {
|
||||
state.wereModelsReceived = true;
|
||||
});
|
||||
|
||||
/**
|
||||
* OpenAPI schema was parsed
|
||||
*/
|
||||
|
@ -25,6 +25,8 @@ export type { ConditioningField } from './models/ConditioningField';
|
||||
export type { ContentShuffleImageProcessorInvocation } from './models/ContentShuffleImageProcessorInvocation';
|
||||
export type { ControlField } from './models/ControlField';
|
||||
export type { ControlNetInvocation } from './models/ControlNetInvocation';
|
||||
export type { ControlNetModelConfig } from './models/ControlNetModelConfig';
|
||||
export type { ControlNetModelFormat } from './models/ControlNetModelFormat';
|
||||
export type { ControlOutput } from './models/ControlOutput';
|
||||
export type { CreateModelRequest } from './models/CreateModelRequest';
|
||||
export type { CvInpaintInvocation } from './models/CvInpaintInvocation';
|
||||
@ -67,14 +69,6 @@ export type { InfillTileInvocation } from './models/InfillTileInvocation';
|
||||
export type { InpaintInvocation } from './models/InpaintInvocation';
|
||||
export type { IntCollectionOutput } from './models/IntCollectionOutput';
|
||||
export type { IntOutput } from './models/IntOutput';
|
||||
export type { invokeai__backend__model_management__models__controlnet__ControlNetModel__Config } from './models/invokeai__backend__model_management__models__controlnet__ControlNetModel__Config';
|
||||
export type { invokeai__backend__model_management__models__lora__LoRAModel__Config } from './models/invokeai__backend__model_management__models__lora__LoRAModel__Config';
|
||||
export type { invokeai__backend__model_management__models__stable_diffusion__StableDiffusion1Model__CheckpointConfig } from './models/invokeai__backend__model_management__models__stable_diffusion__StableDiffusion1Model__CheckpointConfig';
|
||||
export type { invokeai__backend__model_management__models__stable_diffusion__StableDiffusion1Model__DiffusersConfig } from './models/invokeai__backend__model_management__models__stable_diffusion__StableDiffusion1Model__DiffusersConfig';
|
||||
export type { invokeai__backend__model_management__models__stable_diffusion__StableDiffusion2Model__CheckpointConfig } from './models/invokeai__backend__model_management__models__stable_diffusion__StableDiffusion2Model__CheckpointConfig';
|
||||
export type { invokeai__backend__model_management__models__stable_diffusion__StableDiffusion2Model__DiffusersConfig } from './models/invokeai__backend__model_management__models__stable_diffusion__StableDiffusion2Model__DiffusersConfig';
|
||||
export type { invokeai__backend__model_management__models__textual_inversion__TextualInversionModel__Config } from './models/invokeai__backend__model_management__models__textual_inversion__TextualInversionModel__Config';
|
||||
export type { invokeai__backend__model_management__models__vae__VaeModel__Config } from './models/invokeai__backend__model_management__models__vae__VaeModel__Config';
|
||||
export type { IterateInvocation } from './models/IterateInvocation';
|
||||
export type { IterateInvocationOutput } from './models/IterateInvocationOutput';
|
||||
export type { LatentsField } from './models/LatentsField';
|
||||
@ -87,6 +81,8 @@ export type { LoadImageInvocation } from './models/LoadImageInvocation';
|
||||
export type { LoraInfo } from './models/LoraInfo';
|
||||
export type { LoraLoaderInvocation } from './models/LoraLoaderInvocation';
|
||||
export type { LoraLoaderOutput } from './models/LoraLoaderOutput';
|
||||
export type { LoRAModelConfig } from './models/LoRAModelConfig';
|
||||
export type { LoRAModelFormat } from './models/LoRAModelFormat';
|
||||
export type { MaskFromAlphaInvocation } from './models/MaskFromAlphaInvocation';
|
||||
export type { MaskOutput } from './models/MaskOutput';
|
||||
export type { MediapipeFaceProcessorInvocation } from './models/MediapipeFaceProcessorInvocation';
|
||||
@ -109,6 +105,8 @@ export type { PaginatedResults_GraphExecutionState_ } from './models/PaginatedRe
|
||||
export type { ParamFloatInvocation } from './models/ParamFloatInvocation';
|
||||
export type { ParamIntInvocation } from './models/ParamIntInvocation';
|
||||
export type { PidiImageProcessorInvocation } from './models/PidiImageProcessorInvocation';
|
||||
export type { PipelineModelField } from './models/PipelineModelField';
|
||||
export type { PipelineModelLoaderInvocation } from './models/PipelineModelLoaderInvocation';
|
||||
export type { PromptCollectionOutput } from './models/PromptCollectionOutput';
|
||||
export type { PromptOutput } from './models/PromptOutput';
|
||||
export type { RandomIntInvocation } from './models/RandomIntInvocation';
|
||||
@ -120,16 +118,23 @@ export type { ResourceOrigin } from './models/ResourceOrigin';
|
||||
export type { RestoreFaceInvocation } from './models/RestoreFaceInvocation';
|
||||
export type { ScaleLatentsInvocation } from './models/ScaleLatentsInvocation';
|
||||
export type { SchedulerPredictionType } from './models/SchedulerPredictionType';
|
||||
export type { SD1ModelLoaderInvocation } from './models/SD1ModelLoaderInvocation';
|
||||
export type { SD2ModelLoaderInvocation } from './models/SD2ModelLoaderInvocation';
|
||||
export type { ShowImageInvocation } from './models/ShowImageInvocation';
|
||||
export type { StableDiffusion1ModelCheckpointConfig } from './models/StableDiffusion1ModelCheckpointConfig';
|
||||
export type { StableDiffusion1ModelDiffusersConfig } from './models/StableDiffusion1ModelDiffusersConfig';
|
||||
export type { StableDiffusion1ModelFormat } from './models/StableDiffusion1ModelFormat';
|
||||
export type { StableDiffusion2ModelCheckpointConfig } from './models/StableDiffusion2ModelCheckpointConfig';
|
||||
export type { StableDiffusion2ModelDiffusersConfig } from './models/StableDiffusion2ModelDiffusersConfig';
|
||||
export type { StableDiffusion2ModelFormat } from './models/StableDiffusion2ModelFormat';
|
||||
export type { StepParamEasingInvocation } from './models/StepParamEasingInvocation';
|
||||
export type { SubModelType } from './models/SubModelType';
|
||||
export type { SubtractInvocation } from './models/SubtractInvocation';
|
||||
export type { TextToLatentsInvocation } from './models/TextToLatentsInvocation';
|
||||
export type { TextualInversionModelConfig } from './models/TextualInversionModelConfig';
|
||||
export type { UNetField } from './models/UNetField';
|
||||
export type { UpscaleInvocation } from './models/UpscaleInvocation';
|
||||
export type { VaeField } from './models/VaeField';
|
||||
export type { VaeModelConfig } from './models/VaeModelConfig';
|
||||
export type { VaeModelFormat } from './models/VaeModelFormat';
|
||||
export type { VaeRepo } from './models/VaeRepo';
|
||||
export type { ValidationError } from './models/ValidationError';
|
||||
export type { ZoeDepthImageProcessorInvocation } from './models/ZoeDepthImageProcessorInvocation';
|
||||
|
@ -0,0 +1,18 @@
|
||||
/* istanbul ignore file */
|
||||
/* tslint:disable */
|
||||
/* eslint-disable */
|
||||
|
||||
import type { BaseModelType } from './BaseModelType';
|
||||
import type { ControlNetModelFormat } from './ControlNetModelFormat';
|
||||
import type { ModelError } from './ModelError';
|
||||
|
||||
export type ControlNetModelConfig = {
|
||||
name: string;
|
||||
base_model: BaseModelType;
|
||||
type: 'controlnet';
|
||||
path: string;
|
||||
description?: string;
|
||||
model_format: ControlNetModelFormat;
|
||||
error?: ModelError;
|
||||
};
|
||||
|
@ -0,0 +1,8 @@
|
||||
/* istanbul ignore file */
|
||||
/* tslint:disable */
|
||||
/* eslint-disable */
|
||||
|
||||
/**
|
||||
* An enumeration.
|
||||
*/
|
||||
export type ControlNetModelFormat = 'checkpoint' | 'diffusers';
|
@ -49,6 +49,7 @@ import type { OpenposeImageProcessorInvocation } from './OpenposeImageProcessorI
|
||||
import type { ParamFloatInvocation } from './ParamFloatInvocation';
|
||||
import type { ParamIntInvocation } from './ParamIntInvocation';
|
||||
import type { PidiImageProcessorInvocation } from './PidiImageProcessorInvocation';
|
||||
import type { PipelineModelLoaderInvocation } from './PipelineModelLoaderInvocation';
|
||||
import type { RandomIntInvocation } from './RandomIntInvocation';
|
||||
import type { RandomRangeInvocation } from './RandomRangeInvocation';
|
||||
import type { RangeInvocation } from './RangeInvocation';
|
||||
@ -56,8 +57,6 @@ import type { RangeOfSizeInvocation } from './RangeOfSizeInvocation';
|
||||
import type { ResizeLatentsInvocation } from './ResizeLatentsInvocation';
|
||||
import type { RestoreFaceInvocation } from './RestoreFaceInvocation';
|
||||
import type { ScaleLatentsInvocation } from './ScaleLatentsInvocation';
|
||||
import type { SD1ModelLoaderInvocation } from './SD1ModelLoaderInvocation';
|
||||
import type { SD2ModelLoaderInvocation } from './SD2ModelLoaderInvocation';
|
||||
import type { ShowImageInvocation } from './ShowImageInvocation';
|
||||
import type { StepParamEasingInvocation } from './StepParamEasingInvocation';
|
||||
import type { SubtractInvocation } from './SubtractInvocation';
|
||||
@ -73,7 +72,7 @@ export type Graph = {
|
||||
/**
|
||||
* The nodes in this graph
|
||||
*/
|
||||
nodes?: Record<string, (LoadImageInvocation | ShowImageInvocation | ImageCropInvocation | ImagePasteInvocation | MaskFromAlphaInvocation | ImageMultiplyInvocation | ImageChannelInvocation | ImageConvertInvocation | ImageBlurInvocation | ImageResizeInvocation | ImageScaleInvocation | ImageLerpInvocation | ImageInverseLerpInvocation | ControlNetInvocation | ImageProcessorInvocation | SD1ModelLoaderInvocation | SD2ModelLoaderInvocation | LoraLoaderInvocation | DynamicPromptInvocation | CompelInvocation | AddInvocation | SubtractInvocation | MultiplyInvocation | DivideInvocation | RandomIntInvocation | ParamIntInvocation | ParamFloatInvocation | NoiseInvocation | TextToLatentsInvocation | LatentsToImageInvocation | ResizeLatentsInvocation | ScaleLatentsInvocation | ImageToLatentsInvocation | CvInpaintInvocation | RangeInvocation | RangeOfSizeInvocation | RandomRangeInvocation | FloatLinearRangeInvocation | StepParamEasingInvocation | UpscaleInvocation | RestoreFaceInvocation | InpaintInvocation | InfillColorInvocation | InfillTileInvocation | InfillPatchMatchInvocation | GraphInvocation | IterateInvocation | CollectInvocation | CannyImageProcessorInvocation | HedImageProcessorInvocation | LineartImageProcessorInvocation | LineartAnimeImageProcessorInvocation | OpenposeImageProcessorInvocation | MidasDepthImageProcessorInvocation | NormalbaeImageProcessorInvocation | MlsdImageProcessorInvocation | PidiImageProcessorInvocation | ContentShuffleImageProcessorInvocation | ZoeDepthImageProcessorInvocation | MediapipeFaceProcessorInvocation | LatentsToLatentsInvocation)>;
|
||||
nodes?: Record<string, (LoadImageInvocation | ShowImageInvocation | ImageCropInvocation | ImagePasteInvocation | MaskFromAlphaInvocation | ImageMultiplyInvocation | ImageChannelInvocation | ImageConvertInvocation | ImageBlurInvocation | ImageResizeInvocation | ImageScaleInvocation | ImageLerpInvocation | ImageInverseLerpInvocation | ControlNetInvocation | ImageProcessorInvocation | PipelineModelLoaderInvocation | LoraLoaderInvocation | DynamicPromptInvocation | CompelInvocation | AddInvocation | SubtractInvocation | MultiplyInvocation | DivideInvocation | RandomIntInvocation | ParamIntInvocation | ParamFloatInvocation | NoiseInvocation | TextToLatentsInvocation | LatentsToImageInvocation | ResizeLatentsInvocation | ScaleLatentsInvocation | ImageToLatentsInvocation | CvInpaintInvocation | RangeInvocation | RangeOfSizeInvocation | RandomRangeInvocation | FloatLinearRangeInvocation | StepParamEasingInvocation | UpscaleInvocation | RestoreFaceInvocation | InpaintInvocation | InfillColorInvocation | InfillTileInvocation | InfillPatchMatchInvocation | GraphInvocation | IterateInvocation | CollectInvocation | CannyImageProcessorInvocation | HedImageProcessorInvocation | LineartImageProcessorInvocation | LineartAnimeImageProcessorInvocation | OpenposeImageProcessorInvocation | MidasDepthImageProcessorInvocation | NormalbaeImageProcessorInvocation | MlsdImageProcessorInvocation | PidiImageProcessorInvocation | ContentShuffleImageProcessorInvocation | ZoeDepthImageProcessorInvocation | MediapipeFaceProcessorInvocation | LatentsToLatentsInvocation)>;
|
||||
/**
|
||||
* The connections between nodes and their fields in this graph
|
||||
*/
|
||||
|
@ -0,0 +1,18 @@
|
||||
/* istanbul ignore file */
|
||||
/* tslint:disable */
|
||||
/* eslint-disable */
|
||||
|
||||
import type { BaseModelType } from './BaseModelType';
|
||||
import type { LoRAModelFormat } from './LoRAModelFormat';
|
||||
import type { ModelError } from './ModelError';
|
||||
|
||||
export type LoRAModelConfig = {
|
||||
name: string;
|
||||
base_model: BaseModelType;
|
||||
type: 'lora';
|
||||
path: string;
|
||||
description?: string;
|
||||
model_format: LoRAModelFormat;
|
||||
error?: ModelError;
|
||||
};
|
||||
|
@ -0,0 +1,8 @@
|
||||
/* istanbul ignore file */
|
||||
/* tslint:disable */
|
||||
/* eslint-disable */
|
||||
|
||||
/**
|
||||
* An enumeration.
|
||||
*/
|
||||
export type LoRAModelFormat = 'lycoris' | 'diffusers';
|
@ -2,16 +2,16 @@
|
||||
/* tslint:disable */
|
||||
/* eslint-disable */
|
||||
|
||||
import type { invokeai__backend__model_management__models__controlnet__ControlNetModel__Config } from './invokeai__backend__model_management__models__controlnet__ControlNetModel__Config';
|
||||
import type { invokeai__backend__model_management__models__lora__LoRAModel__Config } from './invokeai__backend__model_management__models__lora__LoRAModel__Config';
|
||||
import type { invokeai__backend__model_management__models__stable_diffusion__StableDiffusion1Model__CheckpointConfig } from './invokeai__backend__model_management__models__stable_diffusion__StableDiffusion1Model__CheckpointConfig';
|
||||
import type { invokeai__backend__model_management__models__stable_diffusion__StableDiffusion1Model__DiffusersConfig } from './invokeai__backend__model_management__models__stable_diffusion__StableDiffusion1Model__DiffusersConfig';
|
||||
import type { invokeai__backend__model_management__models__stable_diffusion__StableDiffusion2Model__CheckpointConfig } from './invokeai__backend__model_management__models__stable_diffusion__StableDiffusion2Model__CheckpointConfig';
|
||||
import type { invokeai__backend__model_management__models__stable_diffusion__StableDiffusion2Model__DiffusersConfig } from './invokeai__backend__model_management__models__stable_diffusion__StableDiffusion2Model__DiffusersConfig';
|
||||
import type { invokeai__backend__model_management__models__textual_inversion__TextualInversionModel__Config } from './invokeai__backend__model_management__models__textual_inversion__TextualInversionModel__Config';
|
||||
import type { invokeai__backend__model_management__models__vae__VaeModel__Config } from './invokeai__backend__model_management__models__vae__VaeModel__Config';
|
||||
import type { ControlNetModelConfig } from './ControlNetModelConfig';
|
||||
import type { LoRAModelConfig } from './LoRAModelConfig';
|
||||
import type { StableDiffusion1ModelCheckpointConfig } from './StableDiffusion1ModelCheckpointConfig';
|
||||
import type { StableDiffusion1ModelDiffusersConfig } from './StableDiffusion1ModelDiffusersConfig';
|
||||
import type { StableDiffusion2ModelCheckpointConfig } from './StableDiffusion2ModelCheckpointConfig';
|
||||
import type { StableDiffusion2ModelDiffusersConfig } from './StableDiffusion2ModelDiffusersConfig';
|
||||
import type { TextualInversionModelConfig } from './TextualInversionModelConfig';
|
||||
import type { VaeModelConfig } from './VaeModelConfig';
|
||||
|
||||
export type ModelsList = {
|
||||
models: Record<string, Record<string, Record<string, (invokeai__backend__model_management__models__stable_diffusion__StableDiffusion1Model__DiffusersConfig | invokeai__backend__model_management__models__controlnet__ControlNetModel__Config | invokeai__backend__model_management__models__lora__LoRAModel__Config | invokeai__backend__model_management__models__stable_diffusion__StableDiffusion2Model__DiffusersConfig | invokeai__backend__model_management__models__textual_inversion__TextualInversionModel__Config | invokeai__backend__model_management__models__vae__VaeModel__Config | invokeai__backend__model_management__models__stable_diffusion__StableDiffusion2Model__CheckpointConfig | invokeai__backend__model_management__models__stable_diffusion__StableDiffusion1Model__CheckpointConfig)>>>;
|
||||
models: Array<(StableDiffusion1ModelCheckpointConfig | StableDiffusion1ModelDiffusersConfig | VaeModelConfig | LoRAModelConfig | ControlNetModelConfig | TextualInversionModelConfig | StableDiffusion2ModelCheckpointConfig | StableDiffusion2ModelDiffusersConfig)>;
|
||||
};
|
||||
|
||||
|
@ -0,0 +1,20 @@
|
||||
/* istanbul ignore file */
|
||||
/* tslint:disable */
|
||||
/* eslint-disable */
|
||||
|
||||
import type { BaseModelType } from './BaseModelType';
|
||||
|
||||
/**
|
||||
* Pipeline model field
|
||||
*/
|
||||
export type PipelineModelField = {
|
||||
/**
|
||||
* Name of the model
|
||||
*/
|
||||
model_name: string;
|
||||
/**
|
||||
* Base model
|
||||
*/
|
||||
base_model: BaseModelType;
|
||||
};
|
||||
|
@ -2,10 +2,12 @@
|
||||
/* tslint:disable */
|
||||
/* eslint-disable */
|
||||
|
||||
import type { PipelineModelField } from './PipelineModelField';
|
||||
|
||||
/**
|
||||
* Loading submodels of selected model.
|
||||
* Loads a pipeline model, outputting its submodels.
|
||||
*/
|
||||
export type SD2ModelLoaderInvocation = {
|
||||
export type PipelineModelLoaderInvocation = {
|
||||
/**
|
||||
* The id of this node. Must be unique among all nodes.
|
||||
*/
|
||||
@ -14,10 +16,10 @@ export type SD2ModelLoaderInvocation = {
|
||||
* Whether or not this node is an intermediate node.
|
||||
*/
|
||||
is_intermediate?: boolean;
|
||||
type?: 'sd2_model_loader';
|
||||
type?: 'pipeline_model_loader';
|
||||
/**
|
||||
* Model to load
|
||||
* The model to load
|
||||
*/
|
||||
model_name?: string;
|
||||
model: PipelineModelField;
|
||||
};
|
||||
|
@ -1,23 +0,0 @@
|
||||
/* istanbul ignore file */
|
||||
/* tslint:disable */
|
||||
/* eslint-disable */
|
||||
|
||||
/**
|
||||
* Loading submodels of selected model.
|
||||
*/
|
||||
export type SD1ModelLoaderInvocation = {
|
||||
/**
|
||||
* The id of this node. Must be unique among all nodes.
|
||||
*/
|
||||
id: string;
|
||||
/**
|
||||
* Whether or not this node is an intermediate node.
|
||||
*/
|
||||
is_intermediate?: boolean;
|
||||
type?: 'sd1_model_loader';
|
||||
/**
|
||||
* Model to load
|
||||
*/
|
||||
model_name?: string;
|
||||
};
|
||||
|
@ -2,14 +2,17 @@
|
||||
/* tslint:disable */
|
||||
/* eslint-disable */
|
||||
|
||||
import type { BaseModelType } from './BaseModelType';
|
||||
import type { ModelError } from './ModelError';
|
||||
import type { ModelVariantType } from './ModelVariantType';
|
||||
|
||||
export type invokeai__backend__model_management__models__stable_diffusion__StableDiffusion1Model__CheckpointConfig = {
|
||||
export type StableDiffusion1ModelCheckpointConfig = {
|
||||
name: string;
|
||||
base_model: BaseModelType;
|
||||
type: 'pipeline';
|
||||
path: string;
|
||||
description?: string;
|
||||
format: 'checkpoint';
|
||||
default?: boolean;
|
||||
model_format: 'checkpoint';
|
||||
error?: ModelError;
|
||||
vae?: string;
|
||||
config?: string;
|
@ -2,14 +2,17 @@
|
||||
/* tslint:disable */
|
||||
/* eslint-disable */
|
||||
|
||||
import type { BaseModelType } from './BaseModelType';
|
||||
import type { ModelError } from './ModelError';
|
||||
import type { ModelVariantType } from './ModelVariantType';
|
||||
|
||||
export type invokeai__backend__model_management__models__stable_diffusion__StableDiffusion1Model__DiffusersConfig = {
|
||||
export type StableDiffusion1ModelDiffusersConfig = {
|
||||
name: string;
|
||||
base_model: BaseModelType;
|
||||
type: 'pipeline';
|
||||
path: string;
|
||||
description?: string;
|
||||
format: 'diffusers';
|
||||
default?: boolean;
|
||||
model_format: 'diffusers';
|
||||
error?: ModelError;
|
||||
vae?: string;
|
||||
variant: ModelVariantType;
|
@ -0,0 +1,8 @@
|
||||
/* istanbul ignore file */
|
||||
/* tslint:disable */
|
||||
/* eslint-disable */
|
||||
|
||||
/**
|
||||
* An enumeration.
|
||||
*/
|
||||
export type StableDiffusion1ModelFormat = 'checkpoint' | 'diffusers';
|
@ -2,15 +2,18 @@
|
||||
/* tslint:disable */
|
||||
/* eslint-disable */
|
||||
|
||||
import type { BaseModelType } from './BaseModelType';
|
||||
import type { ModelError } from './ModelError';
|
||||
import type { ModelVariantType } from './ModelVariantType';
|
||||
import type { SchedulerPredictionType } from './SchedulerPredictionType';
|
||||
|
||||
export type invokeai__backend__model_management__models__stable_diffusion__StableDiffusion2Model__CheckpointConfig = {
|
||||
export type StableDiffusion2ModelCheckpointConfig = {
|
||||
name: string;
|
||||
base_model: BaseModelType;
|
||||
type: 'pipeline';
|
||||
path: string;
|
||||
description?: string;
|
||||
format: 'checkpoint';
|
||||
default?: boolean;
|
||||
model_format: 'checkpoint';
|
||||
error?: ModelError;
|
||||
vae?: string;
|
||||
config?: string;
|
@ -2,15 +2,18 @@
|
||||
/* tslint:disable */
|
||||
/* eslint-disable */
|
||||
|
||||
import type { BaseModelType } from './BaseModelType';
|
||||
import type { ModelError } from './ModelError';
|
||||
import type { ModelVariantType } from './ModelVariantType';
|
||||
import type { SchedulerPredictionType } from './SchedulerPredictionType';
|
||||
|
||||
export type invokeai__backend__model_management__models__stable_diffusion__StableDiffusion2Model__DiffusersConfig = {
|
||||
export type StableDiffusion2ModelDiffusersConfig = {
|
||||
name: string;
|
||||
base_model: BaseModelType;
|
||||
type: 'pipeline';
|
||||
path: string;
|
||||
description?: string;
|
||||
format: 'diffusers';
|
||||
default?: boolean;
|
||||
model_format: 'diffusers';
|
||||
error?: ModelError;
|
||||
vae?: string;
|
||||
variant: ModelVariantType;
|
@ -0,0 +1,8 @@
|
||||
/* istanbul ignore file */
|
||||
/* tslint:disable */
|
||||
/* eslint-disable */
|
||||
|
||||
/**
|
||||
* An enumeration.
|
||||
*/
|
||||
export type StableDiffusion2ModelFormat = 'checkpoint' | 'diffusers';
|
@ -0,0 +1,17 @@
|
||||
/* istanbul ignore file */
|
||||
/* tslint:disable */
|
||||
/* eslint-disable */
|
||||
|
||||
import type { BaseModelType } from './BaseModelType';
|
||||
import type { ModelError } from './ModelError';
|
||||
|
||||
export type TextualInversionModelConfig = {
|
||||
name: string;
|
||||
base_model: BaseModelType;
|
||||
type: 'embedding';
|
||||
path: string;
|
||||
description?: string;
|
||||
model_format: null;
|
||||
error?: ModelError;
|
||||
};
|
||||
|
@ -0,0 +1,18 @@
|
||||
/* istanbul ignore file */
|
||||
/* tslint:disable */
|
||||
/* eslint-disable */
|
||||
|
||||
import type { BaseModelType } from './BaseModelType';
|
||||
import type { ModelError } from './ModelError';
|
||||
import type { VaeModelFormat } from './VaeModelFormat';
|
||||
|
||||
export type VaeModelConfig = {
|
||||
name: string;
|
||||
base_model: BaseModelType;
|
||||
type: 'vae';
|
||||
path: string;
|
||||
description?: string;
|
||||
model_format: VaeModelFormat;
|
||||
error?: ModelError;
|
||||
};
|
||||
|
@ -0,0 +1,8 @@
|
||||
/* istanbul ignore file */
|
||||
/* tslint:disable */
|
||||
/* eslint-disable */
|
||||
|
||||
/**
|
||||
* An enumeration.
|
||||
*/
|
||||
export type VaeModelFormat = 'checkpoint' | 'diffusers';
|
@ -1,14 +0,0 @@
|
||||
/* istanbul ignore file */
|
||||
/* tslint:disable */
|
||||
/* eslint-disable */
|
||||
|
||||
import type { ModelError } from './ModelError';
|
||||
|
||||
export type invokeai__backend__model_management__models__controlnet__ControlNetModel__Config = {
|
||||
path: string;
|
||||
description?: string;
|
||||
format: ('checkpoint' | 'diffusers');
|
||||
default?: boolean;
|
||||
error?: ModelError;
|
||||
};
|
||||
|
@ -1,14 +0,0 @@
|
||||
/* istanbul ignore file */
|
||||
/* tslint:disable */
|
||||
/* eslint-disable */
|
||||
|
||||
import type { ModelError } from './ModelError';
|
||||
|
||||
export type invokeai__backend__model_management__models__lora__LoRAModel__Config = {
|
||||
path: string;
|
||||
description?: string;
|
||||
format: ('lycoris' | 'diffusers');
|
||||
default?: boolean;
|
||||
error?: ModelError;
|
||||
};
|
||||
|
@ -1,14 +0,0 @@
|
||||
/* istanbul ignore file */
|
||||
/* tslint:disable */
|
||||
/* eslint-disable */
|
||||
|
||||
import type { ModelError } from './ModelError';
|
||||
|
||||
export type invokeai__backend__model_management__models__textual_inversion__TextualInversionModel__Config = {
|
||||
path: string;
|
||||
description?: string;
|
||||
format: null;
|
||||
default?: boolean;
|
||||
error?: ModelError;
|
||||
};
|
||||
|
@ -1,14 +0,0 @@
|
||||
/* istanbul ignore file */
|
||||
/* tslint:disable */
|
||||
/* eslint-disable */
|
||||
|
||||
import type { ModelError } from './ModelError';
|
||||
|
||||
export type invokeai__backend__model_management__models__vae__VaeModel__Config = {
|
||||
path: string;
|
||||
description?: string;
|
||||
format: ('checkpoint' | 'diffusers');
|
||||
default?: boolean;
|
||||
error?: ModelError;
|
||||
};
|
||||
|
@ -51,6 +51,7 @@ import type { PaginatedResults_GraphExecutionState_ } from '../models/PaginatedR
|
||||
import type { ParamFloatInvocation } from '../models/ParamFloatInvocation';
|
||||
import type { ParamIntInvocation } from '../models/ParamIntInvocation';
|
||||
import type { PidiImageProcessorInvocation } from '../models/PidiImageProcessorInvocation';
|
||||
import type { PipelineModelLoaderInvocation } from '../models/PipelineModelLoaderInvocation';
|
||||
import type { RandomIntInvocation } from '../models/RandomIntInvocation';
|
||||
import type { RandomRangeInvocation } from '../models/RandomRangeInvocation';
|
||||
import type { RangeInvocation } from '../models/RangeInvocation';
|
||||
@ -58,8 +59,6 @@ import type { RangeOfSizeInvocation } from '../models/RangeOfSizeInvocation';
|
||||
import type { ResizeLatentsInvocation } from '../models/ResizeLatentsInvocation';
|
||||
import type { RestoreFaceInvocation } from '../models/RestoreFaceInvocation';
|
||||
import type { ScaleLatentsInvocation } from '../models/ScaleLatentsInvocation';
|
||||
import type { SD1ModelLoaderInvocation } from '../models/SD1ModelLoaderInvocation';
|
||||
import type { SD2ModelLoaderInvocation } from '../models/SD2ModelLoaderInvocation';
|
||||
import type { ShowImageInvocation } from '../models/ShowImageInvocation';
|
||||
import type { StepParamEasingInvocation } from '../models/StepParamEasingInvocation';
|
||||
import type { SubtractInvocation } from '../models/SubtractInvocation';
|
||||
@ -175,7 +174,7 @@ export class SessionsService {
|
||||
* The id of the session
|
||||
*/
|
||||
sessionId: string,
|
||||
requestBody: (LoadImageInvocation | ShowImageInvocation | ImageCropInvocation | ImagePasteInvocation | MaskFromAlphaInvocation | ImageMultiplyInvocation | ImageChannelInvocation | ImageConvertInvocation | ImageBlurInvocation | ImageResizeInvocation | ImageScaleInvocation | ImageLerpInvocation | ImageInverseLerpInvocation | ControlNetInvocation | ImageProcessorInvocation | SD1ModelLoaderInvocation | SD2ModelLoaderInvocation | LoraLoaderInvocation | DynamicPromptInvocation | CompelInvocation | AddInvocation | SubtractInvocation | MultiplyInvocation | DivideInvocation | RandomIntInvocation | ParamIntInvocation | ParamFloatInvocation | NoiseInvocation | TextToLatentsInvocation | LatentsToImageInvocation | ResizeLatentsInvocation | ScaleLatentsInvocation | ImageToLatentsInvocation | CvInpaintInvocation | RangeInvocation | RangeOfSizeInvocation | RandomRangeInvocation | FloatLinearRangeInvocation | StepParamEasingInvocation | UpscaleInvocation | RestoreFaceInvocation | InpaintInvocation | InfillColorInvocation | InfillTileInvocation | InfillPatchMatchInvocation | GraphInvocation | IterateInvocation | CollectInvocation | CannyImageProcessorInvocation | HedImageProcessorInvocation | LineartImageProcessorInvocation | LineartAnimeImageProcessorInvocation | OpenposeImageProcessorInvocation | MidasDepthImageProcessorInvocation | NormalbaeImageProcessorInvocation | MlsdImageProcessorInvocation | PidiImageProcessorInvocation | ContentShuffleImageProcessorInvocation | ZoeDepthImageProcessorInvocation | MediapipeFaceProcessorInvocation | LatentsToLatentsInvocation),
|
||||
requestBody: (LoadImageInvocation | ShowImageInvocation | ImageCropInvocation | ImagePasteInvocation | MaskFromAlphaInvocation | ImageMultiplyInvocation | ImageChannelInvocation | ImageConvertInvocation | ImageBlurInvocation | ImageResizeInvocation | ImageScaleInvocation | ImageLerpInvocation | ImageInverseLerpInvocation | ControlNetInvocation | ImageProcessorInvocation | PipelineModelLoaderInvocation | LoraLoaderInvocation | DynamicPromptInvocation | CompelInvocation | AddInvocation | SubtractInvocation | MultiplyInvocation | DivideInvocation | RandomIntInvocation | ParamIntInvocation | ParamFloatInvocation | NoiseInvocation | TextToLatentsInvocation | LatentsToImageInvocation | ResizeLatentsInvocation | ScaleLatentsInvocation | ImageToLatentsInvocation | CvInpaintInvocation | RangeInvocation | RangeOfSizeInvocation | RandomRangeInvocation | FloatLinearRangeInvocation | StepParamEasingInvocation | UpscaleInvocation | RestoreFaceInvocation | InpaintInvocation | InfillColorInvocation | InfillTileInvocation | InfillPatchMatchInvocation | GraphInvocation | IterateInvocation | CollectInvocation | CannyImageProcessorInvocation | HedImageProcessorInvocation | LineartImageProcessorInvocation | LineartAnimeImageProcessorInvocation | OpenposeImageProcessorInvocation | MidasDepthImageProcessorInvocation | NormalbaeImageProcessorInvocation | MlsdImageProcessorInvocation | PidiImageProcessorInvocation | ContentShuffleImageProcessorInvocation | ZoeDepthImageProcessorInvocation | MediapipeFaceProcessorInvocation | LatentsToLatentsInvocation),
|
||||
}): CancelablePromise<string> {
|
||||
return __request(OpenAPI, {
|
||||
method: 'POST',
|
||||
@ -212,7 +211,7 @@ export class SessionsService {
|
||||
* The path to the node in the graph
|
||||
*/
|
||||
nodePath: string,
|
||||
requestBody: (LoadImageInvocation | ShowImageInvocation | ImageCropInvocation | ImagePasteInvocation | MaskFromAlphaInvocation | ImageMultiplyInvocation | ImageChannelInvocation | ImageConvertInvocation | ImageBlurInvocation | ImageResizeInvocation | ImageScaleInvocation | ImageLerpInvocation | ImageInverseLerpInvocation | ControlNetInvocation | ImageProcessorInvocation | SD1ModelLoaderInvocation | SD2ModelLoaderInvocation | LoraLoaderInvocation | DynamicPromptInvocation | CompelInvocation | AddInvocation | SubtractInvocation | MultiplyInvocation | DivideInvocation | RandomIntInvocation | ParamIntInvocation | ParamFloatInvocation | NoiseInvocation | TextToLatentsInvocation | LatentsToImageInvocation | ResizeLatentsInvocation | ScaleLatentsInvocation | ImageToLatentsInvocation | CvInpaintInvocation | RangeInvocation | RangeOfSizeInvocation | RandomRangeInvocation | FloatLinearRangeInvocation | StepParamEasingInvocation | UpscaleInvocation | RestoreFaceInvocation | InpaintInvocation | InfillColorInvocation | InfillTileInvocation | InfillPatchMatchInvocation | GraphInvocation | IterateInvocation | CollectInvocation | CannyImageProcessorInvocation | HedImageProcessorInvocation | LineartImageProcessorInvocation | LineartAnimeImageProcessorInvocation | OpenposeImageProcessorInvocation | MidasDepthImageProcessorInvocation | NormalbaeImageProcessorInvocation | MlsdImageProcessorInvocation | PidiImageProcessorInvocation | ContentShuffleImageProcessorInvocation | ZoeDepthImageProcessorInvocation | MediapipeFaceProcessorInvocation | LatentsToLatentsInvocation),
|
||||
requestBody: (LoadImageInvocation | ShowImageInvocation | ImageCropInvocation | ImagePasteInvocation | MaskFromAlphaInvocation | ImageMultiplyInvocation | ImageChannelInvocation | ImageConvertInvocation | ImageBlurInvocation | ImageResizeInvocation | ImageScaleInvocation | ImageLerpInvocation | ImageInverseLerpInvocation | ControlNetInvocation | ImageProcessorInvocation | PipelineModelLoaderInvocation | LoraLoaderInvocation | DynamicPromptInvocation | CompelInvocation | AddInvocation | SubtractInvocation | MultiplyInvocation | DivideInvocation | RandomIntInvocation | ParamIntInvocation | ParamFloatInvocation | NoiseInvocation | TextToLatentsInvocation | LatentsToImageInvocation | ResizeLatentsInvocation | ScaleLatentsInvocation | ImageToLatentsInvocation | CvInpaintInvocation | RangeInvocation | RangeOfSizeInvocation | RandomRangeInvocation | FloatLinearRangeInvocation | StepParamEasingInvocation | UpscaleInvocation | RestoreFaceInvocation | InpaintInvocation | InfillColorInvocation | InfillTileInvocation | InfillPatchMatchInvocation | GraphInvocation | IterateInvocation | CollectInvocation | CannyImageProcessorInvocation | HedImageProcessorInvocation | LineartImageProcessorInvocation | LineartAnimeImageProcessorInvocation | OpenposeImageProcessorInvocation | MidasDepthImageProcessorInvocation | NormalbaeImageProcessorInvocation | MlsdImageProcessorInvocation | PidiImageProcessorInvocation | ContentShuffleImageProcessorInvocation | ZoeDepthImageProcessorInvocation | MediapipeFaceProcessorInvocation | LatentsToLatentsInvocation),
|
||||
}): CancelablePromise<GraphExecutionState> {
|
||||
return __request(OpenAPI, {
|
||||
method: 'PUT',
|
||||
|
@ -13,23 +13,68 @@ import {
|
||||
TagTypesFrom,
|
||||
TagTypesFromApi,
|
||||
} from '@reduxjs/toolkit/dist/query/endpointDefinitions';
|
||||
import { EntityState, createEntityAdapter } from '@reduxjs/toolkit';
|
||||
import { BaseModelType } from './api/models/BaseModelType';
|
||||
import { ModelType } from './api/models/ModelType';
|
||||
import { ModelsList } from './api/models/ModelsList';
|
||||
import { keyBy } from 'lodash-es';
|
||||
|
||||
type ListBoardsArg = { offset: number; limit: number };
|
||||
type UpdateBoardArg = { board_id: string; changes: BoardChanges };
|
||||
type AddImageToBoardArg = { board_id: string; image_name: string };
|
||||
type RemoveImageFromBoardArg = { board_id: string; image_name: string };
|
||||
type ListBoardImagesArg = { board_id: string; offset: number; limit: number };
|
||||
type ListModelsArg = { base_model?: BaseModelType; model_type?: ModelType };
|
||||
|
||||
const tagTypes = ['Board', 'Image'];
|
||||
type ModelConfig = ModelsList['models'][number];
|
||||
|
||||
const tagTypes = ['Board', 'Image', 'Model'];
|
||||
type ApiFullTagDescription = FullTagDescription<(typeof tagTypes)[number]>;
|
||||
|
||||
const LIST = 'LIST';
|
||||
|
||||
const modelsAdapter = createEntityAdapter<ModelConfig>({
|
||||
selectId: (model) => getModelId(model),
|
||||
sortComparer: (a, b) => a.name.localeCompare(b.name),
|
||||
});
|
||||
|
||||
const getModelId = ({ base_model, type, name }: ModelConfig) =>
|
||||
`${base_model}/${type}/${name}`;
|
||||
|
||||
export const api = createApi({
|
||||
baseQuery: fetchBaseQuery({ baseUrl: 'http://localhost:5173/api/v1/' }),
|
||||
reducerPath: 'api',
|
||||
tagTypes,
|
||||
endpoints: (build) => ({
|
||||
/**
|
||||
* Models Queries
|
||||
*/
|
||||
|
||||
listModels: build.query<EntityState<ModelConfig>, ListModelsArg>({
|
||||
query: (arg) => ({ url: 'models/', params: arg }),
|
||||
providesTags: (result, error, arg) => {
|
||||
// any list of boards
|
||||
const tags: ApiFullTagDescription[] = [{ id: 'Model', type: LIST }];
|
||||
|
||||
if (result) {
|
||||
// and individual tags for each board
|
||||
tags.push(
|
||||
...result.ids.map((id) => ({
|
||||
type: 'Model' as const,
|
||||
id,
|
||||
}))
|
||||
);
|
||||
}
|
||||
|
||||
return tags;
|
||||
},
|
||||
transformResponse: (response: ModelsList, meta, arg) => {
|
||||
return modelsAdapter.addMany(
|
||||
modelsAdapter.getInitialState(),
|
||||
keyBy(response.models, getModelId)
|
||||
);
|
||||
},
|
||||
}),
|
||||
/**
|
||||
* Boards Queries
|
||||
*/
|
||||
@ -174,4 +219,5 @@ export const {
|
||||
useRemoveImageFromBoardMutation,
|
||||
useListBoardImagesQuery,
|
||||
useGetImageDTOQuery,
|
||||
useListModelsQuery,
|
||||
} = api;
|
||||
|
@ -1,33 +0,0 @@
|
||||
import { log } from 'app/logging/useLogger';
|
||||
import { createAppAsyncThunk } from 'app/store/storeUtils';
|
||||
import { Model } from 'features/system/store/modelSlice';
|
||||
import { reduce, size } from 'lodash-es';
|
||||
import { ModelsService } from 'services/api';
|
||||
|
||||
const models = log.child({ namespace: 'model' });
|
||||
|
||||
export const IMAGES_PER_PAGE = 20;
|
||||
|
||||
export const receivedModels = createAppAsyncThunk(
|
||||
'models/receivedModels',
|
||||
async (_) => {
|
||||
const response = await ModelsService.listModels();
|
||||
|
||||
const deserializedModels = reduce(
|
||||
response.models['sd-1']['pipeline'],
|
||||
(modelsAccumulator, model, modelName) => {
|
||||
modelsAccumulator[modelName] = { ...model, name: modelName };
|
||||
|
||||
return modelsAccumulator;
|
||||
},
|
||||
{} as Record<string, Model>
|
||||
);
|
||||
|
||||
models.info(
|
||||
{ response },
|
||||
`Received ${size(response.models['sd-1']['pipeline'])} models`
|
||||
);
|
||||
|
||||
return deserializedModels;
|
||||
}
|
||||
);
|
@ -4,8 +4,8 @@ import { generateColorPalette } from '../util/generateColorPalette';
|
||||
export const greenTeaThemeColors: InvokeAIThemeColors = {
|
||||
base: generateColorPalette(223, 10),
|
||||
baseAlpha: generateColorPalette(223, 10, false, true),
|
||||
accent: generateColorPalette(155, 80),
|
||||
accentAlpha: generateColorPalette(155, 80, false, true),
|
||||
accent: generateColorPalette(160, 60),
|
||||
accentAlpha: generateColorPalette(160, 60, false, true),
|
||||
working: generateColorPalette(47, 68),
|
||||
workingAlpha: generateColorPalette(47, 68, false, true),
|
||||
warning: generateColorPalette(28, 75),
|
||||
@ -14,5 +14,5 @@ export const greenTeaThemeColors: InvokeAIThemeColors = {
|
||||
okAlpha: generateColorPalette(122, 49, false, true),
|
||||
error: generateColorPalette(0, 50),
|
||||
errorAlpha: generateColorPalette(0, 50, false, true),
|
||||
gridLineColor: 'rgba(255, 255, 255, 0.2)',
|
||||
gridLineColor: 'rgba(255, 255, 255, 0.15)',
|
||||
};
|
||||
|
@ -2,8 +2,8 @@ import { InvokeAIThemeColors } from 'theme/themeTypes';
|
||||
import { generateColorPalette } from 'theme/util/generateColorPalette';
|
||||
|
||||
export const invokeAIThemeColors: InvokeAIThemeColors = {
|
||||
base: generateColorPalette(225, 15),
|
||||
baseAlpha: generateColorPalette(225, 15, false, true),
|
||||
base: generateColorPalette(220, 15),
|
||||
baseAlpha: generateColorPalette(220, 15, false, true),
|
||||
accent: generateColorPalette(250, 50),
|
||||
accentAlpha: generateColorPalette(250, 50, false, true),
|
||||
working: generateColorPalette(47, 67),
|
||||
@ -14,5 +14,5 @@ export const invokeAIThemeColors: InvokeAIThemeColors = {
|
||||
okAlpha: generateColorPalette(113, 70, false, true),
|
||||
error: generateColorPalette(0, 76),
|
||||
errorAlpha: generateColorPalette(0, 76, false, true),
|
||||
gridLineColor: 'rgba(255, 255, 255, 0.2)',
|
||||
gridLineColor: 'rgba(150, 150, 180, 0.15)',
|
||||
};
|
||||
|
@ -14,5 +14,5 @@ export const lightThemeColors: InvokeAIThemeColors = {
|
||||
okAlpha: generateColorPalette(122, 49, true, true),
|
||||
error: generateColorPalette(0, 50, true),
|
||||
errorAlpha: generateColorPalette(0, 50, true, true),
|
||||
gridLineColor: 'rgba(0, 0, 0, 0.2)',
|
||||
gridLineColor: 'rgba(0, 0, 0, 0.15)',
|
||||
};
|
||||
|
@ -14,5 +14,5 @@ export const oceanBlueColors: InvokeAIThemeColors = {
|
||||
okAlpha: generateColorPalette(122, 49, false, true),
|
||||
error: generateColorPalette(0, 100),
|
||||
errorAlpha: generateColorPalette(0, 100, false, true),
|
||||
gridLineColor: 'rgba(136, 148, 184, 0.2)',
|
||||
gridLineColor: 'rgba(136, 148, 184, 0.15)',
|
||||
};
|
||||
|
Loading…
Reference in New Issue
Block a user