mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
WIP
This commit is contained in:
parent
8260252aeb
commit
22c66cf55b
@ -9,8 +9,9 @@ from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField
|
||||
from invokeai.app.invocations.primitives import ConditioningOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.app.util.ti_utils import generate_ti_list
|
||||
from invokeai.backend.lora import LoRAModelRaw
|
||||
from invokeai.backend.model_patcher import ModelPatcher
|
||||
from invokeai.backend.peft.peft_model import PeftModel
|
||||
from invokeai.backend.peft.peft_model_patcher import PeftModelPatcher
|
||||
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
|
||||
BasicConditioningInfo,
|
||||
ConditioningFieldData,
|
||||
@ -61,15 +62,12 @@ class CompelInvocation(BaseInvocation):
|
||||
text_encoder_model = text_encoder_info.model
|
||||
assert isinstance(text_encoder_model, CLIPTextModel)
|
||||
|
||||
def _lora_loader() -> Iterator[Tuple[LoRAModelRaw, float]]:
|
||||
def _lora_loader() -> Iterator[Tuple[PeftModel, float]]:
|
||||
for lora in self.clip.loras:
|
||||
lora_info = context.models.load(lora.lora)
|
||||
assert isinstance(lora_info.model, LoRAModelRaw)
|
||||
assert isinstance(lora_info.model, PeftModel)
|
||||
yield (lora_info.model, lora.weight)
|
||||
del lora_info
|
||||
return
|
||||
|
||||
# loras = [(context.models.get(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
|
||||
|
||||
ti_list = generate_ti_list(self.prompt, text_encoder_info.config.base, context)
|
||||
|
||||
@ -80,7 +78,7 @@ class CompelInvocation(BaseInvocation):
|
||||
),
|
||||
text_encoder_info as text_encoder,
|
||||
# Apply the LoRA after text_encoder has been moved to its target device for faster patching.
|
||||
ModelPatcher.apply_lora_text_encoder(text_encoder, _lora_loader()),
|
||||
PeftModelPatcher.apply_peft_patch(text_encoder, _lora_loader(), "text_encoder"),
|
||||
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
|
||||
ModelPatcher.apply_clip_skip(text_encoder_model, self.clip.skipped_layers),
|
||||
):
|
||||
@ -161,16 +159,13 @@ class SDXLPromptInvocationBase:
|
||||
c_pooled = None
|
||||
return c, c_pooled, None
|
||||
|
||||
def _lora_loader() -> Iterator[Tuple[LoRAModelRaw, float]]:
|
||||
def _lora_loader() -> Iterator[Tuple[PeftModel, float]]:
|
||||
for lora in clip_field.loras:
|
||||
lora_info = context.models.load(lora.lora)
|
||||
lora_model = lora_info.model
|
||||
assert isinstance(lora_model, LoRAModelRaw)
|
||||
assert isinstance(lora_model, PeftModel)
|
||||
yield (lora_model, lora.weight)
|
||||
del lora_info
|
||||
return
|
||||
|
||||
# loras = [(context.models.get(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
|
||||
|
||||
ti_list = generate_ti_list(prompt, text_encoder_info.config.base, context)
|
||||
|
||||
@ -181,7 +176,7 @@ class SDXLPromptInvocationBase:
|
||||
),
|
||||
text_encoder_info as text_encoder,
|
||||
# Apply the LoRA after text_encoder has been moved to its target device for faster patching.
|
||||
ModelPatcher.apply_lora(text_encoder, _lora_loader(), lora_prefix),
|
||||
PeftModelPatcher.apply_peft_patch(text_encoder, _lora_loader(), lora_prefix),
|
||||
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
|
||||
ModelPatcher.apply_clip_skip(text_encoder_model, clip_field.skipped_layers),
|
||||
):
|
||||
@ -259,15 +254,15 @@ class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
|
||||
@torch.no_grad()
|
||||
def invoke(self, context: InvocationContext) -> ConditioningOutput:
|
||||
c1, c1_pooled, ec1 = self.run_clip_compel(
|
||||
context, self.clip, self.prompt, False, "lora_te1_", zero_on_empty=True
|
||||
context, self.clip, self.prompt, False, "text_encoder", zero_on_empty=True
|
||||
)
|
||||
if self.style.strip() == "":
|
||||
c2, c2_pooled, ec2 = self.run_clip_compel(
|
||||
context, self.clip2, self.prompt, True, "lora_te2_", zero_on_empty=True
|
||||
context, self.clip2, self.prompt, True, "text_encoder_2", zero_on_empty=True
|
||||
)
|
||||
else:
|
||||
c2, c2_pooled, ec2 = self.run_clip_compel(
|
||||
context, self.clip2, self.style, True, "lora_te2_", zero_on_empty=True
|
||||
context, self.clip2, self.style, True, "text_encoder_2", zero_on_empty=True
|
||||
)
|
||||
|
||||
original_size = (self.original_height, self.original_width)
|
||||
|
@ -4,9 +4,9 @@ import torch
|
||||
from diffusers.models.modeling_utils import ModelMixin
|
||||
|
||||
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter
|
||||
from invokeai.backend.lora import LoRAModelRaw
|
||||
from invokeai.backend.onnx.onnx_runtime import IAIOnnxRuntimeModel
|
||||
from invokeai.backend.peft.peft_model import PeftModel
|
||||
from invokeai.backend.textual_inversion import TextualInversionModelRaw
|
||||
|
||||
# ModelMixin is the base class for all diffusers and transformers models
|
||||
AnyModel = Union[ModelMixin, torch.nn.Module, IPAdapter, LoRAModelRaw, TextualInversionModelRaw, IAIOnnxRuntimeModel]
|
||||
AnyModel = Union[ModelMixin, torch.nn.Module, IPAdapter, PeftModel, TextualInversionModelRaw, IAIOnnxRuntimeModel]
|
||||
|
@ -6,7 +6,6 @@ from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
from invokeai.app.services.config import InvokeAIAppConfig
|
||||
from invokeai.backend.lora import LoRAModelRaw
|
||||
from invokeai.backend.model_manager import (
|
||||
AnyModelConfig,
|
||||
BaseModelType,
|
||||
@ -17,6 +16,7 @@ from invokeai.backend.model_manager import (
|
||||
from invokeai.backend.model_manager.any_model_type import AnyModel
|
||||
from invokeai.backend.model_manager.load.convert_cache import ModelConvertCacheBase
|
||||
from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase
|
||||
from invokeai.backend.peft.peft_model import PeftModel
|
||||
|
||||
from .. import ModelLoader, ModelLoaderRegistry
|
||||
|
||||
@ -47,7 +47,7 @@ class LoRALoader(ModelLoader):
|
||||
raise ValueError("There are no submodels in a LoRA model.")
|
||||
model_path = Path(config.path)
|
||||
assert self._model_base is not None
|
||||
model = LoRAModelRaw.from_checkpoint(
|
||||
model = PeftModel.from_checkpoint(
|
||||
file_path=model_path,
|
||||
dtype=self._torch_dtype,
|
||||
base_model=self._model_base,
|
||||
|
85
invokeai/backend/peft/peft_format_utils.py
Normal file
85
invokeai/backend/peft/peft_format_utils.py
Normal file
@ -0,0 +1,85 @@
|
||||
import torch
|
||||
from diffusers.utils.state_dict_utils import convert_state_dict
|
||||
|
||||
KOHYA_SS_TO_PEFT = {
|
||||
"lora_down": "lora_A",
|
||||
"lora_up": "lora_B",
|
||||
# This is not a comprehensive dict. See `convert_state_dict_to_peft(...)` for more info on the conversion.
|
||||
}
|
||||
|
||||
|
||||
def convert_state_dict_kohya_to_peft(state_dict: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]:
|
||||
# TODO(ryand): Check that state_dict is in Kohya format.
|
||||
|
||||
peft_partial_state_dict = convert_state_dict(state_dict, KOHYA_SS_TO_PEFT)
|
||||
|
||||
peft_state_dict: dict[str, torch.Tensor] = {}
|
||||
for key, weight in peft_partial_state_dict.items():
|
||||
|
||||
|
||||
for kohya_key, weight in kohya_ss_partial_state_dict.items():
|
||||
if "text_encoder_2." in kohya_key:
|
||||
kohya_key = kohya_key.replace("text_encoder_2.", "lora_te2.")
|
||||
elif "text_encoder." in kohya_key:
|
||||
kohya_key = kohya_key.replace("text_encoder.", "lora_te1.")
|
||||
elif "unet" in kohya_key:
|
||||
kohya_key = kohya_key.replace("unet", "lora_unet")
|
||||
kohya_key = kohya_key.replace(".", "_", kohya_key.count(".") - 2)
|
||||
kohya_key = kohya_key.replace(peft_adapter_name, "") # Kohya doesn't take names
|
||||
kohya_ss_state_dict[kohya_key] = weight
|
||||
if "lora_down" in kohya_key:
|
||||
alpha_key = f'{kohya_key.split(".")[0]}.alpha'
|
||||
kohya_ss_state_dict[alpha_key] = torch.tensor(len(weight))
|
||||
def convert_state_dict_to_kohya(state_dict, original_type=None, **kwargs):
|
||||
r"""
|
||||
Converts a `PEFT` state dict to `Kohya` format that can be used in AUTOMATIC1111, ComfyUI, SD.Next, InvokeAI, etc.
|
||||
The method only supports the conversion from PEFT to Kohya for now.
|
||||
|
||||
Args:
|
||||
state_dict (`dict[str, torch.Tensor]`):
|
||||
The state dict to convert.
|
||||
original_type (`StateDictType`, *optional*):
|
||||
The original type of the state dict, if not provided, the method will try to infer it automatically.
|
||||
kwargs (`dict`, *args*):
|
||||
Additional arguments to pass to the method.
|
||||
|
||||
- **adapter_name**: For example, in case of PEFT, some keys will be pre-pended
|
||||
with the adapter name, therefore needs a special handling. By default PEFT also takes care of that in
|
||||
`get_peft_model_state_dict` method:
|
||||
https://github.com/huggingface/peft/blob/ba0477f2985b1ba311b83459d29895c809404e99/src/peft/utils/save_and_load.py#L92
|
||||
but we add it here in case we don't want to rely on that method.
|
||||
"""
|
||||
|
||||
peft_adapter_name = kwargs.pop("adapter_name", None)
|
||||
if peft_adapter_name is not None:
|
||||
peft_adapter_name = "." + peft_adapter_name
|
||||
else:
|
||||
peft_adapter_name = ""
|
||||
|
||||
if original_type is None:
|
||||
if any(f".lora_A{peft_adapter_name}.weight" in k for k in state_dict.keys()):
|
||||
original_type = StateDictType.PEFT
|
||||
|
||||
if original_type not in KOHYA_STATE_DICT_MAPPINGS.keys():
|
||||
raise ValueError(f"Original type {original_type} is not supported")
|
||||
|
||||
# Use the convert_state_dict function with the appropriate mapping
|
||||
kohya_ss_partial_state_dict = convert_state_dict(state_dict, KOHYA_STATE_DICT_MAPPINGS[StateDictType.PEFT])
|
||||
kohya_ss_state_dict = {}
|
||||
|
||||
# Additional logic for replacing header, alpha parameters `.` with `_` in all keys
|
||||
for kohya_key, weight in kohya_ss_partial_state_dict.items():
|
||||
if "text_encoder_2." in kohya_key:
|
||||
kohya_key = kohya_key.replace("text_encoder_2.", "lora_te2.")
|
||||
elif "text_encoder." in kohya_key:
|
||||
kohya_key = kohya_key.replace("text_encoder.", "lora_te1.")
|
||||
elif "unet" in kohya_key:
|
||||
kohya_key = kohya_key.replace("unet", "lora_unet")
|
||||
kohya_key = kohya_key.replace(".", "_", kohya_key.count(".") - 2)
|
||||
kohya_key = kohya_key.replace(peft_adapter_name, "") # Kohya doesn't take names
|
||||
kohya_ss_state_dict[kohya_key] = weight
|
||||
if "lora_down" in kohya_key:
|
||||
alpha_key = f'{kohya_key.split(".")[0]}.alpha'
|
||||
kohya_ss_state_dict[alpha_key] = torch.tensor(len(weight))
|
||||
|
||||
return kohya_ss_state_dict
|
@ -2,9 +2,11 @@ from pathlib import Path
|
||||
from typing import Optional, Union
|
||||
|
||||
import torch
|
||||
from safetensors.torch import load_file
|
||||
from diffusers.loaders.lora_conversion_utils import _convert_kohya_lora_to_diffusers
|
||||
|
||||
from invokeai.backend.model_manager.config import BaseModelType
|
||||
from invokeai.backend.peft.sdxl_format_utils import convert_sdxl_keys_to_diffusers_format
|
||||
from invokeai.backend.util.serialization import load_state_dict
|
||||
|
||||
|
||||
class PeftModel:
|
||||
@ -14,17 +16,15 @@ class PeftModel:
|
||||
self,
|
||||
name: str,
|
||||
state_dict: dict[str, torch.Tensor],
|
||||
network_alphas: dict[str, torch.Tensor],
|
||||
):
|
||||
self._name = name
|
||||
self._state_dict = state_dict
|
||||
|
||||
@property
|
||||
def name(self) -> str:
|
||||
return self._name
|
||||
self.name = name
|
||||
self.state_dict = state_dict
|
||||
self.network_alphas = network_alphas
|
||||
|
||||
def calc_size(self) -> int:
|
||||
model_size = 0
|
||||
for tensor in self._state_dict.values():
|
||||
for tensor in self.state_dict.values():
|
||||
model_size += tensor.nelement() * tensor.element_size()
|
||||
return model_size
|
||||
|
||||
@ -41,16 +41,12 @@ class PeftModel:
|
||||
|
||||
file_path = Path(file_path)
|
||||
|
||||
# TODO(ryand): Implement a helper function for this. This logic is duplicated repeatedly.
|
||||
if file_path.suffix == ".safetensors":
|
||||
state_dict = load_file(file_path, device="cpu")
|
||||
else:
|
||||
state_dict = torch.load(file_path, map_location="cpu")
|
||||
state_dict = load_state_dict(file_path, device=str(device))
|
||||
# lora_unet_up_blocks_1_attentions_2_transformer_blocks_1_ff_net_2.lora_down.weight
|
||||
if base_model == BaseModelType.StableDiffusionXL:
|
||||
state_dict = convert_sdxl_keys_to_diffusers_format(state_dict)
|
||||
|
||||
# TODO(ryand):
|
||||
# - Detect state_dict format
|
||||
# - Convert state_dict to diffusers format if necessary
|
||||
|
||||
# if base_model == BaseModelType.StableDiffusionXL:
|
||||
# state_dict = cls._convert_sdxl_keys_to_diffusers_format(state_dict)
|
||||
return cls(name=file_path.stem, state_dict=state_dict)
|
||||
# TODO(ryand): We shouldn't be using an unexported function from diffusers here. Consider opening an upstream PR
|
||||
# to move this function to state_dict_utils.py.
|
||||
state_dict, network_alphas = _convert_kohya_lora_to_diffusers(state_dict)
|
||||
return cls(name=file_path.stem, state_dict=state_dict, network_alphas=network_alphas)
|
||||
|
67
invokeai/backend/peft/peft_model_patcher.py
Normal file
67
invokeai/backend/peft/peft_model_patcher.py
Normal file
@ -0,0 +1,67 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from contextlib import contextmanager
|
||||
from typing import Iterator, Tuple
|
||||
|
||||
import torch
|
||||
|
||||
from invokeai.backend.peft.peft_model import PeftModel
|
||||
|
||||
|
||||
class PeftModelPatcher:
|
||||
@classmethod
|
||||
@contextmanager
|
||||
@torch.no_grad()
|
||||
def apply_peft_patch(
|
||||
cls,
|
||||
model: torch.nn.Module,
|
||||
peft_models: Iterator[Tuple[PeftModel, float]],
|
||||
prefix: str,
|
||||
):
|
||||
original_weights = {}
|
||||
|
||||
model_state_dict = model.state_dict()
|
||||
try:
|
||||
for peft_model, peft_model_weight in peft_models:
|
||||
for layer_key, layer in peft_model.state_dict.items():
|
||||
if not layer_key.startswith(prefix):
|
||||
continue
|
||||
|
||||
module_key = layer_key.replace(prefix + ".", "")
|
||||
module_key = module_key.split
|
||||
# TODO(ryand): Make this work.
|
||||
module = model_state_dict[module_key]
|
||||
|
||||
# All of the LoRA weight calculations will be done on the same device as the module weight.
|
||||
# (Performance will be best if this is a CUDA device.)
|
||||
device = module.weight.device
|
||||
dtype = module.weight.dtype
|
||||
|
||||
if module_key not in original_weights:
|
||||
# TODO(ryand): Set non_blocking = True?
|
||||
original_weights[module_key] = module.weight.detach().to(device="cpu", copy=True)
|
||||
|
||||
layer_scale = layer.alpha / layer.rank if (layer.alpha and layer.rank) else 1.0
|
||||
|
||||
# We intentionally move to the target device first, then cast. Experimentally, this was found to
|
||||
# be significantly faster for 16-bit CPU tensors being moved to a CUDA device than doing the
|
||||
# same thing in a single call to '.to(...)'.
|
||||
layer.to(device=device)
|
||||
layer.to(dtype=torch.float32)
|
||||
# TODO(ryand): Using torch.autocast(...) over explicit casting may offer a speed benefit on CUDA
|
||||
# devices here. Experimentally, it was found to be very slow on CPU. More investigation needed.
|
||||
layer_weight = layer.get_weight(module.weight) * (lora_weight * layer_scale)
|
||||
layer.to(device=torch.device("cpu"))
|
||||
|
||||
assert isinstance(layer_weight, torch.Tensor) # mypy thinks layer_weight is a float|Any ??!
|
||||
if module.weight.shape != layer_weight.shape:
|
||||
# TODO: debug on lycoris
|
||||
assert hasattr(layer_weight, "reshape")
|
||||
layer_weight = layer_weight.reshape(module.weight.shape)
|
||||
|
||||
assert isinstance(layer_weight, torch.Tensor) # mypy thinks layer_weight is a float|Any ??!
|
||||
module.weight += layer_weight.to(dtype=dtype)
|
||||
yield
|
||||
finally:
|
||||
for module_key, weight in original_weights.items():
|
||||
model.get_submodule(module_key).weight.copy_(weight)
|
154
invokeai/backend/peft/sdxl_format_utils.py
Normal file
154
invokeai/backend/peft/sdxl_format_utils.py
Normal file
@ -0,0 +1,154 @@
|
||||
import bisect
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
def convert_sdxl_keys_to_diffusers_format(state_dict: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]:
|
||||
"""Convert the keys of an SDXL LoRA state_dict to diffusers format.
|
||||
|
||||
The input state_dict can be in either Stability AI format or diffusers format. If the state_dict is already in
|
||||
diffusers format, then this function will have no effect.
|
||||
|
||||
This function is adapted from:
|
||||
https://github.com/bmaltais/kohya_ss/blob/2accb1305979ba62f5077a23aabac23b4c37e935/networks/lora_diffusers.py#L385-L409
|
||||
|
||||
Args:
|
||||
state_dict (Dict[str, Tensor]): The SDXL LoRA state_dict.
|
||||
|
||||
Raises:
|
||||
ValueError: If state_dict contains an unrecognized key, or not all keys could be converted.
|
||||
|
||||
Returns:
|
||||
Dict[str, Tensor]: The diffusers-format state_dict.
|
||||
"""
|
||||
converted_count = 0 # The number of Stability AI keys converted to diffusers format.
|
||||
not_converted_count = 0 # The number of keys that were not converted.
|
||||
|
||||
# Get a sorted list of Stability AI UNet keys so that we can efficiently search for keys with matching prefixes.
|
||||
# For example, we want to efficiently find `input_blocks_4_1` in the list when searching for
|
||||
# `input_blocks_4_1_proj_in`.
|
||||
stability_unet_keys = list(SDXL_UNET_STABILITY_TO_DIFFUSERS_MAP)
|
||||
stability_unet_keys.sort()
|
||||
|
||||
new_state_dict = {}
|
||||
for full_key, value in state_dict.items():
|
||||
if full_key.startswith("lora_unet_"):
|
||||
search_key = full_key.replace("lora_unet_", "")
|
||||
# Use bisect to find the key in stability_unet_keys that *may* match the search_key's prefix.
|
||||
position = bisect.bisect_right(stability_unet_keys, search_key)
|
||||
map_key = stability_unet_keys[position - 1]
|
||||
# Now, check if the map_key *actually* matches the search_key.
|
||||
if search_key.startswith(map_key):
|
||||
new_key = full_key.replace(map_key, SDXL_UNET_STABILITY_TO_DIFFUSERS_MAP[map_key])
|
||||
new_state_dict[new_key] = value
|
||||
converted_count += 1
|
||||
else:
|
||||
new_state_dict[full_key] = value
|
||||
not_converted_count += 1
|
||||
elif full_key.startswith("lora_te1_") or full_key.startswith("lora_te2_"):
|
||||
# The CLIP text encoders have the same keys in both Stability AI and diffusers formats.
|
||||
new_state_dict[full_key] = value
|
||||
continue
|
||||
else:
|
||||
raise ValueError(f"Unrecognized SDXL LoRA key prefix: '{full_key}'.")
|
||||
|
||||
if converted_count > 0 and not_converted_count > 0:
|
||||
raise ValueError(
|
||||
f"The SDXL LoRA could only be partially converted to diffusers format. converted={converted_count},"
|
||||
f" not_converted={not_converted_count}"
|
||||
)
|
||||
|
||||
return new_state_dict
|
||||
|
||||
|
||||
# Code based on:
|
||||
# https://github.com/bmaltais/kohya_ss/blob/2accb1305979ba62f5077a23aabac23b4c37e935/networks/lora_diffusers.py#L15C1-L97C32
|
||||
def make_sdxl_unet_conversion_map() -> list[tuple[str, str]]:
|
||||
"""Create a dict mapping state_dict keys from Stability AI SDXL format to diffusers SDXL format."""
|
||||
unet_conversion_map_layer: list[tuple[str, str]] = []
|
||||
|
||||
for i in range(3): # num_blocks is 3 in sdxl
|
||||
# loop over downblocks/upblocks
|
||||
for j in range(2):
|
||||
# loop over resnets/attentions for downblocks
|
||||
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
|
||||
sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0."
|
||||
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
|
||||
|
||||
if i < 3:
|
||||
# no attention layers in down_blocks.3
|
||||
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
|
||||
sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1."
|
||||
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
|
||||
|
||||
for j in range(3):
|
||||
# loop over resnets/attentions for upblocks
|
||||
hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
|
||||
sd_up_res_prefix = f"output_blocks.{3*i + j}.0."
|
||||
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
|
||||
|
||||
# if i > 0: commentout for sdxl
|
||||
# no attention layers in up_blocks.0
|
||||
hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
|
||||
sd_up_atn_prefix = f"output_blocks.{3*i + j}.1."
|
||||
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
|
||||
|
||||
if i < 3:
|
||||
# no downsample in down_blocks.3
|
||||
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
|
||||
sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op."
|
||||
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
|
||||
|
||||
# no upsample in up_blocks.3
|
||||
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
|
||||
sd_upsample_prefix = f"output_blocks.{3*i + 2}.{2}." # change for sdxl
|
||||
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
|
||||
|
||||
hf_mid_atn_prefix = "mid_block.attentions.0."
|
||||
sd_mid_atn_prefix = "middle_block.1."
|
||||
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
|
||||
|
||||
for j in range(2):
|
||||
hf_mid_res_prefix = f"mid_block.resnets.{j}."
|
||||
sd_mid_res_prefix = f"middle_block.{2*j}."
|
||||
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
|
||||
|
||||
unet_conversion_map_resnet = [
|
||||
# (stable-diffusion, HF Diffusers)
|
||||
("in_layers.0.", "norm1."),
|
||||
("in_layers.2.", "conv1."),
|
||||
("out_layers.0.", "norm2."),
|
||||
("out_layers.3.", "conv2."),
|
||||
("emb_layers.1.", "time_emb_proj."),
|
||||
("skip_connection.", "conv_shortcut."),
|
||||
]
|
||||
|
||||
unet_conversion_map: list[tuple[str, str]] = []
|
||||
for sd, hf in unet_conversion_map_layer:
|
||||
if "resnets" in hf:
|
||||
for sd_res, hf_res in unet_conversion_map_resnet:
|
||||
unet_conversion_map.append((sd + sd_res, hf + hf_res))
|
||||
else:
|
||||
unet_conversion_map.append((sd, hf))
|
||||
|
||||
for j in range(2):
|
||||
hf_time_embed_prefix = f"time_embedding.linear_{j+1}."
|
||||
sd_time_embed_prefix = f"time_embed.{j*2}."
|
||||
unet_conversion_map.append((sd_time_embed_prefix, hf_time_embed_prefix))
|
||||
|
||||
for j in range(2):
|
||||
hf_label_embed_prefix = f"add_embedding.linear_{j+1}."
|
||||
sd_label_embed_prefix = f"label_emb.0.{j*2}."
|
||||
unet_conversion_map.append((sd_label_embed_prefix, hf_label_embed_prefix))
|
||||
|
||||
unet_conversion_map.append(("input_blocks.0.0.", "conv_in."))
|
||||
unet_conversion_map.append(("out.0.", "conv_norm_out."))
|
||||
unet_conversion_map.append(("out.2.", "conv_out."))
|
||||
|
||||
return unet_conversion_map
|
||||
|
||||
|
||||
# A mapping of state_dict key prefixes from Stability AI SDXL format to diffusers SDXL format.
|
||||
SDXL_UNET_STABILITY_TO_DIFFUSERS_MAP = {
|
||||
sd.rstrip(".").replace(".", "_"): hf.rstrip(".").replace(".", "_") for sd, hf in make_sdxl_unet_conversion_map()
|
||||
}
|
Loading…
Reference in New Issue
Block a user