disable neonpixel optimizations on M1 hardware (#414)

* disable neonpixel optimizations on M1 hardware

* fix typo that was causing random noise images on m1
This commit is contained in:
Lincoln Stein 2022-09-07 13:28:11 -04:00 committed by GitHub
parent 7670ecc63f
commit 29ab3c2028
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -1,9 +1,10 @@
from inspect import isfunction
import math import math
from inspect import isfunction
import torch import torch
import torch.nn.functional as F import torch.nn.functional as F
from torch import nn, einsum
from einops import rearrange, repeat from einops import rearrange, repeat
from torch import nn, einsum
from ldm.modules.diffusionmodules.util import checkpoint from ldm.modules.diffusionmodules.util import checkpoint
@ -13,7 +14,7 @@ def exists(val):
def uniq(arr): def uniq(arr):
return{el: True for el in arr}.keys() return {el: True for el in arr}.keys()
def default(val, d): def default(val, d):
@ -82,13 +83,13 @@ class LinearAttention(nn.Module):
super().__init__() super().__init__()
self.heads = heads self.heads = heads
hidden_dim = dim_head * heads hidden_dim = dim_head * heads
self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False) self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias=False)
self.to_out = nn.Conv2d(hidden_dim, dim, 1) self.to_out = nn.Conv2d(hidden_dim, dim, 1)
def forward(self, x): def forward(self, x):
b, c, h, w = x.shape b, c, h, w = x.shape
qkv = self.to_qkv(x) qkv = self.to_qkv(x)
q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3) q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads=self.heads, qkv=3)
k = k.softmax(dim=-1) k = k.softmax(dim=-1)
context = torch.einsum('bhdn,bhen->bhde', k, v) context = torch.einsum('bhdn,bhen->bhde', k, v)
out = torch.einsum('bhde,bhdn->bhen', context, q) out = torch.einsum('bhde,bhdn->bhen', context, q)
@ -131,12 +132,12 @@ class SpatialSelfAttention(nn.Module):
v = self.v(h_) v = self.v(h_)
# compute attention # compute attention
b,c,h,w = q.shape b, c, h, w = q.shape
q = rearrange(q, 'b c h w -> b (h w) c') q = rearrange(q, 'b c h w -> b (h w) c')
k = rearrange(k, 'b c h w -> b c (h w)') k = rearrange(k, 'b c h w -> b c (h w)')
w_ = torch.einsum('bij,bjk->bik', q, k) w_ = torch.einsum('bij,bjk->bik', q, k)
w_ = w_ * (int(c)**(-0.5)) w_ = w_ * (int(c) ** (-0.5))
w_ = torch.nn.functional.softmax(w_, dim=2) w_ = torch.nn.functional.softmax(w_, dim=2)
# attend to values # attend to values
@ -146,7 +147,7 @@ class SpatialSelfAttention(nn.Module):
h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h) h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h)
h_ = self.proj_out(h_) h_ = self.proj_out(h_)
return x+h_ return x + h_
class CrossAttention(nn.Module): class CrossAttention(nn.Module):
@ -174,6 +175,7 @@ class CrossAttention(nn.Module):
context = default(context, x) context = default(context, x)
k = self.to_k(context) k = self.to_k(context)
v = self.to_v(context) v = self.to_v(context)
device_type = x.device.type
del context, x del context, x
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
@ -188,9 +190,11 @@ class CrossAttention(nn.Module):
sim.masked_fill_(~mask, max_neg_value) sim.masked_fill_(~mask, max_neg_value)
del mask del mask
# attention, what we cannot get enough of, by halves if device_type == 'mps': #special case for M1 - disable neonsecret optimization
sim[4:] = sim[4:].softmax(dim=-1) sim = sim.softmax(dim=-1)
sim[:4] = sim[:4].softmax(dim=-1) else:
sim[4:] = sim[4:].softmax(dim=-1)
sim[:4] = sim[:4].softmax(dim=-1)
sim = einsum('b i j, b j d -> b i d', sim, v) sim = einsum('b i j, b j d -> b i d', sim, v)
sim = rearrange(sim, '(b h) n d -> b n (h d)', h=h) sim = rearrange(sim, '(b h) n d -> b n (h d)', h=h)
@ -200,7 +204,8 @@ class CrossAttention(nn.Module):
class BasicTransformerBlock(nn.Module): class BasicTransformerBlock(nn.Module):
def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True): def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True):
super().__init__() super().__init__()
self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout) # is a self-attention self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head,
dropout=dropout) # is a self-attention
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim, self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim,
heads=n_heads, dim_head=d_head, dropout=dropout) # is self-attn if context is none heads=n_heads, dim_head=d_head, dropout=dropout) # is self-attn if context is none
@ -228,6 +233,7 @@ class SpatialTransformer(nn.Module):
Then apply standard transformer action. Then apply standard transformer action.
Finally, reshape to image Finally, reshape to image
""" """
def __init__(self, in_channels, n_heads, d_head, def __init__(self, in_channels, n_heads, d_head,
depth=1, dropout=0., context_dim=None): depth=1, dropout=0., context_dim=None):
super().__init__() super().__init__()
@ -243,7 +249,7 @@ class SpatialTransformer(nn.Module):
self.transformer_blocks = nn.ModuleList( self.transformer_blocks = nn.ModuleList(
[BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim) [BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim)
for d in range(depth)] for d in range(depth)]
) )
self.proj_out = zero_module(nn.Conv2d(inner_dim, self.proj_out = zero_module(nn.Conv2d(inner_dim,