mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Move MemorySnapshot to its own file.
This commit is contained in:
parent
7d61373b82
commit
2a3c0ab5d2
66
invokeai/backend/model_management/memory_snapshot.py
Normal file
66
invokeai/backend/model_management/memory_snapshot.py
Normal file
@ -0,0 +1,66 @@
|
||||
import gc
|
||||
from typing import Optional
|
||||
|
||||
import psutil
|
||||
import torch
|
||||
|
||||
GB = 2**30 # 1 GB
|
||||
|
||||
|
||||
class MemorySnapshot:
|
||||
"""A snapshot of RAM and VRAM usage. All values are in bytes."""
|
||||
|
||||
def __init__(self, process_ram: int, vram: Optional[int]):
|
||||
"""Initialize a MemorySnapshot.
|
||||
|
||||
Most of the time, `MemorySnapshot` will be constructed with `MemorySnapshot.capture()`.
|
||||
|
||||
Args:
|
||||
process_ram (int): CPU RAM used by the current process.
|
||||
vram (Optional[int]): VRAM used by torch.
|
||||
"""
|
||||
self.process_ram = process_ram
|
||||
self.vram = vram
|
||||
|
||||
@classmethod
|
||||
def capture(cls, run_garbage_collector: bool = True):
|
||||
"""Capture and return a MemorySnapshot.
|
||||
|
||||
Note: This function has significant overhead, particularly if `run_garbage_collector == True`.
|
||||
|
||||
Args:
|
||||
run_garbage_collector (bool, optional): If true, gc.collect() will be run before checking the process RAM
|
||||
usage. Defaults to True.
|
||||
|
||||
Returns:
|
||||
MemorySnapshot
|
||||
"""
|
||||
if run_garbage_collector:
|
||||
gc.collect()
|
||||
|
||||
# According to the psutil docs (https://psutil.readthedocs.io/en/latest/#psutil.Process.memory_info), rss is
|
||||
# supported on all platforms.
|
||||
process_ram = psutil.Process().memory_info().rss
|
||||
|
||||
if torch.cuda.is_available():
|
||||
vram = torch.cuda.memory_allocated()
|
||||
else:
|
||||
# TODO: We could add support for mps.current_allocated_memory() as well. Leaving out for now until we have
|
||||
# time to test it properly.
|
||||
vram = None
|
||||
|
||||
return cls(process_ram, vram)
|
||||
|
||||
|
||||
def get_pretty_snapshot_diff(snapshot_1: MemorySnapshot, snapshot_2: MemorySnapshot) -> str:
|
||||
"""Get a pretty string describing the difference between two `MemorySnapshot`s."""
|
||||
ram_diff = snapshot_2.process_ram - snapshot_1.process_ram
|
||||
msg = f"RAM ({(ram_diff/GB):+.2f}): {(snapshot_1.process_ram/GB):.2f}GB -> {(snapshot_2.process_ram/GB):.2f}GB"
|
||||
|
||||
vram_diff = None
|
||||
if snapshot_1.vram is not None and snapshot_2.vram is not None:
|
||||
vram_diff = snapshot_2.vram - snapshot_1.vram
|
||||
|
||||
msg += f", VRAM ({(vram_diff/GB):+.2f}): {(snapshot_1.vram/GB):.2f}GB -> {(snapshot_2.vram/GB):.2f}GB"
|
||||
|
||||
return msg
|
@ -27,10 +27,10 @@ from dataclasses import dataclass, field
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, Optional, Type, Union, types
|
||||
|
||||
import psutil
|
||||
import torch
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
from invokeai.backend.model_management.memory_snapshot import MemorySnapshot, get_pretty_snapshot_diff
|
||||
|
||||
from ..util.devices import choose_torch_device
|
||||
from .models import BaseModelType, ModelBase, ModelType, SubModelType
|
||||
@ -535,62 +535,3 @@ class ModelCache(object):
|
||||
with open(hashpath, "w") as f:
|
||||
f.write(hash)
|
||||
return hash
|
||||
|
||||
|
||||
class MemorySnapshot:
|
||||
"""A snapshot of RAM and VRAM usage. All values are in bytes."""
|
||||
|
||||
def __init__(self, process_ram: int, vram: Optional[int]):
|
||||
"""Initialize a MemorySnapshot.
|
||||
|
||||
Most of the time, `MemorySnapshot` will be constructed with `MemorySnapshot.capture()`.
|
||||
|
||||
Args:
|
||||
process_ram (int): CPU RAM used by the current process.
|
||||
vram (Optional[int]): VRAM used by torch.
|
||||
"""
|
||||
self.process_ram = process_ram
|
||||
self.vram = vram
|
||||
|
||||
@classmethod
|
||||
def capture(cls, run_garbage_collector: bool = True):
|
||||
"""Capture and return a MemorySnapshot.
|
||||
|
||||
Note: This function has significant overhead, particularly if `run_garbage_collector == True`.
|
||||
|
||||
Args:
|
||||
run_garbage_collector (bool, optional): If true, gc.collect() will be run before checking the process RAM
|
||||
usage. Defaults to True.
|
||||
|
||||
Returns:
|
||||
MemorySnapshot
|
||||
"""
|
||||
if run_garbage_collector:
|
||||
gc.collect()
|
||||
|
||||
# According to the psutil docs (https://psutil.readthedocs.io/en/latest/#psutil.Process.memory_info), rss is
|
||||
# supported on all platforms.
|
||||
process_ram = psutil.Process().memory_info().rss
|
||||
|
||||
if choose_torch_device() == torch.device("cuda"):
|
||||
vram = torch.cuda.memory_allocated()
|
||||
else:
|
||||
# TODO: We could add support for mps.current_allocated_memory() as well. Leaving out for now until we have
|
||||
# time to test it properly.
|
||||
vram = None
|
||||
|
||||
return cls(process_ram, vram)
|
||||
|
||||
|
||||
def get_pretty_snapshot_diff(snapshot_1: MemorySnapshot, snapshot_2: MemorySnapshot) -> str:
|
||||
"""Get a pretty string describing the difference between two `MemorySnapshot`s."""
|
||||
ram_diff = snapshot_2.process_ram - snapshot_1.process_ram
|
||||
msg = f"RAM ({(ram_diff/GIG):+.2f}): {(snapshot_1.process_ram/GIG):.2f}GB -> {(snapshot_2.process_ram/GIG):.2f}GB"
|
||||
|
||||
vram_diff = None
|
||||
if snapshot_1.vram is not None and snapshot_2.vram is not None:
|
||||
vram_diff = snapshot_2.vram - snapshot_1.vram
|
||||
|
||||
msg += f", VRAM ({(vram_diff/GIG):+.2f}): {(snapshot_1.vram/GIG):.2f}GB -> {(snapshot_2.vram/GIG):.2f}GB"
|
||||
|
||||
return msg
|
||||
|
Loading…
Reference in New Issue
Block a user