fix bug in persistent model scheme

This commit is contained in:
Lincoln Stein
2023-05-12 00:14:56 -04:00
parent 11ecf438f5
commit 2ef79b8bf3
4 changed files with 93 additions and 53 deletions

View File

@ -71,7 +71,7 @@ class TextToImageInvocation(BaseInvocation, SDImageInvocation):
def invoke(self, context: InvocationContext) -> ImageOutput:
# Handle invalid model parameter
model = context.services.model_manager.get_model(self.model)
model = context.services.model_manager.get_model(self.model,node=self,context=context)
# Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get(

View File

@ -9,12 +9,10 @@ from diffusers import DiffusionPipeline
from diffusers.schedulers import SchedulerMixin as Scheduler
from pydantic import BaseModel, Field
from invokeai.app.models.exceptions import CanceledException
from invokeai.app.util.misc import SEED_MAX, get_random_seed
from invokeai.app.util.step_callback import stable_diffusion_step_callback
from ...backend.image_util.seamless import configure_model_padding
from ...backend.model_management.model_manager import SDModelType
from ...backend.stable_diffusion import PipelineIntermediateState
from ...backend.stable_diffusion.diffusers_pipeline import (
ConditioningData, StableDiffusionGeneratorPipeline,
@ -104,37 +102,11 @@ def get_noise(width:int, height:int, device:torch.device, seed:int = 0, latent_c
# x = (1 - self.perlin) * x + self.perlin * perlin_noise
return x
class ModelChooser:
def choose_model(self, context: InvocationContext) -> StableDiffusionGeneratorPipeline:
if context.services.queue.is_canceled(context.graph_execution_state_id):
raise CanceledException
# Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
context.services.events.emit_model_load_started(
graph_execution_state_id=context.graph_execution_state_id,
node=self.dict(),
source_node_id=source_node_id,
model_name=self.model,
submodel=SDModelType.diffusers
)
class ModelGetter:
def get_model(self, context: InvocationContext) -> StableDiffusionGeneratorPipeline:
model_manager = context.services.model_manager
model_info = model_manager.get_model(self.model)
model_ctx: StableDiffusionGeneratorPipeline = model_info.context
context.services.events.emit_model_load_completed (
graph_execution_state_id=context.graph_execution_state_id,
node=self.dict(),
source_node_id=source_node_id,
model_name=self.model,
submodel=SDModelType.diffusers,
model_info=model_info
)
return model_ctx
model_info = model_manager.get_model(self.model,node=self,context=context)
return model_info.context
class NoiseInvocation(BaseInvocation):
"""Generates latent noise."""
@ -167,7 +139,7 @@ class NoiseInvocation(BaseInvocation):
# Text to image
class TextToLatentsInvocation(BaseInvocation, ModelChooser):
class TextToLatentsInvocation(BaseInvocation, ModelGetter):
"""Generates latents from conditionings."""
type: Literal["t2l"] = "t2l"
@ -236,7 +208,7 @@ class TextToLatentsInvocation(BaseInvocation, ModelChooser):
def step_callback(state: PipelineIntermediateState):
self.dispatch_progress(context, source_node_id, state)
with self.choose_model(context) as model:
with self.get_model(context) as model:
conditioning_data = self.get_conditioning_data(context, model)
# TODO: Verify the noise is the right size
@ -257,8 +229,8 @@ class TextToLatentsInvocation(BaseInvocation, ModelChooser):
latents=LatentsField(latents_name=name)
)
def choose_model(self, context: InvocationContext) -> StableDiffusionGeneratorPipeline:
model_ctx = super().choose_model(context)
def get_model(self, context: InvocationContext) -> StableDiffusionGeneratorPipeline:
model_ctx = super().get_model(context)
with model_ctx as model:
model.scheduler = get_scheduler(
@ -280,7 +252,7 @@ class TextToLatentsInvocation(BaseInvocation, ModelChooser):
return model_ctx
class LatentsToLatentsInvocation(TextToLatentsInvocation, ModelChooser):
class LatentsToLatentsInvocation(TextToLatentsInvocation, ModelGetter):
"""Generates latents using latents as base image."""
type: Literal["l2l"] = "l2l"
@ -311,7 +283,7 @@ class LatentsToLatentsInvocation(TextToLatentsInvocation, ModelChooser):
def step_callback(state: PipelineIntermediateState):
self.dispatch_progress(context, source_node_id, state)
with self.choose_model(context) as model:
with self.get_model(context) as model:
conditioning_data = self.get_conditioning_data(model)
# TODO: Verify the noise is the right size
@ -346,7 +318,7 @@ class LatentsToLatentsInvocation(TextToLatentsInvocation, ModelChooser):
# Latent to image
class LatentsToImageInvocation(BaseInvocation, ModelChooser):
class LatentsToImageInvocation(BaseInvocation, ModelGetter):
"""Generates an image from latents."""
type: Literal["l2i"] = "l2i"
@ -371,7 +343,7 @@ class LatentsToImageInvocation(BaseInvocation, ModelChooser):
latents = context.services.latents.get(self.latents.latents_name)
# TODO: this only really needs the vae
with self.choose_model(context) as model:
with self.get_model(context) as model:
with torch.inference_mode():
np_image = model.decode_latents(latents)
image = model.numpy_to_pil(np_image)[0]
@ -458,7 +430,7 @@ class ScaleLatentsInvocation(BaseInvocation):
return LatentsOutput(latents=LatentsField(latents_name=name))
class ImageToLatentsInvocation(BaseInvocation, ModelChooser):
class ImageToLatentsInvocation(BaseInvocation, ModelGetter):
"""Encodes an image into latents."""
type: Literal["i2l"] = "i2l"
@ -483,7 +455,7 @@ class ImageToLatentsInvocation(BaseInvocation, ModelChooser):
)
# TODO: this only really needs the vae
model_info = self.choose_model(context)
model_info = self.get_model(context)
model: StableDiffusionGeneratorPipeline = model_info["model"]
image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB"))