mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Copy TiledStableDiffusionRefineInvocation as a starting point for TiledMultiDiffusionDenoiseLatents.py
This commit is contained in:
parent
ed781dbb0c
commit
350a210835
@ -0,0 +1,384 @@
|
||||
from contextlib import ExitStack
|
||||
from typing import Iterator, Tuple
|
||||
|
||||
import numpy as np
|
||||
import numpy.typing as npt
|
||||
import torch
|
||||
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
|
||||
from PIL import Image
|
||||
from pydantic import field_validator
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||||
from invokeai.app.invocations.constants import DEFAULT_PRECISION, LATENT_SCALE_FACTOR, SCHEDULER_NAME_VALUES
|
||||
from invokeai.app.invocations.denoise_latents import DenoiseLatentsInvocation, get_scheduler
|
||||
from invokeai.app.invocations.fields import (
|
||||
ConditioningField,
|
||||
FieldDescriptions,
|
||||
ImageField,
|
||||
Input,
|
||||
InputField,
|
||||
UIType,
|
||||
)
|
||||
from invokeai.app.invocations.image_to_latents import ImageToLatentsInvocation
|
||||
from invokeai.app.invocations.latents_to_image import LatentsToImageInvocation
|
||||
from invokeai.app.invocations.model import ModelIdentifierField, UNetField, VAEField
|
||||
from invokeai.app.invocations.noise import get_noise
|
||||
from invokeai.app.invocations.primitives import ImageOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.app.util.controlnet_utils import CONTROLNET_MODE_VALUES, CONTROLNET_RESIZE_VALUES, prepare_control_image
|
||||
from invokeai.backend.lora import LoRAModelRaw
|
||||
from invokeai.backend.model_patcher import ModelPatcher
|
||||
from invokeai.backend.stable_diffusion.diffusers_pipeline import ControlNetData, image_resized_to_grid_as_tensor
|
||||
from invokeai.backend.tiles.tiles import calc_tiles_with_overlap, merge_tiles_with_linear_blending
|
||||
from invokeai.backend.tiles.utils import Tile
|
||||
from invokeai.backend.util.devices import TorchDevice
|
||||
from invokeai.backend.util.hotfixes import ControlNetModel
|
||||
|
||||
|
||||
@invocation(
|
||||
"tiled_stable_diffusion_refine",
|
||||
title="Tiled Stable Diffusion Refine",
|
||||
tags=["upscale", "denoise"],
|
||||
category="latents",
|
||||
version="1.0.0",
|
||||
)
|
||||
class TiledStableDiffusionRefineInvocation(BaseInvocation):
|
||||
"""A tiled Stable Diffusion pipeline for refining high resolution images. This invocation is intended to be used to
|
||||
refine an image after upscaling i.e. it is the second step in a typical "tiled upscaling" workflow.
|
||||
"""
|
||||
|
||||
image: ImageField = InputField(description="Image to be refined.")
|
||||
|
||||
positive_conditioning: ConditioningField = InputField(
|
||||
description=FieldDescriptions.positive_cond, input=Input.Connection
|
||||
)
|
||||
negative_conditioning: ConditioningField = InputField(
|
||||
description=FieldDescriptions.negative_cond, input=Input.Connection
|
||||
)
|
||||
# TODO(ryand): Add multiple-of validation.
|
||||
tile_height: int = InputField(default=512, gt=0, description="Height of the tiles.")
|
||||
tile_width: int = InputField(default=512, gt=0, description="Width of the tiles.")
|
||||
tile_overlap: int = InputField(
|
||||
default=16,
|
||||
gt=0,
|
||||
description="Target overlap between adjacent tiles (the last row/column may overlap more than this).",
|
||||
)
|
||||
steps: int = InputField(default=18, gt=0, description=FieldDescriptions.steps)
|
||||
cfg_scale: float | list[float] = InputField(default=6.0, description=FieldDescriptions.cfg_scale, title="CFG Scale")
|
||||
denoising_start: float = InputField(
|
||||
default=0.65,
|
||||
ge=0,
|
||||
le=1,
|
||||
description=FieldDescriptions.denoising_start,
|
||||
)
|
||||
denoising_end: float = InputField(default=1.0, ge=0, le=1, description=FieldDescriptions.denoising_end)
|
||||
scheduler: SCHEDULER_NAME_VALUES = InputField(
|
||||
default="euler",
|
||||
description=FieldDescriptions.scheduler,
|
||||
ui_type=UIType.Scheduler,
|
||||
)
|
||||
unet: UNetField = InputField(
|
||||
description=FieldDescriptions.unet,
|
||||
input=Input.Connection,
|
||||
title="UNet",
|
||||
)
|
||||
cfg_rescale_multiplier: float = InputField(
|
||||
title="CFG Rescale Multiplier", default=0, ge=0, lt=1, description=FieldDescriptions.cfg_rescale_multiplier
|
||||
)
|
||||
vae: VAEField = InputField(
|
||||
description=FieldDescriptions.vae,
|
||||
input=Input.Connection,
|
||||
)
|
||||
vae_fp32: bool = InputField(
|
||||
default=DEFAULT_PRECISION == torch.float32, description="Whether to use float32 precision when running the VAE."
|
||||
)
|
||||
# HACK(ryand): We probably want to allow the user to control all of the parameters in ControlField. But, we akwardly
|
||||
# don't want to use the image field. Figure out how best to handle this.
|
||||
# TODO(ryand): Currently, there is no ControlNet preprocessor applied to the tile images. In other words, we pretty
|
||||
# much assume that it is a tile ControlNet. We need to decide how we want to handle this. E.g. find a way to support
|
||||
# CN preprocessors, raise a clear warning when a non-tile CN model is selected, hardcode the supported CN models,
|
||||
# etc.
|
||||
control_model: ModelIdentifierField = InputField(
|
||||
description=FieldDescriptions.controlnet_model, ui_type=UIType.ControlNetModel
|
||||
)
|
||||
control_weight: float = InputField(default=0.6)
|
||||
|
||||
@field_validator("cfg_scale")
|
||||
def ge_one(cls, v: list[float] | float) -> list[float] | float:
|
||||
"""Validate that all cfg_scale values are >= 1"""
|
||||
if isinstance(v, list):
|
||||
for i in v:
|
||||
if i < 1:
|
||||
raise ValueError("cfg_scale must be greater than 1")
|
||||
else:
|
||||
if v < 1:
|
||||
raise ValueError("cfg_scale must be greater than 1")
|
||||
return v
|
||||
|
||||
@staticmethod
|
||||
def crop_latents_to_tile(latents: torch.Tensor, image_tile: Tile) -> torch.Tensor:
|
||||
"""Crop the latent-space tensor to the area corresponding to the image-space tile.
|
||||
The tile coordinates must be divisible by the LATENT_SCALE_FACTOR.
|
||||
"""
|
||||
for coord in [image_tile.coords.top, image_tile.coords.left, image_tile.coords.right, image_tile.coords.bottom]:
|
||||
if coord % LATENT_SCALE_FACTOR != 0:
|
||||
raise ValueError(
|
||||
f"The tile coordinates must all be divisible by the latent scale factor"
|
||||
f" ({LATENT_SCALE_FACTOR}). {image_tile.coords=}."
|
||||
)
|
||||
assert latents.dim() == 4 # We expect: (batch_size, channels, height, width).
|
||||
|
||||
top = image_tile.coords.top // LATENT_SCALE_FACTOR
|
||||
left = image_tile.coords.left // LATENT_SCALE_FACTOR
|
||||
bottom = image_tile.coords.bottom // LATENT_SCALE_FACTOR
|
||||
right = image_tile.coords.right // LATENT_SCALE_FACTOR
|
||||
return latents[..., top:bottom, left:right]
|
||||
|
||||
def run_controlnet(
|
||||
self,
|
||||
image: Image.Image,
|
||||
controlnet_model: ControlNetModel,
|
||||
weight: float,
|
||||
do_classifier_free_guidance: bool,
|
||||
width: int,
|
||||
height: int,
|
||||
device: torch.device,
|
||||
dtype: torch.dtype,
|
||||
control_mode: CONTROLNET_MODE_VALUES = "balanced",
|
||||
resize_mode: CONTROLNET_RESIZE_VALUES = "just_resize_simple",
|
||||
) -> ControlNetData:
|
||||
control_image = prepare_control_image(
|
||||
image=image,
|
||||
do_classifier_free_guidance=do_classifier_free_guidance,
|
||||
width=width,
|
||||
height=height,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
control_mode=control_mode,
|
||||
resize_mode=resize_mode,
|
||||
)
|
||||
return ControlNetData(
|
||||
model=controlnet_model,
|
||||
image_tensor=control_image,
|
||||
weight=weight,
|
||||
begin_step_percent=0.0,
|
||||
end_step_percent=1.0,
|
||||
control_mode=control_mode,
|
||||
# Any resizing needed should currently be happening in prepare_control_image(), but adding resize_mode to
|
||||
# ControlNetData in case needed in the future.
|
||||
resize_mode=resize_mode,
|
||||
)
|
||||
|
||||
@torch.no_grad()
|
||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||
# TODO(ryand): Expose the seed parameter.
|
||||
seed = 0
|
||||
|
||||
# Load the input image.
|
||||
input_image = context.images.get_pil(self.image.image_name)
|
||||
|
||||
# Calculate the tile locations to cover the image.
|
||||
# We have selected this tiling strategy to make it easy to achieve tile coords that are multiples of 8. This
|
||||
# facilitates conversions between image space and latent space.
|
||||
# TODO(ryand): Expose these tiling parameters. (Keep in mind the multiple-of constraints on these params.)
|
||||
tiles = calc_tiles_with_overlap(
|
||||
image_height=input_image.height,
|
||||
image_width=input_image.width,
|
||||
tile_height=self.tile_height,
|
||||
tile_width=self.tile_width,
|
||||
overlap=self.tile_overlap,
|
||||
)
|
||||
|
||||
# Convert the input image to a torch.Tensor.
|
||||
input_image_torch = image_resized_to_grid_as_tensor(input_image.convert("RGB"), multiple_of=LATENT_SCALE_FACTOR)
|
||||
input_image_torch = input_image_torch.unsqueeze(0) # Add a batch dimension.
|
||||
# Validate our assumptions about the shape of input_image_torch.
|
||||
assert input_image_torch.dim() == 4 # We expect: (batch_size, channels, height, width).
|
||||
assert input_image_torch.shape[:2] == (1, 3)
|
||||
|
||||
# Split the input image into tiles in torch.Tensor format.
|
||||
image_tiles_torch: list[torch.Tensor] = []
|
||||
for tile in tiles:
|
||||
image_tile = input_image_torch[
|
||||
:,
|
||||
:,
|
||||
tile.coords.top : tile.coords.bottom,
|
||||
tile.coords.left : tile.coords.right,
|
||||
]
|
||||
image_tiles_torch.append(image_tile)
|
||||
|
||||
# Split the input image into tiles in numpy format.
|
||||
# TODO(ryand): We currently maintain both np.ndarray and torch.Tensor tiles. Ideally, all operations should work
|
||||
# with torch.Tensor tiles.
|
||||
input_image_np = np.array(input_image)
|
||||
image_tiles_np: list[npt.NDArray[np.uint8]] = []
|
||||
for tile in tiles:
|
||||
image_tile_np = input_image_np[
|
||||
tile.coords.top : tile.coords.bottom,
|
||||
tile.coords.left : tile.coords.right,
|
||||
:,
|
||||
]
|
||||
image_tiles_np.append(image_tile_np)
|
||||
|
||||
# VAE-encode each image tile independently.
|
||||
# TODO(ryand): Is there any advantage to VAE-encoding the entire image before splitting it into tiles? What
|
||||
# about for decoding?
|
||||
vae_info = context.models.load(self.vae.vae)
|
||||
latent_tiles: list[torch.Tensor] = []
|
||||
for image_tile_torch in image_tiles_torch:
|
||||
latent_tiles.append(
|
||||
ImageToLatentsInvocation.vae_encode(
|
||||
vae_info=vae_info, upcast=self.vae_fp32, tiled=False, image_tensor=image_tile_torch
|
||||
)
|
||||
)
|
||||
|
||||
# Generate noise with dimensions corresponding to the full image in latent space.
|
||||
# It is important that the noise tensor is generated at the full image dimension and then tiled, rather than
|
||||
# generating for each tile independently. This ensures that overlapping regions between tiles use the same
|
||||
# noise.
|
||||
assert input_image_torch.shape[2] % LATENT_SCALE_FACTOR == 0
|
||||
assert input_image_torch.shape[3] % LATENT_SCALE_FACTOR == 0
|
||||
global_noise = get_noise(
|
||||
width=input_image_torch.shape[3],
|
||||
height=input_image_torch.shape[2],
|
||||
device=TorchDevice.choose_torch_device(),
|
||||
seed=seed,
|
||||
downsampling_factor=LATENT_SCALE_FACTOR,
|
||||
use_cpu=True,
|
||||
)
|
||||
|
||||
# Crop the global noise into tiles.
|
||||
noise_tiles = [self.crop_latents_to_tile(latents=global_noise, image_tile=t) for t in tiles]
|
||||
|
||||
# Prepare an iterator that yields the UNet's LoRA models and their weights.
|
||||
def _lora_loader() -> Iterator[Tuple[LoRAModelRaw, float]]:
|
||||
for lora in self.unet.loras:
|
||||
lora_info = context.models.load(lora.lora)
|
||||
assert isinstance(lora_info.model, LoRAModelRaw)
|
||||
yield (lora_info.model, lora.weight)
|
||||
del lora_info
|
||||
|
||||
# Load the UNet model.
|
||||
unet_info = context.models.load(self.unet.unet)
|
||||
|
||||
refined_latent_tiles: list[torch.Tensor] = []
|
||||
with ExitStack() as exit_stack, unet_info as unet, ModelPatcher.apply_lora_unet(unet, _lora_loader()):
|
||||
assert isinstance(unet, UNet2DConditionModel)
|
||||
scheduler = get_scheduler(
|
||||
context=context,
|
||||
scheduler_info=self.unet.scheduler,
|
||||
scheduler_name=self.scheduler,
|
||||
seed=seed,
|
||||
)
|
||||
pipeline = DenoiseLatentsInvocation.create_pipeline(unet=unet, scheduler=scheduler)
|
||||
|
||||
# Prepare the prompt conditioning data. The same prompt conditioning is applied to all tiles.
|
||||
# Assume that all tiles have the same shape.
|
||||
_, _, latent_height, latent_width = latent_tiles[0].shape
|
||||
conditioning_data = DenoiseLatentsInvocation.get_conditioning_data(
|
||||
context=context,
|
||||
positive_conditioning_field=self.positive_conditioning,
|
||||
negative_conditioning_field=self.negative_conditioning,
|
||||
unet=unet,
|
||||
latent_height=latent_height,
|
||||
latent_width=latent_width,
|
||||
cfg_scale=self.cfg_scale,
|
||||
steps=self.steps,
|
||||
cfg_rescale_multiplier=self.cfg_rescale_multiplier,
|
||||
)
|
||||
|
||||
# Load the ControlNet model.
|
||||
# TODO(ryand): Support multiple ControlNet models.
|
||||
controlnet_model = exit_stack.enter_context(context.models.load(self.control_model))
|
||||
assert isinstance(controlnet_model, ControlNetModel)
|
||||
|
||||
# Denoise (i.e. "refine") each tile independently.
|
||||
for image_tile_np, latent_tile, noise_tile in zip(image_tiles_np, latent_tiles, noise_tiles, strict=True):
|
||||
assert latent_tile.shape == noise_tile.shape
|
||||
|
||||
# Prepare a PIL Image for ControlNet processing.
|
||||
# TODO(ryand): This is a bit awkward that we have to prepare both torch.Tensor and PIL.Image versions of
|
||||
# the tiles. Ideally, the ControlNet code should be able to work with Tensors.
|
||||
image_tile_pil = Image.fromarray(image_tile_np)
|
||||
|
||||
# Run the ControlNet on the image tile.
|
||||
height, width, _ = image_tile_np.shape
|
||||
# The height and width must be evenly divisible by LATENT_SCALE_FACTOR. This is enforced earlier, but we
|
||||
# validate this assumption here.
|
||||
assert height % LATENT_SCALE_FACTOR == 0
|
||||
assert width % LATENT_SCALE_FACTOR == 0
|
||||
controlnet_data = self.run_controlnet(
|
||||
image=image_tile_pil,
|
||||
controlnet_model=controlnet_model,
|
||||
weight=self.control_weight,
|
||||
do_classifier_free_guidance=True,
|
||||
width=width,
|
||||
height=height,
|
||||
device=controlnet_model.device,
|
||||
dtype=controlnet_model.dtype,
|
||||
control_mode="balanced",
|
||||
resize_mode="just_resize_simple",
|
||||
)
|
||||
|
||||
num_inference_steps, timesteps, init_timestep, scheduler_step_kwargs = (
|
||||
DenoiseLatentsInvocation.init_scheduler(
|
||||
scheduler,
|
||||
device=unet.device,
|
||||
steps=self.steps,
|
||||
denoising_start=self.denoising_start,
|
||||
denoising_end=self.denoising_end,
|
||||
seed=seed,
|
||||
)
|
||||
)
|
||||
|
||||
# TODO(ryand): Think about when/if latents/noise should be moved off of the device to save VRAM.
|
||||
latent_tile = latent_tile.to(device=unet.device, dtype=unet.dtype)
|
||||
noise_tile = noise_tile.to(device=unet.device, dtype=unet.dtype)
|
||||
refined_latent_tile = pipeline.latents_from_embeddings(
|
||||
latents=latent_tile,
|
||||
timesteps=timesteps,
|
||||
init_timestep=init_timestep,
|
||||
noise=noise_tile,
|
||||
seed=seed,
|
||||
mask=None,
|
||||
masked_latents=None,
|
||||
gradient_mask=None,
|
||||
num_inference_steps=num_inference_steps,
|
||||
scheduler_step_kwargs=scheduler_step_kwargs,
|
||||
conditioning_data=conditioning_data,
|
||||
control_data=[controlnet_data],
|
||||
ip_adapter_data=None,
|
||||
t2i_adapter_data=None,
|
||||
callback=lambda x: None,
|
||||
)
|
||||
refined_latent_tiles.append(refined_latent_tile)
|
||||
|
||||
# VAE-decode each refined latent tile independently.
|
||||
refined_image_tiles: list[Image.Image] = []
|
||||
for refined_latent_tile in refined_latent_tiles:
|
||||
refined_image_tile = LatentsToImageInvocation.vae_decode(
|
||||
context=context,
|
||||
vae_info=vae_info,
|
||||
seamless_axes=self.vae.seamless_axes,
|
||||
latents=refined_latent_tile,
|
||||
use_fp32=self.vae_fp32,
|
||||
use_tiling=False,
|
||||
)
|
||||
refined_image_tiles.append(refined_image_tile)
|
||||
|
||||
# TODO(ryand): I copied this from DenoiseLatentsInvocation. I'm not sure if it's actually important.
|
||||
TorchDevice.empty_cache()
|
||||
|
||||
# Merge the refined image tiles back into a single image.
|
||||
refined_image_tiles_np = [np.array(t) for t in refined_image_tiles]
|
||||
merged_image_np = np.zeros(shape=(input_image.height, input_image.width, 3), dtype=np.uint8)
|
||||
# TODO(ryand): Tune the blend_amount. Should this be exposed as a parameter?
|
||||
merge_tiles_with_linear_blending(
|
||||
dst_image=merged_image_np, tiles=tiles, tile_images=refined_image_tiles_np, blend_amount=self.tile_overlap
|
||||
)
|
||||
|
||||
# Save the refined image and return its reference.
|
||||
merged_image_pil = Image.fromarray(merged_image_np)
|
||||
image_dto = context.images.save(image=merged_image_pil)
|
||||
|
||||
return ImageOutput.build(image_dto)
|
Loading…
Reference in New Issue
Block a user