mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Run Ruff
This commit is contained in:
parent
9d0952c2ef
commit
39f62ac63c
@ -132,7 +132,7 @@ class ModelProbe(object):
|
||||
|
||||
format_type = ModelFormat.Diffusers if model_path.is_dir() else ModelFormat.Checkpoint
|
||||
model_info = None
|
||||
model_type = fields['type'] if 'type' in fields else None
|
||||
model_type = fields["type"] if "type" in fields else None
|
||||
model_type = ModelType(model_type) if isinstance(model_type, str) else model_type
|
||||
if not model_type:
|
||||
if format_type is ModelFormat.Diffusers:
|
||||
|
@ -5,11 +5,12 @@ Test the model installer
|
||||
import platform
|
||||
import uuid
|
||||
from pathlib import Path
|
||||
from time import sleep
|
||||
from typing import Any, Dict
|
||||
|
||||
import pytest
|
||||
from pydantic import ValidationError
|
||||
from pydantic.networks import Url
|
||||
from time import sleep
|
||||
|
||||
from invokeai.app.services.config import InvokeAIAppConfig
|
||||
from invokeai.app.services.events.events_base import EventServiceBase
|
||||
@ -21,7 +22,7 @@ from invokeai.app.services.model_install import (
|
||||
URLModelSource,
|
||||
)
|
||||
from invokeai.app.services.model_records import UnknownModelException
|
||||
from invokeai.backend.model_manager.config import BaseModelType, ModelFormat, ModelType, InvalidModelConfigException
|
||||
from invokeai.backend.model_manager.config import BaseModelType, InvalidModelConfigException, ModelFormat, ModelType
|
||||
from tests.backend.model_manager.model_manager_fixtures import * # noqa F403
|
||||
|
||||
OS = platform.uname().system
|
||||
@ -273,13 +274,13 @@ def test_404_download(mm2_installer: ModelInstallServiceBase, mm2_app_config: In
|
||||
{
|
||||
"repo_id": "InvokeAI-test/textual_inversion_tests::learned_embeds-steps-1000.safetensors",
|
||||
"name": "test_lora",
|
||||
"type": 'embedding',
|
||||
"type": "embedding",
|
||||
},
|
||||
# SDXL, Lora - incorrect type
|
||||
{
|
||||
"repo_id": "InvokeAI-test/textual_inversion_tests::learned_embeds-steps-1000.safetensors",
|
||||
"name": "test_lora",
|
||||
"type": 'lora',
|
||||
"type": "lora",
|
||||
},
|
||||
],
|
||||
)
|
||||
@ -289,11 +290,11 @@ def test_heuristic_import_with_type(mm2_installer: ModelInstallServiceBase, mode
|
||||
"type": model_params["type"],
|
||||
}
|
||||
try:
|
||||
assert("repo_id" in model_params)
|
||||
assert "repo_id" in model_params
|
||||
install_job = mm2_installer.heuristic_import(source=model_params["repo_id"], config=config)
|
||||
|
||||
while not install_job.in_terminal_state:
|
||||
sleep(.01)
|
||||
assert(install_job.config_out if model_params["type"] == "embedding" else not install_job.config_out)
|
||||
sleep(0.01)
|
||||
assert install_job.config_out if model_params["type"] == "embedding" else not install_job.config_out
|
||||
except InvalidModelConfigException:
|
||||
assert model_params["type"] != "embedding"
|
||||
|
@ -33,12 +33,12 @@ from invokeai.backend.model_manager.config import (
|
||||
from invokeai.backend.model_manager.load import ModelCache, ModelConvertCache
|
||||
from invokeai.backend.util.logging import InvokeAILogger
|
||||
from tests.backend.model_manager.model_metadata.metadata_examples import (
|
||||
HFTestLoraMetadata,
|
||||
RepoCivitaiModelMetadata1,
|
||||
RepoCivitaiVersionMetadata1,
|
||||
RepoHFMetadata1,
|
||||
RepoHFMetadata1_nofp16,
|
||||
RepoHFModelJson1,
|
||||
HFTestLoraMetadata,
|
||||
)
|
||||
from tests.fixtures.sqlite_database import create_mock_sqlite_database
|
||||
|
||||
@ -301,7 +301,7 @@ def mm2_session(embedding_file: Path, diffusers_dir: Path) -> Session:
|
||||
headers={"Content-Type": "application/json; charset=utf-8", "Content-Length": len(RepoHFMetadata1)},
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
with open(embedding_file, "rb") as f:
|
||||
data = f.read() # file is small - just 15K
|
||||
sess.mount(
|
||||
|
Loading…
Reference in New Issue
Block a user