Merge branch 'main' into install/install-ip-adapters

This commit is contained in:
Lincoln Stein 2023-09-24 23:19:25 -04:00 committed by GitHub
commit 43ebd68313
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
13 changed files with 144 additions and 36 deletions

View File

@ -146,7 +146,8 @@ async def update_model(
async def import_model(
location: str = Body(description="A model path, repo_id or URL to import"),
prediction_type: Optional[Literal["v_prediction", "epsilon", "sample"]] = Body(
description="Prediction type for SDv2 checkpoint files", default="v_prediction"
description="Prediction type for SDv2 checkpoints and rare SDv1 checkpoints",
default=None,
),
) -> ImportModelResponse:
"""Add a model using its local path, repo_id, or remote URL. Model characteristics will be probed and configured automatically"""
@ -155,6 +156,8 @@ async def import_model(
prediction_types = {x.value: x for x in SchedulerPredictionType}
logger = ApiDependencies.invoker.services.logger
print(f"DEBUG: prediction_type = {prediction_type}")
try:
installed_models = ApiDependencies.invoker.services.model_manager.heuristic_import(
items_to_import=items_to_import, prediction_type_helper=lambda x: prediction_types.get(prediction_type)

View File

@ -8,7 +8,6 @@ app_config.parse_args()
if True: # hack to make flake8 happy with imports coming after setting up the config
import asyncio
import logging
import mimetypes
import socket
from inspect import signature

View File

@ -47,8 +47,14 @@ Config_preamble = """
LEGACY_CONFIGS = {
BaseModelType.StableDiffusion1: {
ModelVariantType.Normal: "v1-inference.yaml",
ModelVariantType.Inpaint: "v1-inpainting-inference.yaml",
ModelVariantType.Normal: {
SchedulerPredictionType.Epsilon: "v1-inference.yaml",
SchedulerPredictionType.VPrediction: "v1-inference-v.yaml",
},
ModelVariantType.Inpaint: {
SchedulerPredictionType.Epsilon: "v1-inpainting-inference.yaml",
SchedulerPredictionType.VPrediction: "v1-inpainting-inference-v.yaml",
},
},
BaseModelType.StableDiffusion2: {
ModelVariantType.Normal: {
@ -302,7 +308,7 @@ class ModelInstall(object):
location = download_with_resume(url, Path(staging))
if not location:
logger.error(f"Unable to download {url}. Skipping.")
info = ModelProbe().heuristic_probe(location)
info = ModelProbe().heuristic_probe(location, self.prediction_helper)
dest = self.config.models_path / info.base_type.value / info.model_type.value / location.name
dest.parent.mkdir(parents=True, exist_ok=True)
models_path = shutil.move(location, dest)
@ -409,7 +415,7 @@ class ModelInstall(object):
possible_conf = path.with_suffix(".yaml")
if possible_conf.exists():
legacy_conf = str(self.relative_to_root(possible_conf))
elif info.base_type == BaseModelType.StableDiffusion2:
elif info.base_type in [BaseModelType.StableDiffusion1, BaseModelType.StableDiffusion2]:
legacy_conf = Path(
self.config.legacy_conf_dir,
LEGACY_CONFIGS[info.base_type][info.variant_type][info.prediction_type],

View File

@ -1279,12 +1279,12 @@ def download_from_original_stable_diffusion_ckpt(
extract_ema = original_config["model"]["params"]["use_ema"]
if (
model_version == BaseModelType.StableDiffusion2
model_version in [BaseModelType.StableDiffusion2, BaseModelType.StableDiffusion1]
and original_config["model"]["params"].get("parameterization") == "v"
):
prediction_type = "v_prediction"
upcast_attention = True
image_size = 768
image_size = 768 if model_version == BaseModelType.StableDiffusion2 else 512
else:
prediction_type = "epsilon"
upcast_attention = False

View File

@ -90,8 +90,7 @@ class ModelProbe(object):
to place it somewhere in the models directory hierarchy. If the model is
already loaded into memory, you may provide it as model in order to avoid
opening it a second time. The prediction_type_helper callable is a function that receives
the path to the model and returns the BaseModelType. It is called to distinguish
between V2-Base and V2-768 SD models.
the path to the model and returns the SchedulerPredictionType.
"""
if model_path:
format_type = "diffusers" if model_path.is_dir() else "checkpoint"
@ -305,25 +304,36 @@ class PipelineCheckpointProbe(CheckpointProbeBase):
else:
raise InvalidModelException("Cannot determine base type")
def get_scheduler_prediction_type(self) -> SchedulerPredictionType:
def get_scheduler_prediction_type(self) -> Optional[SchedulerPredictionType]:
"""Return model prediction type."""
# if there is a .yaml associated with this checkpoint, then we do not need
# to probe for the prediction type as it will be ignored.
if self.checkpoint_path and self.checkpoint_path.with_suffix(".yaml").exists():
return None
type = self.get_base_type()
if type == BaseModelType.StableDiffusion1:
return SchedulerPredictionType.Epsilon
checkpoint = self.checkpoint
state_dict = self.checkpoint.get("state_dict") or checkpoint
key_name = "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight"
if key_name in state_dict and state_dict[key_name].shape[-1] == 1024:
if "global_step" in checkpoint:
if checkpoint["global_step"] == 220000:
return SchedulerPredictionType.Epsilon
elif checkpoint["global_step"] == 110000:
return SchedulerPredictionType.VPrediction
if (
self.checkpoint_path and self.helper and not self.checkpoint_path.with_suffix(".yaml").exists()
): # if a .yaml config file exists, then this step not needed
return self.helper(self.checkpoint_path)
else:
return None
if type == BaseModelType.StableDiffusion2:
checkpoint = self.checkpoint
state_dict = self.checkpoint.get("state_dict") or checkpoint
key_name = "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight"
if key_name in state_dict and state_dict[key_name].shape[-1] == 1024:
if "global_step" in checkpoint:
if checkpoint["global_step"] == 220000:
return SchedulerPredictionType.Epsilon
elif checkpoint["global_step"] == 110000:
return SchedulerPredictionType.VPrediction
if self.helper and self.checkpoint_path:
if helper_guess := self.helper(self.checkpoint_path):
return helper_guess
return SchedulerPredictionType.VPrediction # a guess for sd2 ckpts
elif type == BaseModelType.StableDiffusion1:
if self.helper and self.checkpoint_path:
if helper_guess := self.helper(self.checkpoint_path):
return helper_guess
return SchedulerPredictionType.Epsilon # a reasonable guess for sd1 ckpts
else:
return None
class VaeCheckpointProbe(CheckpointProbeBase):

View File

@ -71,7 +71,13 @@ class ModelSearch(ABC):
if any(
[
(path / x).exists()
for x in {"config.json", "model_index.json", "learned_embeds.bin", "pytorch_lora_weights.bin"}
for x in {
"config.json",
"model_index.json",
"learned_embeds.bin",
"pytorch_lora_weights.bin",
"image_encoder.txt",
}
]
):
try:

View File

@ -0,0 +1,80 @@
model:
base_learning_rate: 1.0e-04
target: invokeai.backend.models.diffusion.ddpm.LatentDiffusion
params:
parameterization: "v"
linear_start: 0.00085
linear_end: 0.0120
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
first_stage_key: "jpg"
cond_stage_key: "txt"
image_size: 64
channels: 4
cond_stage_trainable: false # Note: different from the one we trained before
conditioning_key: crossattn
monitor: val/loss_simple_ema
scale_factor: 0.18215
use_ema: False
scheduler_config: # 10000 warmup steps
target: invokeai.backend.stable_diffusion.lr_scheduler.LambdaLinearScheduler
params:
warm_up_steps: [ 10000 ]
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
f_start: [ 1.e-6 ]
f_max: [ 1. ]
f_min: [ 1. ]
personalization_config:
target: invokeai.backend.stable_diffusion.embedding_manager.EmbeddingManager
params:
placeholder_strings: ["*"]
initializer_words: ['sculpture']
per_image_tokens: false
num_vectors_per_token: 1
progressive_words: False
unet_config:
target: invokeai.backend.stable_diffusion.diffusionmodules.openaimodel.UNetModel
params:
image_size: 32 # unused
in_channels: 4
out_channels: 4
model_channels: 320
attention_resolutions: [ 4, 2, 1 ]
num_res_blocks: 2
channel_mult: [ 1, 2, 4, 4 ]
num_heads: 8
use_spatial_transformer: True
transformer_depth: 1
context_dim: 768
use_checkpoint: True
legacy: False
first_stage_config:
target: invokeai.backend.stable_diffusion.autoencoder.AutoencoderKL
params:
embed_dim: 4
monitor: val/rec_loss
ddconfig:
double_z: true
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 2
- 4
- 4
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config:
target: invokeai.backend.stable_diffusion.encoders.modules.WeightedFrozenCLIPEmbedder

View File

@ -574,7 +574,7 @@
"onnxModels": "Onnx",
"pathToCustomConfig": "Path To Custom Config",
"pickModelType": "Pick Model Type",
"predictionType": "Prediction Type (for Stable Diffusion 2.x Models only)",
"predictionType": "Prediction Type (for Stable Diffusion 2.x Models and occasional Stable Diffusion 1.x Models)",
"quickAdd": "Quick Add",
"repo_id": "Repo ID",
"repoIDValidationMsg": "Online repository of your model",

View File

@ -655,7 +655,7 @@
"onnxModels": "Onnx",
"pathToCustomConfig": "Path To Custom Config",
"pickModelType": "Pick Model Type",
"predictionType": "Prediction Type (for Stable Diffusion 2.x Models only)",
"predictionType": "Prediction Type (for Stable Diffusion 2.x Models and occasional Stable Diffusion 1.x Models)",
"quickAdd": "Quick Add",
"repo_id": "Repo ID",
"repoIDValidationMsg": "Online repository of your model",

View File

@ -44,7 +44,7 @@ const IAIMantineMultiSelect = forwardRef((props: IAIMultiSelectProps, ref) => {
return (
<Tooltip label={tooltip} placement="top" hasArrow isOpen={true}>
<FormControl ref={ref} isDisabled={disabled}>
<FormControl ref={ref} isDisabled={disabled} position="static">
{label && <FormLabel>{label}</FormLabel>}
<MultiSelect
ref={inputRef}

View File

@ -70,11 +70,10 @@ const IAIMantineSearchableSelect = forwardRef((props: IAISelectProps, ref) => {
return (
<Tooltip label={tooltip} placement="top" hasArrow>
<FormControl ref={ref} isDisabled={disabled}>
<FormControl ref={ref} isDisabled={disabled} position="static">
{label && <FormLabel>{label}</FormLabel>}
<Select
ref={inputRef}
withinPortal
disabled={disabled}
searchValue={searchValue}
onSearchChange={setSearchValue}

View File

@ -22,7 +22,12 @@ const IAIMantineSelect = forwardRef((props: IAISelectProps, ref) => {
return (
<Tooltip label={tooltip} placement="top" hasArrow>
<FormControl ref={ref} isRequired={required} isDisabled={disabled}>
<FormControl
ref={ref}
isRequired={required}
isDisabled={disabled}
position="static"
>
<FormLabel>{label}</FormLabel>
<Select disabled={disabled} ref={inputRef} styles={styles} {...rest} />
</FormControl>

View File

@ -287,7 +287,7 @@ const CurrentImageButtons = (props: CurrentImageButtonsProps) => {
icon={<FaSeedling />}
tooltip={`${t('parameters.useSeed')} (S)`}
aria-label={`${t('parameters.useSeed')} (S)`}
isDisabled={!metadata?.seed}
isDisabled={metadata?.seed === null || metadata?.seed === undefined}
onClick={handleUseSeed}
/>
<IAIIconButton