mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Fix circular import caused by the organization the model size utils.
This commit is contained in:
parent
e9936c27fb
commit
44f62944ee
@ -11,6 +11,7 @@ from PIL import Image
|
|||||||
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
|
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
|
||||||
|
|
||||||
from invokeai.backend.ip_adapter.ip_attention_weights import IPAttentionWeights
|
from invokeai.backend.ip_adapter.ip_attention_weights import IPAttentionWeights
|
||||||
|
from invokeai.backend.model_manager.load.model_size_utils import calc_module_size
|
||||||
|
|
||||||
from ..raw_model import RawModel
|
from ..raw_model import RawModel
|
||||||
from .resampler import Resampler
|
from .resampler import Resampler
|
||||||
@ -137,10 +138,7 @@ class IPAdapter(RawModel):
|
|||||||
self.attn_weights.to(device=self.device, dtype=self.dtype, non_blocking=non_blocking)
|
self.attn_weights.to(device=self.device, dtype=self.dtype, non_blocking=non_blocking)
|
||||||
|
|
||||||
def calc_size(self):
|
def calc_size(self):
|
||||||
# workaround for circular import
|
return calc_module_size(self._image_proj_model) + calc_module_size(self.attn_weights)
|
||||||
from invokeai.backend.model_manager.load.model_util import calc_model_size_by_data
|
|
||||||
|
|
||||||
return calc_model_size_by_data(self._image_proj_model) + calc_model_size_by_data(self.attn_weights)
|
|
||||||
|
|
||||||
def _init_image_proj_model(
|
def _init_image_proj_model(
|
||||||
self, state_dict: dict[str, torch.Tensor]
|
self, state_dict: dict[str, torch.Tensor]
|
||||||
|
79
invokeai/backend/model_manager/load/model_size_utils.py
Normal file
79
invokeai/backend/model_manager/load/model_size_utils.py
Normal file
@ -0,0 +1,79 @@
|
|||||||
|
import json
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Optional
|
||||||
|
|
||||||
|
import torch
|
||||||
|
|
||||||
|
|
||||||
|
def calc_module_size(model: torch.nn.Module) -> int:
|
||||||
|
"""Estimate the size of a torch.nn.Module in bytes."""
|
||||||
|
mem_params = sum([param.nelement() * param.element_size() for param in model.parameters()])
|
||||||
|
mem_bufs = sum([buf.nelement() * buf.element_size() for buf in model.buffers()])
|
||||||
|
mem: int = mem_params + mem_bufs # in bytes
|
||||||
|
return mem
|
||||||
|
|
||||||
|
|
||||||
|
def calc_model_size_by_fs(model_path: Path, subfolder: Optional[str] = None, variant: Optional[str] = None) -> int:
|
||||||
|
"""Estimate the size of a model on disk in bytes."""
|
||||||
|
if model_path.is_file():
|
||||||
|
return model_path.stat().st_size
|
||||||
|
|
||||||
|
if subfolder is not None:
|
||||||
|
model_path = model_path / subfolder
|
||||||
|
|
||||||
|
# this can happen when, for example, the safety checker is not downloaded.
|
||||||
|
if not model_path.exists():
|
||||||
|
return 0
|
||||||
|
|
||||||
|
all_files = [f for f in model_path.iterdir() if (model_path / f).is_file()]
|
||||||
|
|
||||||
|
fp16_files = {f for f in all_files if ".fp16." in f.name or ".fp16-" in f.name}
|
||||||
|
bit8_files = {f for f in all_files if ".8bit." in f.name or ".8bit-" in f.name}
|
||||||
|
other_files = set(all_files) - fp16_files - bit8_files
|
||||||
|
|
||||||
|
if not variant: # ModelRepoVariant.DEFAULT evaluates to empty string for compatability with HF
|
||||||
|
files = other_files
|
||||||
|
elif variant == "fp16":
|
||||||
|
files = fp16_files
|
||||||
|
elif variant == "8bit":
|
||||||
|
files = bit8_files
|
||||||
|
else:
|
||||||
|
raise NotImplementedError(f"Unknown variant: {variant}")
|
||||||
|
|
||||||
|
# try read from index if exists
|
||||||
|
index_postfix = ".index.json"
|
||||||
|
if variant is not None:
|
||||||
|
index_postfix = f".index.{variant}.json"
|
||||||
|
|
||||||
|
for file in files:
|
||||||
|
if not file.name.endswith(index_postfix):
|
||||||
|
continue
|
||||||
|
try:
|
||||||
|
with open(model_path / file, "r") as f:
|
||||||
|
index_data = json.loads(f.read())
|
||||||
|
return int(index_data["metadata"]["total_size"])
|
||||||
|
except Exception:
|
||||||
|
pass
|
||||||
|
|
||||||
|
# calculate files size if there is no index file
|
||||||
|
formats = [
|
||||||
|
(".safetensors",), # safetensors
|
||||||
|
(".bin",), # torch
|
||||||
|
(".onnx", ".pb"), # onnx
|
||||||
|
(".msgpack",), # flax
|
||||||
|
(".ckpt",), # tf
|
||||||
|
(".h5",), # tf2
|
||||||
|
]
|
||||||
|
|
||||||
|
for file_format in formats:
|
||||||
|
model_files = [f for f in files if f.suffix in file_format]
|
||||||
|
if len(model_files) == 0:
|
||||||
|
continue
|
||||||
|
|
||||||
|
model_size = 0
|
||||||
|
for model_file in model_files:
|
||||||
|
file_stats = (model_path / model_file).stat()
|
||||||
|
model_size += file_stats.st_size
|
||||||
|
return model_size
|
||||||
|
|
||||||
|
return 0 # scheduler/feature_extractor/tokenizer - models without loading to gpu
|
@ -1,14 +1,11 @@
|
|||||||
# Copyright (c) 2024 The InvokeAI Development Team
|
# Copyright (c) 2024 The InvokeAI Development Team
|
||||||
"""Various utility functions needed by the loader and caching system."""
|
"""Various utility functions needed by the loader and caching system."""
|
||||||
|
|
||||||
import json
|
|
||||||
from pathlib import Path
|
|
||||||
from typing import Optional
|
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
from diffusers import DiffusionPipeline
|
from diffusers import DiffusionPipeline
|
||||||
|
|
||||||
from invokeai.backend.model_manager.config import AnyModel
|
from invokeai.backend.model_manager.config import AnyModel
|
||||||
|
from invokeai.backend.model_manager.load.model_size_utils import calc_module_size
|
||||||
from invokeai.backend.onnx.onnx_runtime import IAIOnnxRuntimeModel
|
from invokeai.backend.onnx.onnx_runtime import IAIOnnxRuntimeModel
|
||||||
|
|
||||||
|
|
||||||
@ -17,7 +14,7 @@ def calc_model_size_by_data(model: AnyModel) -> int:
|
|||||||
if isinstance(model, DiffusionPipeline):
|
if isinstance(model, DiffusionPipeline):
|
||||||
return _calc_pipeline_by_data(model)
|
return _calc_pipeline_by_data(model)
|
||||||
elif isinstance(model, torch.nn.Module):
|
elif isinstance(model, torch.nn.Module):
|
||||||
return _calc_model_by_data(model)
|
return calc_module_size(model)
|
||||||
elif isinstance(model, IAIOnnxRuntimeModel):
|
elif isinstance(model, IAIOnnxRuntimeModel):
|
||||||
return _calc_onnx_model_by_data(model)
|
return _calc_onnx_model_by_data(model)
|
||||||
else:
|
else:
|
||||||
@ -30,84 +27,11 @@ def _calc_pipeline_by_data(pipeline: DiffusionPipeline) -> int:
|
|||||||
for submodel_key in pipeline.components.keys():
|
for submodel_key in pipeline.components.keys():
|
||||||
submodel = getattr(pipeline, submodel_key)
|
submodel = getattr(pipeline, submodel_key)
|
||||||
if submodel is not None and isinstance(submodel, torch.nn.Module):
|
if submodel is not None and isinstance(submodel, torch.nn.Module):
|
||||||
res += _calc_model_by_data(submodel)
|
res += calc_module_size(submodel)
|
||||||
return res
|
return res
|
||||||
|
|
||||||
|
|
||||||
def _calc_model_by_data(model: torch.nn.Module) -> int:
|
|
||||||
mem_params = sum([param.nelement() * param.element_size() for param in model.parameters()])
|
|
||||||
mem_bufs = sum([buf.nelement() * buf.element_size() for buf in model.buffers()])
|
|
||||||
mem: int = mem_params + mem_bufs # in bytes
|
|
||||||
return mem
|
|
||||||
|
|
||||||
|
|
||||||
def _calc_onnx_model_by_data(model: IAIOnnxRuntimeModel) -> int:
|
def _calc_onnx_model_by_data(model: IAIOnnxRuntimeModel) -> int:
|
||||||
tensor_size = model.tensors.size() * 2 # The session doubles this
|
tensor_size = model.tensors.size() * 2 # The session doubles this
|
||||||
mem = tensor_size # in bytes
|
mem = tensor_size # in bytes
|
||||||
return mem
|
return mem
|
||||||
|
|
||||||
|
|
||||||
def calc_model_size_by_fs(model_path: Path, subfolder: Optional[str] = None, variant: Optional[str] = None) -> int:
|
|
||||||
"""Estimate the size of a model on disk in bytes."""
|
|
||||||
if model_path.is_file():
|
|
||||||
return model_path.stat().st_size
|
|
||||||
|
|
||||||
if subfolder is not None:
|
|
||||||
model_path = model_path / subfolder
|
|
||||||
|
|
||||||
# this can happen when, for example, the safety checker is not downloaded.
|
|
||||||
if not model_path.exists():
|
|
||||||
return 0
|
|
||||||
|
|
||||||
all_files = [f for f in model_path.iterdir() if (model_path / f).is_file()]
|
|
||||||
|
|
||||||
fp16_files = {f for f in all_files if ".fp16." in f.name or ".fp16-" in f.name}
|
|
||||||
bit8_files = {f for f in all_files if ".8bit." in f.name or ".8bit-" in f.name}
|
|
||||||
other_files = set(all_files) - fp16_files - bit8_files
|
|
||||||
|
|
||||||
if not variant: # ModelRepoVariant.DEFAULT evaluates to empty string for compatability with HF
|
|
||||||
files = other_files
|
|
||||||
elif variant == "fp16":
|
|
||||||
files = fp16_files
|
|
||||||
elif variant == "8bit":
|
|
||||||
files = bit8_files
|
|
||||||
else:
|
|
||||||
raise NotImplementedError(f"Unknown variant: {variant}")
|
|
||||||
|
|
||||||
# try read from index if exists
|
|
||||||
index_postfix = ".index.json"
|
|
||||||
if variant is not None:
|
|
||||||
index_postfix = f".index.{variant}.json"
|
|
||||||
|
|
||||||
for file in files:
|
|
||||||
if not file.name.endswith(index_postfix):
|
|
||||||
continue
|
|
||||||
try:
|
|
||||||
with open(model_path / file, "r") as f:
|
|
||||||
index_data = json.loads(f.read())
|
|
||||||
return int(index_data["metadata"]["total_size"])
|
|
||||||
except Exception:
|
|
||||||
pass
|
|
||||||
|
|
||||||
# calculate files size if there is no index file
|
|
||||||
formats = [
|
|
||||||
(".safetensors",), # safetensors
|
|
||||||
(".bin",), # torch
|
|
||||||
(".onnx", ".pb"), # onnx
|
|
||||||
(".msgpack",), # flax
|
|
||||||
(".ckpt",), # tf
|
|
||||||
(".h5",), # tf2
|
|
||||||
]
|
|
||||||
|
|
||||||
for file_format in formats:
|
|
||||||
model_files = [f for f in files if f.suffix in file_format]
|
|
||||||
if len(model_files) == 0:
|
|
||||||
continue
|
|
||||||
|
|
||||||
model_size = 0
|
|
||||||
for model_file in model_files:
|
|
||||||
file_stats = (model_path / model_file).stat()
|
|
||||||
model_size += file_stats.st_size
|
|
||||||
return model_size
|
|
||||||
|
|
||||||
return 0 # scheduler/feature_extractor/tokenizer - models without loading to gpu
|
|
||||||
|
Loading…
Reference in New Issue
Block a user