Updates based on code review by @RyanJDick

This commit is contained in:
skunkworxdark
2023-12-09 18:38:07 +00:00
parent 5f37176938
commit 494c2a9b05
3 changed files with 27 additions and 19 deletions

View File

@ -33,10 +33,10 @@ def paste(dst_image: np.ndarray, src_image: np.ndarray, box: TBLR, mask: Optiona
"""Paste a source image into a destination image.
Args:
dst_image (torch.Tensor): The destination image to paste into. Shape: (H, W, C).
src_image (torch.Tensor): The source image to paste. Shape: (H, W, C). H and W must be compatible with 'box'.
dst_image (np.array): The destination image to paste into. Shape: (H, W, C).
src_image (np.array): The source image to paste. Shape: (H, W, C). H and W must be compatible with 'box'.
box (TBLR): Box defining the region in the 'dst_image' where 'src_image' will be pasted.
mask (Optional[torch.Tensor]): A mask that defines the blending between 'src_image' and 'dst_image'.
mask (Optional[np.array]): A mask that defines the blending between 'src_image' and 'dst_image'.
Range: [0.0, 1.0], Shape: (H, W). The output is calculate per-pixel according to
`src * mask + dst * (1 - mask)`.
"""
@ -55,8 +55,8 @@ def seam_blend(ia1: np.ndarray, ia2: np.ndarray, blend_amount: int, x_seam: bool
It is assumed that input images will be RGB np arrays and are the same size.
Args:
ia1 (torch.Tensor): Image array 1 Shape: (H, W, C).
ia2 (torch.Tensor): Image array 2 Shape: (H, W, C).
ia1 (np.array): Image array 1 Shape: (H, W, C).
ia2 (np.array): Image array 2 Shape: (H, W, C).
x_seam (bool): If the images should be blended on the x axis or not.
blend_amount (int): The size of the blur to use on the seam. Half of this value will be used to avoid the edges of the image.
"""
@ -74,7 +74,7 @@ def seam_blend(ia1: np.ndarray, ia2: np.ndarray, blend_amount: int, x_seam: bool
return result
# Assume RGB and convert to grey
iag1 = np.dot(ia1, [0.2989, 0.5870, 0.1140])
iag1 = np.dot(ia1, [0.2989, 0.5870, 0.1140]) # BT.601 perceived brightness
iag2 = np.dot(ia2, [0.2989, 0.5870, 0.1140])
# Calc Difference between the images