make ip_adapters work with stable-fast

This commit is contained in:
Lincoln Stein 2023-12-21 17:29:28 -05:00
parent 952b12abb7
commit 4b9a46e4c2
4 changed files with 12 additions and 16 deletions

View File

@ -141,7 +141,6 @@ class IPAttnProcessor2_0(torch.nn.Module):
ip_hidden_states = ipa_embed
# Expected ip_hidden_state shape: (batch_size, num_ip_images, ip_seq_len, ip_image_embedding)
ip_key = ipa_weights.to_k_ip(ip_hidden_states)
ip_value = ipa_weights.to_v_ip(ip_hidden_states)

View File

@ -12,6 +12,8 @@ class IPAttentionProcessorWeights(torch.nn.Module):
super().__init__()
self.to_k_ip = torch.nn.Linear(in_dim, out_dim, bias=False)
self.to_v_ip = torch.nn.Linear(in_dim, out_dim, bias=False)
for param in self.parameters():
param.requires_grad = False
class IPAttentionWeights(torch.nn.Module):

View File

@ -24,12 +24,14 @@ import sys
import time
from contextlib import suppress
from dataclasses import dataclass, field
from importlib.util import find_spec
from pathlib import Path
from typing import Any, Dict, Optional, Type, Union, types
import torch
import invokeai.backend.util.logging as logger
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.backend.model_management.memory_snapshot import MemorySnapshot, get_pretty_snapshot_diff
from invokeai.backend.model_management.model_load_optimizations import skip_torch_weight_init
@ -44,22 +46,11 @@ TRITON_AVAILABLE = False
XFORMERS_AVAILABLE = False
SFAST_CONFIG = None
try:
import triton
TRITON_AVAILABLE = True
except ImportError:
pass
TRITON_AVAILABLE = find_spec("triton") is not None
XFORMERS_AVAILABLE = find_spec("xformers") is not None
try:
import xformers
XFORMERS_AVAILABLE = True
except ImportError:
pass
try:
from sfast.compilers.diffusion_pipeline_compiler import compile_unet, compile_vae, CompilationConfig
from sfast.compilers.diffusion_pipeline_compiler import CompilationConfig, compile_unet, compile_vae
SFAST_CONFIG = CompilationConfig.Default()
SFAST_CONFIG.enable_cuda_graph = True
@ -141,6 +132,7 @@ class _CacheRecord:
class ModelCache(object):
def __init__(
self,
app_config: InvokeAIAppConfig,
max_cache_size: float = DEFAULT_MAX_CACHE_SIZE,
max_vram_cache_size: float = DEFAULT_MAX_VRAM_CACHE_SIZE,
execution_device: torch.device = torch.device("cuda"),
@ -153,6 +145,7 @@ class ModelCache(object):
log_memory_usage: bool = False,
):
"""
:param app_config: InvokeAIAppConfig for application
:param max_cache_size: Maximum size of the RAM cache [6.0 GB]
:param execution_device: Torch device to load active model into [torch.device('cuda')]
:param storage_device: Torch device to save inactive model in [torch.device('cpu')]
@ -166,6 +159,7 @@ class ModelCache(object):
behaviour.
"""
self.model_infos: Dict[str, ModelBase] = {}
self.app_config = app_config
# allow lazy offloading only when vram cache enabled
self.lazy_offloading = lazy_offloading and max_vram_cache_size > 0
self.precision: torch.dtype = precision
@ -270,7 +264,7 @@ class ModelCache(object):
snapshot_before = self._capture_memory_snapshot()
with skip_torch_weight_init():
model = model_info.get_model(child_type=submodel, torch_dtype=self.precision)
if SFAST_AVAILABLE and submodel:
if SFAST_AVAILABLE and self.app_config.stable_fast and submodel:
model = self._compile_model(model, submodel)
snapshot_after = self._capture_memory_snapshot()

View File

@ -344,6 +344,7 @@ class ModelManager(object):
self.app_config = InvokeAIAppConfig.get_config()
self.logger = logger
self.cache = ModelCache(
app_config=self.app_config,
max_cache_size=max_cache_size,
max_vram_cache_size=self.app_config.vram_cache_size,
lazy_offloading=self.app_config.lazy_offload,