mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Add magic to debug
This commit is contained in:
parent
409e5d01ba
commit
511da59793
@ -92,7 +92,7 @@ class AddsMaskGuidance:
|
||||
mask: torch.FloatTensor
|
||||
mask_latents: torch.FloatTensor
|
||||
scheduler: SchedulerMixin
|
||||
noise: torch.Tensor
|
||||
noise: Optional[torch.Tensor]
|
||||
|
||||
def __call__(self, step_output: Union[BaseOutput, SchedulerOutput], t: torch.Tensor, conditioning) -> BaseOutput:
|
||||
output_class = step_output.__class__ # We'll create a new one with masked data.
|
||||
@ -124,7 +124,10 @@ class AddsMaskGuidance:
|
||||
t = einops.repeat(t, "-> batch", batch=batch_size)
|
||||
# Noise shouldn't be re-randomized between steps here. The multistep schedulers
|
||||
# get very confused about what is happening from step to step when we do that.
|
||||
mask_latents = self.scheduler.add_noise(self.mask_latents, self.noise, t)
|
||||
if self.noise is not None:
|
||||
mask_latents = self.scheduler.add_noise(self.mask_latents, self.noise, t)
|
||||
else:
|
||||
mask_latents = self.mask_latents.clone()
|
||||
# TODO: Do we need to also apply scheduler.scale_model_input? Or is add_noise appropriately scaled already?
|
||||
# mask_latents = self.scheduler.scale_model_input(mask_latents, t)
|
||||
mask_latents = einops.repeat(mask_latents, "b c h w -> (repeat b) c h w", repeat=batch_size)
|
||||
@ -368,19 +371,21 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
# TODO: we should probably pass this in so we don't have to try/finally around setting it.
|
||||
self.invokeai_diffuser.model_forward_callback = AddsMaskLatents(self._unet_forward, mask, orig_latents)
|
||||
else:
|
||||
# if no noise provided, noisify unmasked area based on seed(or 0 as fallback)
|
||||
if noise is None:
|
||||
noise = torch.randn(
|
||||
orig_latents.shape,
|
||||
dtype=torch.float32,
|
||||
device="cpu",
|
||||
generator=torch.Generator(device="cpu").manual_seed(seed or 0),
|
||||
).to(device=orig_latents.device, dtype=orig_latents.dtype)
|
||||
|
||||
latents = self.scheduler.add_noise(latents, noise, batched_t)
|
||||
latents = torch.lerp(
|
||||
orig_latents, latents.to(dtype=orig_latents.dtype), mask.to(dtype=orig_latents.dtype)
|
||||
)
|
||||
# TODO: debug better with or without Oo
|
||||
if False:
|
||||
# if no noise provided, noisify unmasked area based on seed(or 0 as fallback)
|
||||
if noise is None:
|
||||
noise = torch.randn(
|
||||
orig_latents.shape,
|
||||
dtype=torch.float32,
|
||||
device="cpu",
|
||||
generator=torch.Generator(device="cpu").manual_seed(seed or 0),
|
||||
).to(device=orig_latents.device, dtype=orig_latents.dtype)
|
||||
|
||||
latents = self.scheduler.add_noise(latents, noise, batched_t)
|
||||
latents = torch.lerp(
|
||||
orig_latents, latents.to(dtype=orig_latents.dtype), mask.to(dtype=orig_latents.dtype)
|
||||
)
|
||||
|
||||
additional_guidance.append(AddsMaskGuidance(mask, orig_latents, self.scheduler, noise))
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user