Multiple refinements on loaders:

- Cache stat collection enabled.
- Implemented ONNX loading.
- Add ability to specify the repo version variant in installer CLI.
- If caller asks for a repo version that doesn't exist, will fall back
  to empty version rather than raising an error.
This commit is contained in:
Lincoln Stein 2024-02-05 21:55:11 -05:00
parent 37675ee4f5
commit 531d2c8fd7
18 changed files with 215 additions and 49 deletions

View File

@ -495,10 +495,10 @@ class ModelInstallService(ModelInstallServiceBase):
return id
@staticmethod
def _guess_variant() -> ModelRepoVariant:
def _guess_variant() -> Optional[ModelRepoVariant]:
"""Guess the best HuggingFace variant type to download."""
precision = choose_precision(choose_torch_device())
return ModelRepoVariant.FP16 if precision == "float16" else ModelRepoVariant.DEFAULT
return ModelRepoVariant.FP16 if precision == "float16" else None
def _import_local_model(self, source: LocalModelSource, config: Optional[Dict[str, Any]]) -> ModelInstallJob:
return ModelInstallJob(
@ -523,7 +523,7 @@ class ModelInstallService(ModelInstallServiceBase):
if not source.access_token:
self._logger.info("No HuggingFace access token present; some models may not be downloadable.")
metadata = HuggingFaceMetadataFetch(self._session).from_id(source.repo_id)
metadata = HuggingFaceMetadataFetch(self._session).from_id(source.repo_id, source.variant)
assert isinstance(metadata, ModelMetadataWithFiles)
remote_files = metadata.download_urls(
variant=source.variant or self._guess_variant(),

View File

@ -30,6 +30,7 @@ from invokeai.app.services.shared.sqlite.sqlite_util import init_db
from invokeai.backend.model_manager import (
BaseModelType,
InvalidModelConfigException,
ModelRepoVariant,
ModelType,
)
from invokeai.backend.model_manager.metadata import UnknownMetadataException
@ -233,11 +234,18 @@ class InstallHelper(object):
if model_path.exists(): # local file on disk
return LocalModelSource(path=model_path.absolute(), inplace=True)
if re.match(r"^[^/]+/[^/]+$", model_path_id_or_url): # hugging face repo_id
# parsing huggingface repo ids
# we're going to do a little trick that allows for extended repo_ids of form "foo/bar:fp16"
variants = "|".join([x.lower() for x in ModelRepoVariant.__members__])
if match := re.match(f"^([^/]+/[^/]+?)(?::({variants}))?$", model_path_id_or_url):
repo_id = match.group(1)
repo_variant = ModelRepoVariant(match.group(2)) if match.group(2) else None
return HFModelSource(
repo_id=model_path_id_or_url,
repo_id=repo_id,
access_token=HfFolder.get_token(),
subfolder=model_info.subfolder,
variant=repo_variant,
)
if re.match(r"^(http|https):", model_path_id_or_url):
return URLModelSource(url=AnyHttpUrl(model_path_id_or_url))
@ -278,9 +286,11 @@ class InstallHelper(object):
model_name=model_name,
)
if len(matches) > 1:
print(f"{model} is ambiguous. Please use model_type:model_name (e.g. main:my_model) to disambiguate.")
print(
f"{model_to_remove} is ambiguous. Please use model_base/model_type/model_name (e.g. sd-1/main/my_model) to disambiguate."
)
elif not matches:
print(f"{model}: unknown model")
print(f"{model_to_remove}: unknown model")
else:
for m in matches:
print(f"Deleting {m.type}:{m.name}")

View File

@ -109,7 +109,7 @@ class SchedulerPredictionType(str, Enum):
class ModelRepoVariant(str, Enum):
"""Various hugging face variants on the diffusers format."""
DEFAULT = "default" # model files without "fp16" or other qualifier
DEFAULT = "" # model files without "fp16" or other qualifier - empty str
FP16 = "fp16"
FP32 = "fp32"
ONNX = "onnx"
@ -246,6 +246,16 @@ class ONNXSD2Config(_MainConfig):
upcast_attention: bool = True
class ONNXSDXLConfig(_MainConfig):
"""Model config for ONNX format models based on sdxl."""
type: Literal[ModelType.ONNX] = ModelType.ONNX
format: Literal[ModelFormat.Onnx, ModelFormat.Olive]
# No yaml config file for ONNX, so these are part of config
base: Literal[BaseModelType.StableDiffusionXL] = BaseModelType.StableDiffusionXL
prediction_type: SchedulerPredictionType = SchedulerPredictionType.VPrediction
class IPAdapterConfig(ModelConfigBase):
"""Model config for IP Adaptor format models."""
@ -267,7 +277,7 @@ class T2IConfig(ModelConfigBase):
format: Literal[ModelFormat.Diffusers]
_ONNXConfig = Annotated[Union[ONNXSD1Config, ONNXSD2Config], Field(discriminator="base")]
_ONNXConfig = Annotated[Union[ONNXSD1Config, ONNXSD2Config, ONNXSDXLConfig], Field(discriminator="base")]
_ControlNetConfig = Annotated[
Union[ControlNetDiffusersConfig, ControlNetCheckpointConfig],
Field(discriminator="format"),

View File

@ -16,7 +16,6 @@ from .model_cache.model_cache_default import ModelCache
# This registers the subclasses that implement loaders of specific model types
loaders = [x.stem for x in Path(Path(__file__).parent, "model_loaders").glob("*.py") if x.stem != "__init__"]
for module in loaders:
print(f"module={module}")
import_module(f"{__package__}.model_loaders.{module}")
__all__ = ["AnyModelLoader", "LoadedModel"]

View File

@ -22,6 +22,7 @@ from invokeai.backend.model_manager import AnyModel, AnyModelConfig, BaseModelTy
from invokeai.backend.model_manager.config import VaeCheckpointConfig, VaeDiffusersConfig
from invokeai.backend.model_manager.load.convert_cache.convert_cache_base import ModelConvertCacheBase
from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase, ModelLockerBase
from invokeai.backend.util.logging import InvokeAILogger
@dataclass
@ -88,6 +89,7 @@ class AnyModelLoader:
# this tracks the loader subclasses
_registry: Dict[str, Type[ModelLoaderBase]] = {}
_logger: Logger = InvokeAILogger.get_logger()
def __init__(
self,
@ -167,7 +169,7 @@ class AnyModelLoader:
"""Define a decorator which registers the subclass of loader."""
def decorator(subclass: Type[ModelLoaderBase]) -> Type[ModelLoaderBase]:
print("DEBUG: Registering class", subclass.__name__)
cls._logger.debug(f"Registering class {subclass.__name__} to load models of type {base}/{type}/{format}")
key = cls._to_registry_key(base, type, format)
cls._registry[key] = subclass
return subclass

View File

@ -52,7 +52,7 @@ class ModelLoader(ModelLoaderBase):
self._logger = logger
self._ram_cache = ram_cache
self._convert_cache = convert_cache
self._torch_dtype = torch_dtype(choose_torch_device())
self._torch_dtype = torch_dtype(choose_torch_device(), app_config)
def load_model(self, model_config: AnyModelConfig, submodel_type: Optional[SubModelType] = None) -> LoadedModel:
"""
@ -102,8 +102,10 @@ class ModelLoader(ModelLoaderBase):
self, config: AnyModelConfig, model_path: Path, submodel_type: Optional[SubModelType] = None
) -> ModelLockerBase:
# TO DO: This is not thread safe!
if self._ram_cache.exists(config.key, submodel_type):
try:
return self._ram_cache.get(config.key, submodel_type)
except IndexError:
pass
model_variant = getattr(config, "repo_variant", None)
self._ram_cache.make_room(self.get_size_fs(config, model_path, submodel_type))
@ -119,7 +121,11 @@ class ModelLoader(ModelLoaderBase):
size=calc_model_size_by_data(loaded_model),
)
return self._ram_cache.get(config.key, submodel_type)
return self._ram_cache.get(
key=config.key,
submodel_type=submodel_type,
stats_name=":".join([config.base, config.type, config.name, (submodel_type or "")]),
)
def get_size_fs(
self, config: AnyModelConfig, model_path: Path, submodel_type: Optional[SubModelType] = None
@ -146,13 +152,21 @@ class ModelLoader(ModelLoaderBase):
# TO DO: Add exception handling
def _get_hf_load_class(self, model_path: Path, submodel_type: Optional[SubModelType] = None) -> ModelMixin:
if submodel_type:
config = self._load_diffusers_config(model_path, config_name="model_index.json")
module, class_name = config[submodel_type.value]
return self._hf_definition_to_type(module=module, class_name=class_name)
try:
config = self._load_diffusers_config(model_path, config_name="model_index.json")
module, class_name = config[submodel_type.value]
return self._hf_definition_to_type(module=module, class_name=class_name)
except KeyError as e:
raise InvalidModelConfigException(
f'The "{submodel_type}" submodel is not available for this model.'
) from e
else:
config = self._load_diffusers_config(model_path, config_name="config.json")
class_name = config["_class_name"]
return self._hf_definition_to_type(module="diffusers", class_name=class_name)
try:
config = self._load_diffusers_config(model_path, config_name="config.json")
class_name = config["_class_name"]
return self._hf_definition_to_type(module="diffusers", class_name=class_name)
except KeyError as e:
raise InvalidModelConfigException("An expected config.json file is missing from this model.") from e
# This needs to be implemented in subclasses that handle checkpoints
def _convert_model(self, config: AnyModelConfig, weights_path: Path, output_path: Path) -> Path:

View File

@ -1,3 +1,4 @@
"""Init file for RamCache."""
"""Init file for ModelCache."""
_all__ = ["ModelCacheBase", "ModelCache"]

View File

@ -129,11 +129,17 @@ class ModelCacheBase(ABC, Generic[T]):
self,
key: str,
submodel_type: Optional[SubModelType] = None,
stats_name: Optional[str] = None,
) -> ModelLockerBase:
"""
Retrieve model locker object using key and optional submodel_type.
Retrieve model using key and optional submodel_type.
This may return an UnknownModelException if the model is not in the cache.
:param key: Opaque model key
:param submodel_type: Type of the submodel to fetch
:param stats_name: A human-readable id for the model for the purposes of
stats reporting.
This may raise an IndexError if the model is not in the cache.
"""
pass

View File

@ -24,6 +24,7 @@ import math
import sys
import time
from contextlib import suppress
from dataclasses import dataclass, field
from logging import Logger
from typing import Dict, List, Optional
@ -55,6 +56,20 @@ GIG = 1073741824
MB = 2**20
@dataclass
class CacheStats(object):
"""Collect statistics on cache performance."""
hits: int = 0 # cache hits
misses: int = 0 # cache misses
high_watermark: int = 0 # amount of cache used
in_cache: int = 0 # number of models in cache
cleared: int = 0 # number of models cleared to make space
cache_size: int = 0 # total size of cache
# {submodel_key => size}
loaded_model_sizes: Dict[str, int] = field(default_factory=dict)
class ModelCache(ModelCacheBase[AnyModel]):
"""Implementation of ModelCacheBase."""
@ -94,6 +109,8 @@ class ModelCache(ModelCacheBase[AnyModel]):
self._storage_device: torch.device = storage_device
self._logger = logger or InvokeAILogger.get_logger(self.__class__.__name__)
self._log_memory_usage = log_memory_usage or self._logger.level == logging.DEBUG
# used for stats collection
self.stats = CacheStats()
self._cached_models: Dict[str, CacheRecord[AnyModel]] = {}
self._cache_stack: List[str] = []
@ -158,21 +175,40 @@ class ModelCache(ModelCacheBase[AnyModel]):
self,
key: str,
submodel_type: Optional[SubModelType] = None,
stats_name: Optional[str] = None,
) -> ModelLockerBase:
"""
Retrieve model using key and optional submodel_type.
This may return an IndexError if the model is not in the cache.
:param key: Opaque model key
:param submodel_type: Type of the submodel to fetch
:param stats_name: A human-readable id for the model for the purposes of
stats reporting.
This may raise an IndexError if the model is not in the cache.
"""
key = self._make_cache_key(key, submodel_type)
if key not in self._cached_models:
if key in self._cached_models:
self.stats.hits += 1
else:
self.stats.misses += 1
raise IndexError(f"The model with key {key} is not in the cache.")
cache_entry = self._cached_models[key]
# more stats
stats_name = stats_name or key
self.stats.cache_size = int(self._max_cache_size * GIG)
self.stats.high_watermark = max(self.stats.high_watermark, self.cache_size())
self.stats.in_cache = len(self._cached_models)
self.stats.loaded_model_sizes[stats_name] = max(
self.stats.loaded_model_sizes.get(stats_name, 0), cache_entry.size
)
# this moves the entry to the top (right end) of the stack
with suppress(Exception):
self._cache_stack.remove(key)
self._cache_stack.append(key)
cache_entry = self._cached_models[key]
return ModelLocker(
cache=self,
cache_entry=cache_entry,

View File

@ -0,0 +1,41 @@
# Copyright (c) 2024, Lincoln D. Stein and the InvokeAI Development Team
"""Class for Onnx model loading in InvokeAI."""
# This should work the same as Stable Diffusion pipelines
from pathlib import Path
from typing import Optional
from invokeai.backend.model_manager import (
AnyModel,
BaseModelType,
ModelFormat,
ModelRepoVariant,
ModelType,
SubModelType,
)
from invokeai.backend.model_manager.load.load_base import AnyModelLoader
from invokeai.backend.model_manager.load.load_default import ModelLoader
@AnyModelLoader.register(base=BaseModelType.Any, type=ModelType.ONNX, format=ModelFormat.Onnx)
@AnyModelLoader.register(base=BaseModelType.Any, type=ModelType.ONNX, format=ModelFormat.Olive)
class OnnyxDiffusersModel(ModelLoader):
"""Class to load onnx models."""
def _load_model(
self,
model_path: Path,
model_variant: Optional[ModelRepoVariant] = None,
submodel_type: Optional[SubModelType] = None,
) -> AnyModel:
if not submodel_type is not None:
raise Exception("A submodel type must be provided when loading onnx pipelines.")
load_class = self._get_hf_load_class(model_path, submodel_type)
variant = model_variant.value if model_variant else None
model_path = model_path / submodel_type.value
result: AnyModel = load_class.from_pretrained(
model_path,
torch_dtype=self._torch_dtype,
variant=variant,
) # type: ignore
return result

View File

@ -32,6 +32,8 @@ import requests
from pydantic.networks import AnyHttpUrl
from requests.sessions import Session
from invokeai.backend.model_manager import ModelRepoVariant
from ..metadata_base import (
AnyModelRepoMetadata,
CivitaiMetadata,
@ -82,10 +84,13 @@ class CivitaiMetadataFetch(ModelMetadataFetchBase):
return self.from_civitai_versionid(int(version_id))
raise UnknownMetadataException("The url '{url}' does not match any known Civitai URL patterns")
def from_id(self, id: str) -> AnyModelRepoMetadata:
def from_id(self, id: str, variant: Optional[ModelRepoVariant] = None) -> AnyModelRepoMetadata:
"""
Given a Civitai model version ID, return a ModelRepoMetadata object.
:param id: An ID.
:param variant: A model variant from the ModelRepoVariant enum (currently ignored)
May raise an `UnknownMetadataException`.
"""
return self.from_civitai_versionid(int(id))

View File

@ -18,6 +18,8 @@ from typing import Optional
from pydantic.networks import AnyHttpUrl
from requests.sessions import Session
from invokeai.backend.model_manager import ModelRepoVariant
from ..metadata_base import AnyModelRepoMetadata, AnyModelRepoMetadataValidator
@ -45,10 +47,13 @@ class ModelMetadataFetchBase(ABC):
pass
@abstractmethod
def from_id(self, id: str) -> AnyModelRepoMetadata:
def from_id(self, id: str, variant: Optional[ModelRepoVariant] = None) -> AnyModelRepoMetadata:
"""
Given an ID for a model, return a ModelMetadata object.
:param id: An ID.
:param variant: A model variant from the ModelRepoVariant enum.
This method will raise a `UnknownMetadataException`
in the event that the requested model's metadata is not found at the provided id.
"""

View File

@ -19,10 +19,12 @@ from typing import Optional
import requests
from huggingface_hub import HfApi, configure_http_backend, hf_hub_url
from huggingface_hub.utils._errors import RepositoryNotFoundError
from huggingface_hub.utils._errors import RepositoryNotFoundError, RevisionNotFoundError
from pydantic.networks import AnyHttpUrl
from requests.sessions import Session
from invokeai.backend.model_manager import ModelRepoVariant
from ..metadata_base import (
AnyModelRepoMetadata,
HuggingFaceMetadata,
@ -53,12 +55,22 @@ class HuggingFaceMetadataFetch(ModelMetadataFetchBase):
metadata = HuggingFaceMetadata.model_validate_json(json)
return metadata
def from_id(self, id: str) -> AnyModelRepoMetadata:
def from_id(self, id: str, variant: Optional[ModelRepoVariant] = None) -> AnyModelRepoMetadata:
"""Return a HuggingFaceMetadata object given the model's repo_id."""
try:
model_info = HfApi().model_info(repo_id=id, files_metadata=True)
except RepositoryNotFoundError as excp:
raise UnknownMetadataException(f"'{id}' not found. See trace for details.") from excp
# Little loop which tries fetching a revision corresponding to the selected variant.
# If not available, then set variant to None and get the default.
# If this too fails, raise exception.
model_info = None
while not model_info:
try:
model_info = HfApi().model_info(repo_id=id, files_metadata=True, revision=variant)
except RepositoryNotFoundError as excp:
raise UnknownMetadataException(f"'{id}' not found. See trace for details.") from excp
except RevisionNotFoundError:
if variant is None:
raise
else:
variant = None
_, name = id.split("/")
return HuggingFaceMetadata(
@ -70,7 +82,7 @@ class HuggingFaceMetadataFetch(ModelMetadataFetchBase):
tags=model_info.tags,
files=[
RemoteModelFile(
url=hf_hub_url(id, x.rfilename),
url=hf_hub_url(id, x.rfilename, revision=variant),
path=Path(name, x.rfilename),
size=x.size,
sha256=x.lfs.get("sha256") if x.lfs else None,

View File

@ -184,7 +184,6 @@ class HuggingFaceMetadata(ModelMetadataWithFiles):
[x.path for x in self.files], variant, subfolder
) # all files in the model
prefix = f"{subfolder}/" if subfolder else ""
# the next step reads model_index.json to determine which subdirectories belong
# to the model
if Path(f"{prefix}model_index.json") in paths:

View File

@ -7,6 +7,7 @@ import safetensors.torch
import torch
from picklescan.scanner import scan_file_path
import invokeai.backend.util.logging as logger
from invokeai.backend.model_management.models.base import read_checkpoint_meta
from invokeai.backend.model_management.models.ip_adapter import IPAdapterModelFormat
from invokeai.backend.model_management.util import lora_token_vector_length
@ -590,13 +591,20 @@ class TextualInversionFolderProbe(FolderProbeBase):
return TextualInversionCheckpointProbe(path).get_base_type()
class ONNXFolderProbe(FolderProbeBase):
class ONNXFolderProbe(PipelineFolderProbe):
def get_base_type(self) -> BaseModelType:
# Due to the way the installer is set up, the configuration file for safetensors
# will come along for the ride if both the onnx and safetensors forms
# share the same directory. We take advantage of this here.
if (self.model_path / "unet" / "config.json").exists():
return super().get_base_type()
else:
logger.warning('Base type probing is not implemented for ONNX models. Assuming "sd-1"')
return BaseModelType.StableDiffusion1
def get_format(self) -> ModelFormat:
return ModelFormat("onnx")
def get_base_type(self) -> BaseModelType:
return BaseModelType.StableDiffusion1
def get_variant_type(self) -> ModelVariantType:
return ModelVariantType.Normal

View File

@ -41,13 +41,21 @@ def filter_files(
for file in files:
if file.name.endswith((".json", ".txt")):
paths.append(file)
elif file.name.endswith(("learned_embeds.bin", "ip_adapter.bin", "lora_weights.safetensors")):
elif file.name.endswith(
(
"learned_embeds.bin",
"ip_adapter.bin",
"lora_weights.safetensors",
"weights.pb",
"onnx_data",
)
):
paths.append(file)
# BRITTLENESS WARNING!!
# Diffusers models always seem to have "model" in their name, and the regex filter below is applied to avoid
# downloading random checkpoints that might also be in the repo. However there is no guarantee
# that a checkpoint doesn't contain "model" in its name, and no guarantee that future diffusers models
# will adhere to this naming convention, so this is an area of brittleness.
# will adhere to this naming convention, so this is an area to be careful of.
elif re.search(r"model(\.[^.]+)?\.(safetensors|bin|onnx|xml|pth|pt|ckpt|msgpack)$", file.name):
paths.append(file)
@ -64,7 +72,7 @@ def _filter_by_variant(files: List[Path], variant: ModelRepoVariant) -> Set[Path
result = set()
basenames: Dict[Path, Path] = {}
for path in files:
if path.suffix == ".onnx":
if path.suffix in [".onnx", ".pb", ".onnx_data"]:
if variant == ModelRepoVariant.ONNX:
result.add(path)

View File

@ -29,12 +29,17 @@ def choose_torch_device() -> torch.device:
return torch.device(config.device)
def choose_precision(device: torch.device) -> str:
"""Returns an appropriate precision for the given torch device"""
# We are in transition here from using a single global AppConfig to allowing multiple
# configurations. It is strongly recommended to pass the app_config to this function.
def choose_precision(device: torch.device, app_config: Optional[InvokeAIAppConfig] = None) -> str:
"""Return an appropriate precision for the given torch device."""
app_config = app_config or config
if device.type == "cuda":
device_name = torch.cuda.get_device_name(device)
if not ("GeForce GTX 1660" in device_name or "GeForce GTX 1650" in device_name):
if config.precision == "bfloat16":
if app_config.precision == "float32":
return "float32"
elif app_config.precision == "bfloat16":
return "bfloat16"
else:
return "float16"
@ -43,9 +48,14 @@ def choose_precision(device: torch.device) -> str:
return "float32"
def torch_dtype(device: Optional[torch.device] = None) -> torch.dtype:
# We are in transition here from using a single global AppConfig to allowing multiple
# configurations. It is strongly recommended to pass the app_config to this function.
def torch_dtype(
device: Optional[torch.device] = None,
app_config: Optional[InvokeAIAppConfig] = None,
) -> torch.dtype:
device = device or choose_torch_device()
precision = choose_precision(device)
precision = choose_precision(device, app_config)
if precision == "float16":
return torch.float16
if precision == "bfloat16":

View File

@ -505,7 +505,7 @@ def list_models(installer: ModelInstallService, model_type: ModelType):
print(f"Installed models of type `{model_type}`:")
for model in models:
path = (config.models_path / model.path).resolve()
print(f"{model.name:40}{model.base.value:14}{path}")
print(f"{model.name:40}{model.base.value:5}{model.type.value:8}{model.format.value:12}{path}")
# --------------------------------------------------------