mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
fix: Update DepthAnything to use the transformers implementation
This commit is contained in:
parent
e5d9ca013e
commit
556c6a1d84
@ -2,7 +2,6 @@
|
|||||||
# initial implementation by Gregg Helt, 2023
|
# initial implementation by Gregg Helt, 2023
|
||||||
# heavily leverages controlnet_aux package: https://github.com/patrickvonplaten/controlnet_aux
|
# heavily leverages controlnet_aux package: https://github.com/patrickvonplaten/controlnet_aux
|
||||||
from builtins import bool, float
|
from builtins import bool, float
|
||||||
from pathlib import Path
|
|
||||||
from typing import Dict, List, Literal, Union
|
from typing import Dict, List, Literal, Union
|
||||||
|
|
||||||
import cv2
|
import cv2
|
||||||
@ -21,6 +20,7 @@ from controlnet_aux import (
|
|||||||
from controlnet_aux.util import HWC3, ade_palette
|
from controlnet_aux.util import HWC3, ade_palette
|
||||||
from PIL import Image
|
from PIL import Image
|
||||||
from pydantic import BaseModel, Field, field_validator, model_validator
|
from pydantic import BaseModel, Field, field_validator, model_validator
|
||||||
|
from transformers import pipeline
|
||||||
|
|
||||||
from invokeai.app.invocations.baseinvocation import (
|
from invokeai.app.invocations.baseinvocation import (
|
||||||
BaseInvocation,
|
BaseInvocation,
|
||||||
@ -44,13 +44,11 @@ from invokeai.app.invocations.util import validate_begin_end_step, validate_weig
|
|||||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||||
from invokeai.app.util.controlnet_utils import CONTROLNET_MODE_VALUES, CONTROLNET_RESIZE_VALUES, heuristic_resize
|
from invokeai.app.util.controlnet_utils import CONTROLNET_MODE_VALUES, CONTROLNET_RESIZE_VALUES, heuristic_resize
|
||||||
from invokeai.backend.image_util.canny import get_canny_edges
|
from invokeai.backend.image_util.canny import get_canny_edges
|
||||||
from invokeai.backend.image_util.depth_anything import DEPTH_ANYTHING_MODELS, DepthAnythingDetector
|
|
||||||
from invokeai.backend.image_util.dw_openpose import DWPOSE_MODELS, DWOpenposeDetector
|
from invokeai.backend.image_util.dw_openpose import DWPOSE_MODELS, DWOpenposeDetector
|
||||||
from invokeai.backend.image_util.hed import HEDProcessor
|
from invokeai.backend.image_util.hed import HEDProcessor
|
||||||
from invokeai.backend.image_util.lineart import LineartProcessor
|
from invokeai.backend.image_util.lineart import LineartProcessor
|
||||||
from invokeai.backend.image_util.lineart_anime import LineartAnimeProcessor
|
from invokeai.backend.image_util.lineart_anime import LineartAnimeProcessor
|
||||||
from invokeai.backend.image_util.util import np_to_pil, pil_to_np
|
from invokeai.backend.image_util.util import np_to_pil, pil_to_np
|
||||||
from invokeai.backend.util.devices import TorchDevice
|
|
||||||
|
|
||||||
|
|
||||||
class ControlField(BaseModel):
|
class ControlField(BaseModel):
|
||||||
@ -593,6 +591,11 @@ class ColorMapImageProcessorInvocation(ImageProcessorInvocation):
|
|||||||
|
|
||||||
|
|
||||||
DEPTH_ANYTHING_MODEL_SIZES = Literal["large", "base", "small"]
|
DEPTH_ANYTHING_MODEL_SIZES = Literal["large", "base", "small"]
|
||||||
|
DEPTH_ANYTHING_MODELS = {
|
||||||
|
"large": "LiheYoung/depth-anything-large-hf",
|
||||||
|
"base": "LiheYoung/depth-anything-base-hf",
|
||||||
|
"small": "depth-anything/Depth-Anything-V2-Small-hf",
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
@invocation(
|
@invocation(
|
||||||
@ -600,7 +603,7 @@ DEPTH_ANYTHING_MODEL_SIZES = Literal["large", "base", "small"]
|
|||||||
title="Depth Anything Processor",
|
title="Depth Anything Processor",
|
||||||
tags=["controlnet", "depth", "depth anything"],
|
tags=["controlnet", "depth", "depth anything"],
|
||||||
category="controlnet",
|
category="controlnet",
|
||||||
version="1.1.2",
|
version="1.1.3",
|
||||||
)
|
)
|
||||||
class DepthAnythingImageProcessorInvocation(ImageProcessorInvocation):
|
class DepthAnythingImageProcessorInvocation(ImageProcessorInvocation):
|
||||||
"""Generates a depth map based on the Depth Anything algorithm"""
|
"""Generates a depth map based on the Depth Anything algorithm"""
|
||||||
@ -611,17 +614,9 @@ class DepthAnythingImageProcessorInvocation(ImageProcessorInvocation):
|
|||||||
resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
|
resolution: int = InputField(default=512, ge=1, description=FieldDescriptions.image_res)
|
||||||
|
|
||||||
def run_processor(self, image: Image.Image) -> Image.Image:
|
def run_processor(self, image: Image.Image) -> Image.Image:
|
||||||
def loader(model_path: Path):
|
depth_anything_pipeline = pipeline(task="depth-estimation", model=DEPTH_ANYTHING_MODELS[self.model_size])
|
||||||
return DepthAnythingDetector.load_model(
|
depth_map = depth_anything_pipeline(image)["depth"]
|
||||||
model_path, model_size=self.model_size, device=TorchDevice.choose_torch_device()
|
return depth_map
|
||||||
)
|
|
||||||
|
|
||||||
with self._context.models.load_remote_model(
|
|
||||||
source=DEPTH_ANYTHING_MODELS[self.model_size], loader=loader
|
|
||||||
) as model:
|
|
||||||
depth_anything_detector = DepthAnythingDetector(model, TorchDevice.choose_torch_device())
|
|
||||||
processed_image = depth_anything_detector(image=image, resolution=self.resolution)
|
|
||||||
return processed_image
|
|
||||||
|
|
||||||
|
|
||||||
@invocation(
|
@invocation(
|
||||||
|
@ -1,65 +0,0 @@
|
|||||||
from pathlib import Path
|
|
||||||
from typing import Literal
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
import torch
|
|
||||||
from einops import repeat
|
|
||||||
from PIL import Image
|
|
||||||
|
|
||||||
from invokeai.app.services.config.config_default import get_config
|
|
||||||
from invokeai.backend.image_util.depth_anything.v2.dpt import DepthAnythingV2
|
|
||||||
from invokeai.backend.util.logging import InvokeAILogger
|
|
||||||
|
|
||||||
config = get_config()
|
|
||||||
logger = InvokeAILogger.get_logger(config=config)
|
|
||||||
|
|
||||||
DEPTH_ANYTHING_MODELS = {
|
|
||||||
"large": "https://huggingface.co/spaces/LiheYoung/Depth-Anything/resolve/main/checkpoints/depth_anything_vitl14.pth?download=true",
|
|
||||||
"base": "https://huggingface.co/spaces/LiheYoung/Depth-Anything/resolve/main/checkpoints/depth_anything_vitb14.pth?download=true",
|
|
||||||
"small": "https://huggingface.co/depth-anything/Depth-Anything-V2-Small/resolve/main/depth_anything_v2_vits.pth?download=true",
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
class DepthAnythingDetector:
|
|
||||||
def __init__(self, model: DepthAnythingV2, device: torch.device) -> None:
|
|
||||||
self.model = model
|
|
||||||
self.device = device
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def load_model(
|
|
||||||
model_path: Path, device: torch.device, model_size: Literal["large", "base", "small", "giant"] = "small"
|
|
||||||
) -> DepthAnythingV2:
|
|
||||||
match model_size:
|
|
||||||
case "small":
|
|
||||||
model = DepthAnythingV2(encoder="vits", features=64, out_channels=[48, 96, 192, 384])
|
|
||||||
case "base":
|
|
||||||
model = DepthAnythingV2(encoder="vitb", features=128, out_channels=[96, 192, 384, 768])
|
|
||||||
case "large":
|
|
||||||
model = DepthAnythingV2(encoder="vitl", features=256, out_channels=[256, 512, 1024, 1024])
|
|
||||||
case "giant":
|
|
||||||
model = DepthAnythingV2(encoder="vitg", features=384, out_channels=[1536, 1536, 1536, 1536])
|
|
||||||
|
|
||||||
model.load_state_dict(torch.load(model_path.as_posix(), map_location="cpu"))
|
|
||||||
model.eval()
|
|
||||||
model.to(device)
|
|
||||||
return model
|
|
||||||
|
|
||||||
def __call__(self, image: Image.Image, resolution: int = 512) -> Image.Image:
|
|
||||||
if not self.model:
|
|
||||||
logger.warn("DepthAnything model was not loaded. Returning original image")
|
|
||||||
return image
|
|
||||||
|
|
||||||
np_image = np.array(image, dtype=np.uint8)
|
|
||||||
image_height, image_width = np_image.shape[:2]
|
|
||||||
|
|
||||||
with torch.no_grad():
|
|
||||||
depth = self.model.infer_image(np_image)
|
|
||||||
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
|
|
||||||
|
|
||||||
depth_map = repeat(depth, "h w -> h w 3").astype(np.uint8)
|
|
||||||
depth_map = Image.fromarray(depth_map)
|
|
||||||
|
|
||||||
new_height = int(image_height * (resolution / image_width))
|
|
||||||
depth_map = depth_map.resize((resolution, new_height))
|
|
||||||
|
|
||||||
return depth_map
|
|
@ -1,147 +0,0 @@
|
|||||||
# Referenced from: https://github.com/DepthAnything/Depth-Anything-V2/blob/main/depth_anything_v2/util/blocks.py
|
|
||||||
|
|
||||||
import torch.nn as nn
|
|
||||||
|
|
||||||
|
|
||||||
def _make_scratch(in_shape, out_shape, groups=1, expand=False):
|
|
||||||
scratch = nn.Module()
|
|
||||||
|
|
||||||
out_shape1 = out_shape
|
|
||||||
out_shape2 = out_shape
|
|
||||||
out_shape3 = out_shape
|
|
||||||
if len(in_shape) >= 4:
|
|
||||||
out_shape4 = out_shape
|
|
||||||
|
|
||||||
if expand:
|
|
||||||
out_shape1 = out_shape
|
|
||||||
out_shape2 = out_shape * 2
|
|
||||||
out_shape3 = out_shape * 4
|
|
||||||
if len(in_shape) >= 4:
|
|
||||||
out_shape4 = out_shape * 8
|
|
||||||
|
|
||||||
scratch.layer1_rn = nn.Conv2d(
|
|
||||||
in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
|
|
||||||
)
|
|
||||||
scratch.layer2_rn = nn.Conv2d(
|
|
||||||
in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
|
|
||||||
)
|
|
||||||
scratch.layer3_rn = nn.Conv2d(
|
|
||||||
in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
|
|
||||||
)
|
|
||||||
if len(in_shape) >= 4:
|
|
||||||
scratch.layer4_rn = nn.Conv2d(
|
|
||||||
in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
|
|
||||||
)
|
|
||||||
|
|
||||||
return scratch
|
|
||||||
|
|
||||||
|
|
||||||
class ResidualConvUnit(nn.Module):
|
|
||||||
"""Residual convolution module."""
|
|
||||||
|
|
||||||
def __init__(self, features, activation, bn):
|
|
||||||
"""Init.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
features (int): number of features
|
|
||||||
"""
|
|
||||||
super().__init__()
|
|
||||||
|
|
||||||
self.bn = bn
|
|
||||||
|
|
||||||
self.groups = 1
|
|
||||||
|
|
||||||
self.conv1 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups)
|
|
||||||
|
|
||||||
self.conv2 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups)
|
|
||||||
|
|
||||||
if self.bn:
|
|
||||||
self.bn1 = nn.BatchNorm2d(features)
|
|
||||||
self.bn2 = nn.BatchNorm2d(features)
|
|
||||||
|
|
||||||
self.activation = activation
|
|
||||||
|
|
||||||
self.skip_add = nn.quantized.FloatFunctional()
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
"""Forward pass.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
x (tensor): input
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
tensor: output
|
|
||||||
"""
|
|
||||||
|
|
||||||
out = self.activation(x)
|
|
||||||
out = self.conv1(out)
|
|
||||||
if self.bn:
|
|
||||||
out = self.bn1(out)
|
|
||||||
|
|
||||||
out = self.activation(out)
|
|
||||||
out = self.conv2(out)
|
|
||||||
if self.bn:
|
|
||||||
out = self.bn2(out)
|
|
||||||
|
|
||||||
if self.groups > 1:
|
|
||||||
out = self.conv_merge(out)
|
|
||||||
|
|
||||||
return self.skip_add.add(out, x)
|
|
||||||
|
|
||||||
|
|
||||||
class FeatureFusionBlock(nn.Module):
|
|
||||||
"""Feature fusion block."""
|
|
||||||
|
|
||||||
def __init__(self, features, activation, deconv=False, bn=False, expand=False, align_corners=True, size=None):
|
|
||||||
"""Init.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
features (int): number of features
|
|
||||||
"""
|
|
||||||
super(FeatureFusionBlock, self).__init__()
|
|
||||||
|
|
||||||
self.deconv = deconv
|
|
||||||
self.align_corners = align_corners
|
|
||||||
|
|
||||||
self.groups = 1
|
|
||||||
|
|
||||||
self.expand = expand
|
|
||||||
out_features = features
|
|
||||||
if self.expand:
|
|
||||||
out_features = features // 2
|
|
||||||
|
|
||||||
self.out_conv = nn.Conv2d(features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1)
|
|
||||||
|
|
||||||
self.resConfUnit1 = ResidualConvUnit(features, activation, bn)
|
|
||||||
self.resConfUnit2 = ResidualConvUnit(features, activation, bn)
|
|
||||||
|
|
||||||
self.skip_add = nn.quantized.FloatFunctional()
|
|
||||||
|
|
||||||
self.size = size
|
|
||||||
|
|
||||||
def forward(self, *xs, size=None):
|
|
||||||
"""Forward pass.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
tensor: output
|
|
||||||
"""
|
|
||||||
output = xs[0]
|
|
||||||
|
|
||||||
if len(xs) == 2:
|
|
||||||
res = self.resConfUnit1(xs[1])
|
|
||||||
output = self.skip_add.add(output, res)
|
|
||||||
|
|
||||||
output = self.resConfUnit2(output)
|
|
||||||
|
|
||||||
if (size is None) and (self.size is None):
|
|
||||||
modifier = {"scale_factor": 2}
|
|
||||||
elif size is None:
|
|
||||||
modifier = {"size": self.size}
|
|
||||||
else:
|
|
||||||
modifier = {"size": size}
|
|
||||||
|
|
||||||
output = nn.functional.interpolate(output, **modifier, mode="bilinear", align_corners=self.align_corners)
|
|
||||||
|
|
||||||
output = self.out_conv(output)
|
|
||||||
|
|
||||||
return output
|
|
@ -1,159 +0,0 @@
|
|||||||
# Referenced from: https://github.com/DepthAnything/Depth-Anything-V2/blob/main/depth_anything_v2/util/transform.py
|
|
||||||
|
|
||||||
import cv2
|
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
|
|
||||||
class Resize(object):
|
|
||||||
"""Resize sample to given size (width, height)."""
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
width,
|
|
||||||
height,
|
|
||||||
resize_target=True,
|
|
||||||
keep_aspect_ratio=False,
|
|
||||||
ensure_multiple_of=1,
|
|
||||||
resize_method="lower_bound",
|
|
||||||
image_interpolation_method=cv2.INTER_AREA,
|
|
||||||
):
|
|
||||||
"""Init.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
width (int): desired output width
|
|
||||||
height (int): desired output height
|
|
||||||
resize_target (bool, optional):
|
|
||||||
True: Resize the full sample (image, mask, target).
|
|
||||||
False: Resize image only.
|
|
||||||
Defaults to True.
|
|
||||||
keep_aspect_ratio (bool, optional):
|
|
||||||
True: Keep the aspect ratio of the input sample.
|
|
||||||
Output sample might not have the given width and height, and
|
|
||||||
resize behaviour depends on the parameter 'resize_method'.
|
|
||||||
Defaults to False.
|
|
||||||
ensure_multiple_of (int, optional):
|
|
||||||
Output width and height is constrained to be multiple of this parameter.
|
|
||||||
Defaults to 1.
|
|
||||||
resize_method (str, optional):
|
|
||||||
"lower_bound": Output will be at least as large as the given size.
|
|
||||||
"upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.)
|
|
||||||
"minimal": Scale as least as possible. (Output size might be smaller than given size.)
|
|
||||||
Defaults to "lower_bound".
|
|
||||||
"""
|
|
||||||
self.__width = width
|
|
||||||
self.__height = height
|
|
||||||
|
|
||||||
self.__resize_target = resize_target
|
|
||||||
self.__keep_aspect_ratio = keep_aspect_ratio
|
|
||||||
self.__multiple_of = ensure_multiple_of
|
|
||||||
self.__resize_method = resize_method
|
|
||||||
self.__image_interpolation_method = image_interpolation_method
|
|
||||||
|
|
||||||
def constrain_to_multiple_of(self, x, min_val=0, max_val=None):
|
|
||||||
y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int)
|
|
||||||
|
|
||||||
if max_val is not None and y > max_val:
|
|
||||||
y = (np.floor(x / self.__multiple_of) * self.__multiple_of).astype(int)
|
|
||||||
|
|
||||||
if y < min_val:
|
|
||||||
y = (np.ceil(x / self.__multiple_of) * self.__multiple_of).astype(int)
|
|
||||||
|
|
||||||
return y
|
|
||||||
|
|
||||||
def get_size(self, width, height):
|
|
||||||
# determine new height and width
|
|
||||||
scale_height = self.__height / height
|
|
||||||
scale_width = self.__width / width
|
|
||||||
|
|
||||||
if self.__keep_aspect_ratio:
|
|
||||||
if self.__resize_method == "lower_bound":
|
|
||||||
# scale such that output size is lower bound
|
|
||||||
if scale_width > scale_height:
|
|
||||||
# fit width
|
|
||||||
scale_height = scale_width
|
|
||||||
else:
|
|
||||||
# fit height
|
|
||||||
scale_width = scale_height
|
|
||||||
elif self.__resize_method == "upper_bound":
|
|
||||||
# scale such that output size is upper bound
|
|
||||||
if scale_width < scale_height:
|
|
||||||
# fit width
|
|
||||||
scale_height = scale_width
|
|
||||||
else:
|
|
||||||
# fit height
|
|
||||||
scale_width = scale_height
|
|
||||||
elif self.__resize_method == "minimal":
|
|
||||||
# scale as least as possbile
|
|
||||||
if abs(1 - scale_width) < abs(1 - scale_height):
|
|
||||||
# fit width
|
|
||||||
scale_height = scale_width
|
|
||||||
else:
|
|
||||||
# fit height
|
|
||||||
scale_width = scale_height
|
|
||||||
else:
|
|
||||||
raise ValueError(f"resize_method {self.__resize_method} not implemented")
|
|
||||||
|
|
||||||
if self.__resize_method == "lower_bound":
|
|
||||||
new_height = self.constrain_to_multiple_of(scale_height * height, min_val=self.__height)
|
|
||||||
new_width = self.constrain_to_multiple_of(scale_width * width, min_val=self.__width)
|
|
||||||
elif self.__resize_method == "upper_bound":
|
|
||||||
new_height = self.constrain_to_multiple_of(scale_height * height, max_val=self.__height)
|
|
||||||
new_width = self.constrain_to_multiple_of(scale_width * width, max_val=self.__width)
|
|
||||||
elif self.__resize_method == "minimal":
|
|
||||||
new_height = self.constrain_to_multiple_of(scale_height * height)
|
|
||||||
new_width = self.constrain_to_multiple_of(scale_width * width)
|
|
||||||
else:
|
|
||||||
raise ValueError(f"resize_method {self.__resize_method} not implemented")
|
|
||||||
|
|
||||||
return (new_width, new_height)
|
|
||||||
|
|
||||||
def __call__(self, sample):
|
|
||||||
width, height = self.get_size(sample["image"].shape[1], sample["image"].shape[0])
|
|
||||||
|
|
||||||
# resize sample
|
|
||||||
sample["image"] = cv2.resize(sample["image"], (width, height), interpolation=self.__image_interpolation_method)
|
|
||||||
|
|
||||||
if self.__resize_target:
|
|
||||||
if "depth" in sample:
|
|
||||||
sample["depth"] = cv2.resize(sample["depth"], (width, height), interpolation=cv2.INTER_NEAREST)
|
|
||||||
|
|
||||||
if "mask" in sample:
|
|
||||||
sample["mask"] = cv2.resize(
|
|
||||||
sample["mask"].astype(np.float32), (width, height), interpolation=cv2.INTER_NEAREST
|
|
||||||
)
|
|
||||||
|
|
||||||
return sample
|
|
||||||
|
|
||||||
|
|
||||||
class NormalizeImage(object):
|
|
||||||
"""Normlize image by given mean and std."""
|
|
||||||
|
|
||||||
def __init__(self, mean, std):
|
|
||||||
self.__mean = mean
|
|
||||||
self.__std = std
|
|
||||||
|
|
||||||
def __call__(self, sample):
|
|
||||||
sample["image"] = (sample["image"] - self.__mean) / self.__std
|
|
||||||
|
|
||||||
return sample
|
|
||||||
|
|
||||||
|
|
||||||
class PrepareForNet(object):
|
|
||||||
"""Prepare sample for usage as network input."""
|
|
||||||
|
|
||||||
def __init__(self):
|
|
||||||
pass
|
|
||||||
|
|
||||||
def __call__(self, sample):
|
|
||||||
image = np.transpose(sample["image"], (2, 0, 1))
|
|
||||||
sample["image"] = np.ascontiguousarray(image).astype(np.float32)
|
|
||||||
|
|
||||||
if "depth" in sample:
|
|
||||||
depth = sample["depth"].astype(np.float32)
|
|
||||||
sample["depth"] = np.ascontiguousarray(depth)
|
|
||||||
|
|
||||||
if "mask" in sample:
|
|
||||||
sample["mask"] = sample["mask"].astype(np.float32)
|
|
||||||
sample["mask"] = np.ascontiguousarray(sample["mask"])
|
|
||||||
|
|
||||||
return sample
|
|
@ -1,405 +0,0 @@
|
|||||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
||||||
#
|
|
||||||
# This source code is licensed under the Apache License, Version 2.0
|
|
||||||
# found in the LICENSE file in the root directory of this source tree.
|
|
||||||
|
|
||||||
# References:
|
|
||||||
# https://github.com/facebookresearch/dino/blob/main/vision_transformer.py
|
|
||||||
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/models/vision_transformer.py
|
|
||||||
|
|
||||||
|
|
||||||
import math
|
|
||||||
from functools import partial
|
|
||||||
from typing import Callable, Sequence, Tuple, Union
|
|
||||||
|
|
||||||
import torch
|
|
||||||
import torch.nn as nn
|
|
||||||
import torch.utils.checkpoint
|
|
||||||
from torch.nn.init import trunc_normal_
|
|
||||||
|
|
||||||
from invokeai.backend.image_util.depth_anything.v2.dinov2_layers import MemEffAttention, Mlp, PatchEmbed, SwiGLUFFNFused
|
|
||||||
from invokeai.backend.image_util.depth_anything.v2.dinov2_layers import NestedTensorBlock as Block
|
|
||||||
|
|
||||||
|
|
||||||
def named_apply(fn: Callable, module: nn.Module, name="", depth_first=True, include_root=False) -> nn.Module:
|
|
||||||
if not depth_first and include_root:
|
|
||||||
fn(module=module, name=name)
|
|
||||||
for child_name, child_module in module.named_children():
|
|
||||||
child_name = ".".join((name, child_name)) if name else child_name
|
|
||||||
named_apply(fn=fn, module=child_module, name=child_name, depth_first=depth_first, include_root=True)
|
|
||||||
if depth_first and include_root:
|
|
||||||
fn(module=module, name=name)
|
|
||||||
return module
|
|
||||||
|
|
||||||
|
|
||||||
class BlockChunk(nn.ModuleList):
|
|
||||||
def forward(self, x):
|
|
||||||
for b in self:
|
|
||||||
x = b(x)
|
|
||||||
return x
|
|
||||||
|
|
||||||
|
|
||||||
class DinoVisionTransformer(nn.Module):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
img_size=224,
|
|
||||||
patch_size=16,
|
|
||||||
in_chans=3,
|
|
||||||
embed_dim=768,
|
|
||||||
depth=12,
|
|
||||||
num_heads=12,
|
|
||||||
mlp_ratio=4.0,
|
|
||||||
qkv_bias=True,
|
|
||||||
ffn_bias=True,
|
|
||||||
proj_bias=True,
|
|
||||||
drop_path_rate=0.0,
|
|
||||||
drop_path_uniform=False,
|
|
||||||
init_values=None, # for layerscale: None or 0 => no layerscale
|
|
||||||
embed_layer=PatchEmbed,
|
|
||||||
act_layer=nn.GELU,
|
|
||||||
block_fn=Block,
|
|
||||||
ffn_layer="mlp",
|
|
||||||
block_chunks=1,
|
|
||||||
num_register_tokens=0,
|
|
||||||
interpolate_antialias=False,
|
|
||||||
interpolate_offset=0.1,
|
|
||||||
):
|
|
||||||
"""
|
|
||||||
Args:
|
|
||||||
img_size (int, tuple): input image size
|
|
||||||
patch_size (int, tuple): patch size
|
|
||||||
in_chans (int): number of input channels
|
|
||||||
embed_dim (int): embedding dimension
|
|
||||||
depth (int): depth of transformer
|
|
||||||
num_heads (int): number of attention heads
|
|
||||||
mlp_ratio (int): ratio of mlp hidden dim to embedding dim
|
|
||||||
qkv_bias (bool): enable bias for qkv if True
|
|
||||||
proj_bias (bool): enable bias for proj in attn if True
|
|
||||||
ffn_bias (bool): enable bias for ffn if True
|
|
||||||
drop_path_rate (float): stochastic depth rate
|
|
||||||
drop_path_uniform (bool): apply uniform drop rate across blocks
|
|
||||||
weight_init (str): weight init scheme
|
|
||||||
init_values (float): layer-scale init values
|
|
||||||
embed_layer (nn.Module): patch embedding layer
|
|
||||||
act_layer (nn.Module): MLP activation layer
|
|
||||||
block_fn (nn.Module): transformer block class
|
|
||||||
ffn_layer (str): "mlp", "swiglu", "swiglufused" or "identity"
|
|
||||||
block_chunks: (int) split block sequence into block_chunks units for FSDP wrap
|
|
||||||
num_register_tokens: (int) number of extra cls tokens (so-called "registers")
|
|
||||||
interpolate_antialias: (str) flag to apply anti-aliasing when interpolating positional embeddings
|
|
||||||
interpolate_offset: (float) work-around offset to apply when interpolating positional embeddings
|
|
||||||
"""
|
|
||||||
super().__init__()
|
|
||||||
norm_layer = partial(nn.LayerNorm, eps=1e-6)
|
|
||||||
|
|
||||||
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
|
|
||||||
self.num_tokens = 1
|
|
||||||
self.n_blocks = depth
|
|
||||||
self.num_heads = num_heads
|
|
||||||
self.patch_size = patch_size
|
|
||||||
self.num_register_tokens = num_register_tokens
|
|
||||||
self.interpolate_antialias = interpolate_antialias
|
|
||||||
self.interpolate_offset = interpolate_offset
|
|
||||||
|
|
||||||
self.patch_embed = embed_layer(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
|
|
||||||
num_patches = self.patch_embed.num_patches
|
|
||||||
|
|
||||||
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
|
||||||
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim))
|
|
||||||
assert num_register_tokens >= 0
|
|
||||||
self.register_tokens = (
|
|
||||||
nn.Parameter(torch.zeros(1, num_register_tokens, embed_dim)) if num_register_tokens else None
|
|
||||||
)
|
|
||||||
|
|
||||||
if drop_path_uniform is True:
|
|
||||||
dpr = [drop_path_rate] * depth
|
|
||||||
else:
|
|
||||||
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
|
|
||||||
|
|
||||||
if ffn_layer == "mlp":
|
|
||||||
ffn_layer = Mlp
|
|
||||||
elif ffn_layer == "swiglufused" or ffn_layer == "swiglu":
|
|
||||||
ffn_layer = SwiGLUFFNFused
|
|
||||||
elif ffn_layer == "identity":
|
|
||||||
|
|
||||||
def f(*args, **kwargs):
|
|
||||||
return nn.Identity()
|
|
||||||
|
|
||||||
ffn_layer = f
|
|
||||||
else:
|
|
||||||
raise NotImplementedError
|
|
||||||
|
|
||||||
blocks_list = [
|
|
||||||
block_fn(
|
|
||||||
dim=embed_dim,
|
|
||||||
num_heads=num_heads,
|
|
||||||
mlp_ratio=mlp_ratio,
|
|
||||||
qkv_bias=qkv_bias,
|
|
||||||
proj_bias=proj_bias,
|
|
||||||
ffn_bias=ffn_bias,
|
|
||||||
drop_path=dpr[i],
|
|
||||||
norm_layer=norm_layer,
|
|
||||||
act_layer=act_layer,
|
|
||||||
ffn_layer=ffn_layer,
|
|
||||||
init_values=init_values,
|
|
||||||
)
|
|
||||||
for i in range(depth)
|
|
||||||
]
|
|
||||||
if block_chunks > 0:
|
|
||||||
self.chunked_blocks = True
|
|
||||||
chunked_blocks = []
|
|
||||||
chunksize = depth // block_chunks
|
|
||||||
for i in range(0, depth, chunksize):
|
|
||||||
# this is to keep the block index consistent if we chunk the block list
|
|
||||||
chunked_blocks.append([nn.Identity()] * i + blocks_list[i : i + chunksize])
|
|
||||||
self.blocks = nn.ModuleList([BlockChunk(p) for p in chunked_blocks])
|
|
||||||
else:
|
|
||||||
self.chunked_blocks = False
|
|
||||||
self.blocks = nn.ModuleList(blocks_list)
|
|
||||||
|
|
||||||
self.norm = norm_layer(embed_dim)
|
|
||||||
self.head = nn.Identity()
|
|
||||||
|
|
||||||
self.mask_token = nn.Parameter(torch.zeros(1, embed_dim))
|
|
||||||
|
|
||||||
self.init_weights()
|
|
||||||
|
|
||||||
def init_weights(self):
|
|
||||||
trunc_normal_(self.pos_embed, std=0.02)
|
|
||||||
nn.init.normal_(self.cls_token, std=1e-6)
|
|
||||||
if self.register_tokens is not None:
|
|
||||||
nn.init.normal_(self.register_tokens, std=1e-6)
|
|
||||||
named_apply(init_weights_vit_timm, self)
|
|
||||||
|
|
||||||
def interpolate_pos_encoding(self, x, w, h):
|
|
||||||
previous_dtype = x.dtype
|
|
||||||
npatch = x.shape[1] - 1
|
|
||||||
N = self.pos_embed.shape[1] - 1
|
|
||||||
if npatch == N and w == h:
|
|
||||||
return self.pos_embed
|
|
||||||
pos_embed = self.pos_embed.float()
|
|
||||||
class_pos_embed = pos_embed[:, 0]
|
|
||||||
patch_pos_embed = pos_embed[:, 1:]
|
|
||||||
dim = x.shape[-1]
|
|
||||||
w0 = w // self.patch_size
|
|
||||||
h0 = h // self.patch_size
|
|
||||||
# we add a small number to avoid floating point error in the interpolation
|
|
||||||
# see discussion at https://github.com/facebookresearch/dino/issues/8
|
|
||||||
# DINOv2 with register modify the interpolate_offset from 0.1 to 0.0
|
|
||||||
w0, h0 = w0 + self.interpolate_offset, h0 + self.interpolate_offset
|
|
||||||
# w0, h0 = w0 + 0.1, h0 + 0.1
|
|
||||||
|
|
||||||
sqrt_N = math.sqrt(N)
|
|
||||||
sx, sy = float(w0) / sqrt_N, float(h0) / sqrt_N
|
|
||||||
patch_pos_embed = nn.functional.interpolate(
|
|
||||||
patch_pos_embed.reshape(1, int(sqrt_N), int(sqrt_N), dim).permute(0, 3, 1, 2),
|
|
||||||
scale_factor=(sx, sy),
|
|
||||||
# (int(w0), int(h0)), # to solve the upsampling shape issue
|
|
||||||
mode="bicubic",
|
|
||||||
antialias=self.interpolate_antialias,
|
|
||||||
)
|
|
||||||
|
|
||||||
assert int(w0) == patch_pos_embed.shape[-2]
|
|
||||||
assert int(h0) == patch_pos_embed.shape[-1]
|
|
||||||
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
|
|
||||||
return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1).to(previous_dtype)
|
|
||||||
|
|
||||||
def prepare_tokens_with_masks(self, x, masks=None):
|
|
||||||
B, nc, w, h = x.shape
|
|
||||||
x = self.patch_embed(x)
|
|
||||||
if masks is not None:
|
|
||||||
x = torch.where(masks.unsqueeze(-1), self.mask_token.to(x.dtype).unsqueeze(0), x)
|
|
||||||
|
|
||||||
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
|
|
||||||
x = x + self.interpolate_pos_encoding(x, w, h)
|
|
||||||
|
|
||||||
if self.register_tokens is not None:
|
|
||||||
x = torch.cat(
|
|
||||||
(
|
|
||||||
x[:, :1],
|
|
||||||
self.register_tokens.expand(x.shape[0], -1, -1),
|
|
||||||
x[:, 1:],
|
|
||||||
),
|
|
||||||
dim=1,
|
|
||||||
)
|
|
||||||
|
|
||||||
return x
|
|
||||||
|
|
||||||
def forward_features_list(self, x_list, masks_list):
|
|
||||||
x = [self.prepare_tokens_with_masks(x, masks) for x, masks in zip(x_list, masks_list, strict=False)]
|
|
||||||
for blk in self.blocks:
|
|
||||||
x = blk(x)
|
|
||||||
|
|
||||||
all_x = x
|
|
||||||
output = []
|
|
||||||
for x, masks in zip(all_x, masks_list, strict=False):
|
|
||||||
x_norm = self.norm(x)
|
|
||||||
output.append(
|
|
||||||
{
|
|
||||||
"x_norm_clstoken": x_norm[:, 0],
|
|
||||||
"x_norm_regtokens": x_norm[:, 1 : self.num_register_tokens + 1],
|
|
||||||
"x_norm_patchtokens": x_norm[:, self.num_register_tokens + 1 :],
|
|
||||||
"x_prenorm": x,
|
|
||||||
"masks": masks,
|
|
||||||
}
|
|
||||||
)
|
|
||||||
return output
|
|
||||||
|
|
||||||
def forward_features(self, x, masks=None):
|
|
||||||
if isinstance(x, list):
|
|
||||||
return self.forward_features_list(x, masks)
|
|
||||||
|
|
||||||
x = self.prepare_tokens_with_masks(x, masks)
|
|
||||||
|
|
||||||
for blk in self.blocks:
|
|
||||||
x = blk(x)
|
|
||||||
|
|
||||||
x_norm = self.norm(x)
|
|
||||||
return {
|
|
||||||
"x_norm_clstoken": x_norm[:, 0],
|
|
||||||
"x_norm_regtokens": x_norm[:, 1 : self.num_register_tokens + 1],
|
|
||||||
"x_norm_patchtokens": x_norm[:, self.num_register_tokens + 1 :],
|
|
||||||
"x_prenorm": x,
|
|
||||||
"masks": masks,
|
|
||||||
}
|
|
||||||
|
|
||||||
def _get_intermediate_layers_not_chunked(self, x, n=1):
|
|
||||||
x = self.prepare_tokens_with_masks(x)
|
|
||||||
# If n is an int, take the n last blocks. If it's a list, take them
|
|
||||||
output, total_block_len = [], len(self.blocks)
|
|
||||||
blocks_to_take = range(total_block_len - n, total_block_len) if isinstance(n, int) else n
|
|
||||||
for i, blk in enumerate(self.blocks):
|
|
||||||
x = blk(x)
|
|
||||||
if i in blocks_to_take:
|
|
||||||
output.append(x)
|
|
||||||
assert len(output) == len(blocks_to_take), f"only {len(output)} / {len(blocks_to_take)} blocks found"
|
|
||||||
return output
|
|
||||||
|
|
||||||
def _get_intermediate_layers_chunked(self, x, n=1):
|
|
||||||
x = self.prepare_tokens_with_masks(x)
|
|
||||||
output, i, total_block_len = [], 0, len(self.blocks[-1])
|
|
||||||
# If n is an int, take the n last blocks. If it's a list, take them
|
|
||||||
blocks_to_take = range(total_block_len - n, total_block_len) if isinstance(n, int) else n
|
|
||||||
for block_chunk in self.blocks:
|
|
||||||
for blk in block_chunk[i:]: # Passing the nn.Identity()
|
|
||||||
x = blk(x)
|
|
||||||
if i in blocks_to_take:
|
|
||||||
output.append(x)
|
|
||||||
i += 1
|
|
||||||
assert len(output) == len(blocks_to_take), f"only {len(output)} / {len(blocks_to_take)} blocks found"
|
|
||||||
return output
|
|
||||||
|
|
||||||
def get_intermediate_layers(
|
|
||||||
self,
|
|
||||||
x: torch.Tensor,
|
|
||||||
n: Union[int, Sequence] = 1, # Layers or n last layers to take
|
|
||||||
reshape: bool = False,
|
|
||||||
return_class_token: bool = False,
|
|
||||||
norm: bool = True,
|
|
||||||
) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]]]:
|
|
||||||
if self.chunked_blocks:
|
|
||||||
outputs = self._get_intermediate_layers_chunked(x, n)
|
|
||||||
else:
|
|
||||||
outputs = self._get_intermediate_layers_not_chunked(x, n)
|
|
||||||
if norm:
|
|
||||||
outputs = [self.norm(out) for out in outputs]
|
|
||||||
class_tokens = [out[:, 0] for out in outputs]
|
|
||||||
outputs = [out[:, 1 + self.num_register_tokens :] for out in outputs]
|
|
||||||
if reshape:
|
|
||||||
B, _, w, h = x.shape
|
|
||||||
outputs = [
|
|
||||||
out.reshape(B, w // self.patch_size, h // self.patch_size, -1).permute(0, 3, 1, 2).contiguous()
|
|
||||||
for out in outputs
|
|
||||||
]
|
|
||||||
if return_class_token:
|
|
||||||
return tuple(zip(outputs, class_tokens, strict=False))
|
|
||||||
return tuple(outputs)
|
|
||||||
|
|
||||||
def forward(self, *args, is_training=False, **kwargs):
|
|
||||||
ret = self.forward_features(*args, **kwargs)
|
|
||||||
if is_training:
|
|
||||||
return ret
|
|
||||||
else:
|
|
||||||
return self.head(ret["x_norm_clstoken"])
|
|
||||||
|
|
||||||
|
|
||||||
def init_weights_vit_timm(module: nn.Module, name: str = ""):
|
|
||||||
"""ViT weight initialization, original timm impl (for reproducibility)"""
|
|
||||||
if isinstance(module, nn.Linear):
|
|
||||||
trunc_normal_(module.weight, std=0.02)
|
|
||||||
if module.bias is not None:
|
|
||||||
nn.init.zeros_(module.bias)
|
|
||||||
|
|
||||||
|
|
||||||
def vit_small(patch_size=16, num_register_tokens=0, **kwargs):
|
|
||||||
model = DinoVisionTransformer(
|
|
||||||
patch_size=patch_size,
|
|
||||||
embed_dim=384,
|
|
||||||
depth=12,
|
|
||||||
num_heads=6,
|
|
||||||
mlp_ratio=4,
|
|
||||||
block_fn=partial(Block, attn_class=MemEffAttention),
|
|
||||||
num_register_tokens=num_register_tokens,
|
|
||||||
**kwargs,
|
|
||||||
)
|
|
||||||
return model
|
|
||||||
|
|
||||||
|
|
||||||
def vit_base(patch_size=16, num_register_tokens=0, **kwargs):
|
|
||||||
model = DinoVisionTransformer(
|
|
||||||
patch_size=patch_size,
|
|
||||||
embed_dim=768,
|
|
||||||
depth=12,
|
|
||||||
num_heads=12,
|
|
||||||
mlp_ratio=4,
|
|
||||||
block_fn=partial(Block, attn_class=MemEffAttention),
|
|
||||||
num_register_tokens=num_register_tokens,
|
|
||||||
**kwargs,
|
|
||||||
)
|
|
||||||
return model
|
|
||||||
|
|
||||||
|
|
||||||
def vit_large(patch_size=16, num_register_tokens=0, **kwargs):
|
|
||||||
model = DinoVisionTransformer(
|
|
||||||
patch_size=patch_size,
|
|
||||||
embed_dim=1024,
|
|
||||||
depth=24,
|
|
||||||
num_heads=16,
|
|
||||||
mlp_ratio=4,
|
|
||||||
block_fn=partial(Block, attn_class=MemEffAttention),
|
|
||||||
num_register_tokens=num_register_tokens,
|
|
||||||
**kwargs,
|
|
||||||
)
|
|
||||||
return model
|
|
||||||
|
|
||||||
|
|
||||||
def vit_giant2(patch_size=16, num_register_tokens=0, **kwargs):
|
|
||||||
"""
|
|
||||||
Close to ViT-giant, with embed-dim 1536 and 24 heads => embed-dim per head 64
|
|
||||||
"""
|
|
||||||
model = DinoVisionTransformer(
|
|
||||||
patch_size=patch_size,
|
|
||||||
embed_dim=1536,
|
|
||||||
depth=40,
|
|
||||||
num_heads=24,
|
|
||||||
mlp_ratio=4,
|
|
||||||
block_fn=partial(Block, attn_class=MemEffAttention),
|
|
||||||
num_register_tokens=num_register_tokens,
|
|
||||||
**kwargs,
|
|
||||||
)
|
|
||||||
return model
|
|
||||||
|
|
||||||
|
|
||||||
def DINOv2(model_name):
|
|
||||||
model_zoo = {"vits": vit_small, "vitb": vit_base, "vitl": vit_large, "vitg": vit_giant2}
|
|
||||||
|
|
||||||
return model_zoo[model_name](
|
|
||||||
img_size=518,
|
|
||||||
patch_size=14,
|
|
||||||
init_values=1.0,
|
|
||||||
ffn_layer="mlp" if model_name != "vitg" else "swiglufused",
|
|
||||||
block_chunks=0,
|
|
||||||
num_register_tokens=0,
|
|
||||||
interpolate_antialias=False,
|
|
||||||
interpolate_offset=0.1,
|
|
||||||
)
|
|
@ -1,12 +0,0 @@
|
|||||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
||||||
# All rights reserved.
|
|
||||||
#
|
|
||||||
# This source code is licensed under the license found in the
|
|
||||||
# LICENSE file in the root directory of this source tree.
|
|
||||||
|
|
||||||
|
|
||||||
from invokeai.backend.image_util.depth_anything.v2.dinov2_layers.attention import MemEffAttention # noqa
|
|
||||||
from invokeai.backend.image_util.depth_anything.v2.dinov2_layers.block import NestedTensorBlock # noqa
|
|
||||||
from invokeai.backend.image_util.depth_anything.v2.dinov2_layers.mlp import Mlp # noqa
|
|
||||||
from invokeai.backend.image_util.depth_anything.v2.dinov2_layers.patch_embed import PatchEmbed # noqa
|
|
||||||
from invokeai.backend.image_util.depth_anything.v2.dinov2_layers.swiglu_ffn import SwiGLUFFN, SwiGLUFFNFused # noqa
|
|
@ -1,76 +0,0 @@
|
|||||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
||||||
# All rights reserved.
|
|
||||||
#
|
|
||||||
# This source code is licensed under the license found in the
|
|
||||||
# LICENSE file in the root directory of this source tree.
|
|
||||||
|
|
||||||
# References:
|
|
||||||
# https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
|
|
||||||
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/models/vision_transformer.py
|
|
||||||
|
|
||||||
# Referenced from: https://github.com/DepthAnything/Depth-Anything-V2
|
|
||||||
|
|
||||||
|
|
||||||
from torch import Tensor, nn
|
|
||||||
|
|
||||||
try:
|
|
||||||
from xformers.ops import memory_efficient_attention, unbind
|
|
||||||
|
|
||||||
XFORMERS_AVAILABLE = True
|
|
||||||
except ImportError:
|
|
||||||
XFORMERS_AVAILABLE = False
|
|
||||||
|
|
||||||
|
|
||||||
class Attention(nn.Module):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
dim: int,
|
|
||||||
num_heads: int = 8,
|
|
||||||
qkv_bias: bool = False,
|
|
||||||
proj_bias: bool = True,
|
|
||||||
attn_drop: float = 0.0,
|
|
||||||
proj_drop: float = 0.0,
|
|
||||||
) -> None:
|
|
||||||
super().__init__()
|
|
||||||
self.num_heads = num_heads
|
|
||||||
head_dim = dim // num_heads
|
|
||||||
self.scale = head_dim**-0.5
|
|
||||||
|
|
||||||
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
|
||||||
self.attn_drop = nn.Dropout(attn_drop)
|
|
||||||
self.proj = nn.Linear(dim, dim, bias=proj_bias)
|
|
||||||
self.proj_drop = nn.Dropout(proj_drop)
|
|
||||||
|
|
||||||
def forward(self, x: Tensor) -> Tensor:
|
|
||||||
B, N, C = x.shape
|
|
||||||
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
|
||||||
|
|
||||||
q, k, v = qkv[0] * self.scale, qkv[1], qkv[2]
|
|
||||||
attn = q @ k.transpose(-2, -1)
|
|
||||||
|
|
||||||
attn = attn.softmax(dim=-1)
|
|
||||||
attn = self.attn_drop(attn)
|
|
||||||
|
|
||||||
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
|
||||||
x = self.proj(x)
|
|
||||||
x = self.proj_drop(x)
|
|
||||||
return x
|
|
||||||
|
|
||||||
|
|
||||||
class MemEffAttention(Attention):
|
|
||||||
def forward(self, x: Tensor, attn_bias=None) -> Tensor:
|
|
||||||
if not XFORMERS_AVAILABLE:
|
|
||||||
assert attn_bias is None, "xFormers is required for nested tensors usage"
|
|
||||||
return super().forward(x)
|
|
||||||
|
|
||||||
B, N, C = x.shape
|
|
||||||
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads)
|
|
||||||
|
|
||||||
q, k, v = unbind(qkv, 2)
|
|
||||||
|
|
||||||
x = memory_efficient_attention(q, k, v, attn_bias=attn_bias)
|
|
||||||
x = x.reshape([B, N, C])
|
|
||||||
|
|
||||||
x = self.proj(x)
|
|
||||||
x = self.proj_drop(x)
|
|
||||||
return x
|
|
@ -1,248 +0,0 @@
|
|||||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
||||||
# All rights reserved.
|
|
||||||
#
|
|
||||||
# This source code is licensed under the license found in the
|
|
||||||
# LICENSE file in the root directory of this source tree.
|
|
||||||
|
|
||||||
# References:
|
|
||||||
# https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
|
|
||||||
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/patch_embed.py
|
|
||||||
|
|
||||||
|
|
||||||
from typing import Any, Callable, Dict, List, Tuple
|
|
||||||
|
|
||||||
import torch
|
|
||||||
from torch import Tensor, nn
|
|
||||||
|
|
||||||
from invokeai.backend.image_util.depth_anything.v2.dinov2_layers.attention import Attention, MemEffAttention
|
|
||||||
from invokeai.backend.image_util.depth_anything.v2.dinov2_layers.drop_path import DropPath
|
|
||||||
from invokeai.backend.image_util.depth_anything.v2.dinov2_layers.layer_scale import LayerScale
|
|
||||||
from invokeai.backend.image_util.depth_anything.v2.dinov2_layers.mlp import Mlp
|
|
||||||
|
|
||||||
try:
|
|
||||||
from xformers.ops import fmha, index_select_cat, scaled_index_add
|
|
||||||
|
|
||||||
XFORMERS_AVAILABLE = True
|
|
||||||
except ImportError:
|
|
||||||
XFORMERS_AVAILABLE = False
|
|
||||||
|
|
||||||
|
|
||||||
class Block(nn.Module):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
dim: int,
|
|
||||||
num_heads: int,
|
|
||||||
mlp_ratio: float = 4.0,
|
|
||||||
qkv_bias: bool = False,
|
|
||||||
proj_bias: bool = True,
|
|
||||||
ffn_bias: bool = True,
|
|
||||||
drop: float = 0.0,
|
|
||||||
attn_drop: float = 0.0,
|
|
||||||
init_values=None,
|
|
||||||
drop_path: float = 0.0,
|
|
||||||
act_layer: Callable[..., nn.Module] = nn.GELU,
|
|
||||||
norm_layer: Callable[..., nn.Module] = nn.LayerNorm,
|
|
||||||
attn_class: Callable[..., nn.Module] = Attention,
|
|
||||||
ffn_layer: Callable[..., nn.Module] = Mlp,
|
|
||||||
) -> None:
|
|
||||||
super().__init__()
|
|
||||||
# print(f"biases: qkv: {qkv_bias}, proj: {proj_bias}, ffn: {ffn_bias}")
|
|
||||||
self.norm1 = norm_layer(dim)
|
|
||||||
self.attn = attn_class(
|
|
||||||
dim,
|
|
||||||
num_heads=num_heads,
|
|
||||||
qkv_bias=qkv_bias,
|
|
||||||
proj_bias=proj_bias,
|
|
||||||
attn_drop=attn_drop,
|
|
||||||
proj_drop=drop,
|
|
||||||
)
|
|
||||||
self.ls1 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
|
|
||||||
self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
|
||||||
|
|
||||||
self.norm2 = norm_layer(dim)
|
|
||||||
mlp_hidden_dim = int(dim * mlp_ratio)
|
|
||||||
self.mlp = ffn_layer(
|
|
||||||
in_features=dim,
|
|
||||||
hidden_features=mlp_hidden_dim,
|
|
||||||
act_layer=act_layer,
|
|
||||||
drop=drop,
|
|
||||||
bias=ffn_bias,
|
|
||||||
)
|
|
||||||
self.ls2 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
|
|
||||||
self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
|
||||||
|
|
||||||
self.sample_drop_ratio = drop_path
|
|
||||||
|
|
||||||
def forward(self, x: Tensor) -> Tensor:
|
|
||||||
def attn_residual_func(x: Tensor) -> Tensor:
|
|
||||||
return self.ls1(self.attn(self.norm1(x)))
|
|
||||||
|
|
||||||
def ffn_residual_func(x: Tensor) -> Tensor:
|
|
||||||
return self.ls2(self.mlp(self.norm2(x)))
|
|
||||||
|
|
||||||
if self.training and self.sample_drop_ratio > 0.1:
|
|
||||||
# the overhead is compensated only for a drop path rate larger than 0.1
|
|
||||||
x = drop_add_residual_stochastic_depth(
|
|
||||||
x,
|
|
||||||
residual_func=attn_residual_func,
|
|
||||||
sample_drop_ratio=self.sample_drop_ratio,
|
|
||||||
)
|
|
||||||
x = drop_add_residual_stochastic_depth(
|
|
||||||
x,
|
|
||||||
residual_func=ffn_residual_func,
|
|
||||||
sample_drop_ratio=self.sample_drop_ratio,
|
|
||||||
)
|
|
||||||
elif self.training and self.sample_drop_ratio > 0.0:
|
|
||||||
x = x + self.drop_path1(attn_residual_func(x))
|
|
||||||
x = x + self.drop_path1(ffn_residual_func(x)) # FIXME: drop_path2
|
|
||||||
else:
|
|
||||||
x = x + attn_residual_func(x)
|
|
||||||
x = x + ffn_residual_func(x)
|
|
||||||
return x
|
|
||||||
|
|
||||||
|
|
||||||
def drop_add_residual_stochastic_depth(
|
|
||||||
x: Tensor,
|
|
||||||
residual_func: Callable[[Tensor], Tensor],
|
|
||||||
sample_drop_ratio: float = 0.0,
|
|
||||||
) -> Tensor:
|
|
||||||
# 1) extract subset using permutation
|
|
||||||
b, n, d = x.shape
|
|
||||||
sample_subset_size = max(int(b * (1 - sample_drop_ratio)), 1)
|
|
||||||
brange = (torch.randperm(b, device=x.device))[:sample_subset_size]
|
|
||||||
x_subset = x[brange]
|
|
||||||
|
|
||||||
# 2) apply residual_func to get residual
|
|
||||||
residual = residual_func(x_subset)
|
|
||||||
|
|
||||||
x_flat = x.flatten(1)
|
|
||||||
residual = residual.flatten(1)
|
|
||||||
|
|
||||||
residual_scale_factor = b / sample_subset_size
|
|
||||||
|
|
||||||
# 3) add the residual
|
|
||||||
x_plus_residual = torch.index_add(x_flat, 0, brange, residual.to(dtype=x.dtype), alpha=residual_scale_factor)
|
|
||||||
return x_plus_residual.view_as(x)
|
|
||||||
|
|
||||||
|
|
||||||
def get_branges_scales(x, sample_drop_ratio=0.0):
|
|
||||||
b, n, d = x.shape
|
|
||||||
sample_subset_size = max(int(b * (1 - sample_drop_ratio)), 1)
|
|
||||||
brange = (torch.randperm(b, device=x.device))[:sample_subset_size]
|
|
||||||
residual_scale_factor = b / sample_subset_size
|
|
||||||
return brange, residual_scale_factor
|
|
||||||
|
|
||||||
|
|
||||||
def add_residual(x, brange, residual, residual_scale_factor, scaling_vector=None):
|
|
||||||
if scaling_vector is None:
|
|
||||||
x_flat = x.flatten(1)
|
|
||||||
residual = residual.flatten(1)
|
|
||||||
x_plus_residual = torch.index_add(x_flat, 0, brange, residual.to(dtype=x.dtype), alpha=residual_scale_factor)
|
|
||||||
else:
|
|
||||||
x_plus_residual = scaled_index_add(
|
|
||||||
x, brange, residual.to(dtype=x.dtype), scaling=scaling_vector, alpha=residual_scale_factor
|
|
||||||
)
|
|
||||||
return x_plus_residual
|
|
||||||
|
|
||||||
|
|
||||||
attn_bias_cache: Dict[Tuple, Any] = {}
|
|
||||||
|
|
||||||
|
|
||||||
def get_attn_bias_and_cat(x_list, branges=None):
|
|
||||||
"""
|
|
||||||
this will perform the index select, cat the tensors, and provide the attn_bias from cache
|
|
||||||
"""
|
|
||||||
batch_sizes = [b.shape[0] for b in branges] if branges is not None else [x.shape[0] for x in x_list]
|
|
||||||
all_shapes = tuple((b, x.shape[1]) for b, x in zip(batch_sizes, x_list, strict=False))
|
|
||||||
if all_shapes not in attn_bias_cache.keys():
|
|
||||||
seqlens = []
|
|
||||||
for b, x in zip(batch_sizes, x_list, strict=False):
|
|
||||||
for _ in range(b):
|
|
||||||
seqlens.append(x.shape[1])
|
|
||||||
attn_bias = fmha.BlockDiagonalMask.from_seqlens(seqlens)
|
|
||||||
attn_bias._batch_sizes = batch_sizes
|
|
||||||
attn_bias_cache[all_shapes] = attn_bias
|
|
||||||
|
|
||||||
if branges is not None:
|
|
||||||
cat_tensors = index_select_cat([x.flatten(1) for x in x_list], branges).view(1, -1, x_list[0].shape[-1])
|
|
||||||
else:
|
|
||||||
tensors_bs1 = tuple(x.reshape([1, -1, *x.shape[2:]]) for x in x_list)
|
|
||||||
cat_tensors = torch.cat(tensors_bs1, dim=1)
|
|
||||||
|
|
||||||
return attn_bias_cache[all_shapes], cat_tensors
|
|
||||||
|
|
||||||
|
|
||||||
def drop_add_residual_stochastic_depth_list(
|
|
||||||
x_list: List[Tensor],
|
|
||||||
residual_func: Callable[[Tensor, Any], Tensor],
|
|
||||||
sample_drop_ratio: float = 0.0,
|
|
||||||
scaling_vector=None,
|
|
||||||
) -> Tensor:
|
|
||||||
# 1) generate random set of indices for dropping samples in the batch
|
|
||||||
branges_scales = [get_branges_scales(x, sample_drop_ratio=sample_drop_ratio) for x in x_list]
|
|
||||||
branges = [s[0] for s in branges_scales]
|
|
||||||
residual_scale_factors = [s[1] for s in branges_scales]
|
|
||||||
|
|
||||||
# 2) get attention bias and index+concat the tensors
|
|
||||||
attn_bias, x_cat = get_attn_bias_and_cat(x_list, branges)
|
|
||||||
|
|
||||||
# 3) apply residual_func to get residual, and split the result
|
|
||||||
residual_list = attn_bias.split(residual_func(x_cat, attn_bias=attn_bias)) # type: ignore
|
|
||||||
|
|
||||||
outputs = []
|
|
||||||
for x, brange, residual, residual_scale_factor in zip(
|
|
||||||
x_list, branges, residual_list, residual_scale_factors, strict=False
|
|
||||||
):
|
|
||||||
outputs.append(add_residual(x, brange, residual, residual_scale_factor, scaling_vector).view_as(x))
|
|
||||||
return outputs
|
|
||||||
|
|
||||||
|
|
||||||
class NestedTensorBlock(Block):
|
|
||||||
def forward_nested(self, x_list: List[Tensor]) -> List[Tensor]:
|
|
||||||
"""
|
|
||||||
x_list contains a list of tensors to nest together and run
|
|
||||||
"""
|
|
||||||
assert isinstance(self.attn, MemEffAttention)
|
|
||||||
|
|
||||||
if self.training and self.sample_drop_ratio > 0.0:
|
|
||||||
|
|
||||||
def attn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
|
|
||||||
return self.attn(self.norm1(x), attn_bias=attn_bias)
|
|
||||||
|
|
||||||
def ffn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
|
|
||||||
return self.mlp(self.norm2(x))
|
|
||||||
|
|
||||||
x_list = drop_add_residual_stochastic_depth_list(
|
|
||||||
x_list,
|
|
||||||
residual_func=attn_residual_func,
|
|
||||||
sample_drop_ratio=self.sample_drop_ratio,
|
|
||||||
scaling_vector=self.ls1.gamma if isinstance(self.ls1, LayerScale) else None,
|
|
||||||
)
|
|
||||||
x_list = drop_add_residual_stochastic_depth_list(
|
|
||||||
x_list,
|
|
||||||
residual_func=ffn_residual_func,
|
|
||||||
sample_drop_ratio=self.sample_drop_ratio,
|
|
||||||
scaling_vector=self.ls2.gamma if isinstance(self.ls1, LayerScale) else None,
|
|
||||||
)
|
|
||||||
return x_list
|
|
||||||
else:
|
|
||||||
|
|
||||||
def attn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
|
|
||||||
return self.ls1(self.attn(self.norm1(x), attn_bias=attn_bias))
|
|
||||||
|
|
||||||
def ffn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
|
|
||||||
return self.ls2(self.mlp(self.norm2(x)))
|
|
||||||
|
|
||||||
attn_bias, x = get_attn_bias_and_cat(x_list)
|
|
||||||
x = x + attn_residual_func(x, attn_bias=attn_bias)
|
|
||||||
x = x + ffn_residual_func(x)
|
|
||||||
return attn_bias.split(x)
|
|
||||||
|
|
||||||
def forward(self, x_or_x_list):
|
|
||||||
if isinstance(x_or_x_list, Tensor):
|
|
||||||
return super().forward(x_or_x_list)
|
|
||||||
elif isinstance(x_or_x_list, list):
|
|
||||||
assert XFORMERS_AVAILABLE, "Please install xFormers for nested tensors usage"
|
|
||||||
return self.forward_nested(x_or_x_list)
|
|
||||||
else:
|
|
||||||
raise AssertionError
|
|
@ -1,35 +0,0 @@
|
|||||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
||||||
# All rights reserved.
|
|
||||||
#
|
|
||||||
# This source code is licensed under the license found in the
|
|
||||||
# LICENSE file in the root directory of this source tree.
|
|
||||||
|
|
||||||
# References:
|
|
||||||
# https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
|
|
||||||
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/drop.py
|
|
||||||
|
|
||||||
|
|
||||||
from torch import nn
|
|
||||||
|
|
||||||
|
|
||||||
def drop_path(x, drop_prob: float = 0.0, training: bool = False):
|
|
||||||
if drop_prob == 0.0 or not training:
|
|
||||||
return x
|
|
||||||
keep_prob = 1 - drop_prob
|
|
||||||
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
|
|
||||||
random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
|
|
||||||
if keep_prob > 0.0:
|
|
||||||
random_tensor.div_(keep_prob)
|
|
||||||
output = x * random_tensor
|
|
||||||
return output
|
|
||||||
|
|
||||||
|
|
||||||
class DropPath(nn.Module):
|
|
||||||
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
|
|
||||||
|
|
||||||
def __init__(self, drop_prob=None):
|
|
||||||
super(DropPath, self).__init__()
|
|
||||||
self.drop_prob = drop_prob
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
return drop_path(x, self.drop_prob, self.training)
|
|
@ -1,27 +0,0 @@
|
|||||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
||||||
# All rights reserved.
|
|
||||||
#
|
|
||||||
# This source code is licensed under the license found in the
|
|
||||||
# LICENSE file in the root directory of this source tree.
|
|
||||||
|
|
||||||
# Modified from: https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/vision_transformer.py#L103-L110
|
|
||||||
|
|
||||||
from typing import Union
|
|
||||||
|
|
||||||
import torch
|
|
||||||
from torch import Tensor, nn
|
|
||||||
|
|
||||||
|
|
||||||
class LayerScale(nn.Module):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
dim: int,
|
|
||||||
init_values: Union[float, Tensor] = 1e-5,
|
|
||||||
inplace: bool = False,
|
|
||||||
) -> None:
|
|
||||||
super().__init__()
|
|
||||||
self.inplace = inplace
|
|
||||||
self.gamma = nn.Parameter(init_values * torch.ones(dim))
|
|
||||||
|
|
||||||
def forward(self, x: Tensor) -> Tensor:
|
|
||||||
return x.mul_(self.gamma) if self.inplace else x * self.gamma
|
|
@ -1,41 +0,0 @@
|
|||||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
||||||
# All rights reserved.
|
|
||||||
#
|
|
||||||
# This source code is licensed under the license found in the
|
|
||||||
# LICENSE file in the root directory of this source tree.
|
|
||||||
|
|
||||||
# References:
|
|
||||||
# https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
|
|
||||||
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/mlp.py
|
|
||||||
|
|
||||||
|
|
||||||
from typing import Callable, Optional
|
|
||||||
|
|
||||||
from torch import Tensor, nn
|
|
||||||
|
|
||||||
|
|
||||||
class Mlp(nn.Module):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
in_features: int,
|
|
||||||
hidden_features: Optional[int] = None,
|
|
||||||
out_features: Optional[int] = None,
|
|
||||||
act_layer: Callable[..., nn.Module] = nn.GELU,
|
|
||||||
drop: float = 0.0,
|
|
||||||
bias: bool = True,
|
|
||||||
) -> None:
|
|
||||||
super().__init__()
|
|
||||||
out_features = out_features or in_features
|
|
||||||
hidden_features = hidden_features or in_features
|
|
||||||
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias)
|
|
||||||
self.act = act_layer()
|
|
||||||
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias)
|
|
||||||
self.drop = nn.Dropout(drop)
|
|
||||||
|
|
||||||
def forward(self, x: Tensor) -> Tensor:
|
|
||||||
x = self.fc1(x)
|
|
||||||
x = self.act(x)
|
|
||||||
x = self.drop(x)
|
|
||||||
x = self.fc2(x)
|
|
||||||
x = self.drop(x)
|
|
||||||
return x
|
|
@ -1,89 +0,0 @@
|
|||||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
||||||
# All rights reserved.
|
|
||||||
#
|
|
||||||
# This source code is licensed under the license found in the
|
|
||||||
# LICENSE file in the root directory of this source tree.
|
|
||||||
|
|
||||||
# References:
|
|
||||||
# https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
|
|
||||||
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/patch_embed.py
|
|
||||||
|
|
||||||
from typing import Callable, Optional, Tuple, Union
|
|
||||||
|
|
||||||
import torch.nn as nn
|
|
||||||
from torch import Tensor
|
|
||||||
|
|
||||||
|
|
||||||
def make_2tuple(x):
|
|
||||||
if isinstance(x, tuple):
|
|
||||||
assert len(x) == 2
|
|
||||||
return x
|
|
||||||
|
|
||||||
assert isinstance(x, int)
|
|
||||||
return (x, x)
|
|
||||||
|
|
||||||
|
|
||||||
class PatchEmbed(nn.Module):
|
|
||||||
"""
|
|
||||||
2D image to patch embedding: (B,C,H,W) -> (B,N,D)
|
|
||||||
|
|
||||||
Args:
|
|
||||||
img_size: Image size.
|
|
||||||
patch_size: Patch token size.
|
|
||||||
in_chans: Number of input image channels.
|
|
||||||
embed_dim: Number of linear projection output channels.
|
|
||||||
norm_layer: Normalization layer.
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
img_size: Union[int, Tuple[int, int]] = 224,
|
|
||||||
patch_size: Union[int, Tuple[int, int]] = 16,
|
|
||||||
in_chans: int = 3,
|
|
||||||
embed_dim: int = 768,
|
|
||||||
norm_layer: Optional[Callable] = None,
|
|
||||||
flatten_embedding: bool = True,
|
|
||||||
) -> None:
|
|
||||||
super().__init__()
|
|
||||||
|
|
||||||
image_HW = make_2tuple(img_size)
|
|
||||||
patch_HW = make_2tuple(patch_size)
|
|
||||||
patch_grid_size = (
|
|
||||||
image_HW[0] // patch_HW[0],
|
|
||||||
image_HW[1] // patch_HW[1],
|
|
||||||
)
|
|
||||||
|
|
||||||
self.img_size = image_HW
|
|
||||||
self.patch_size = patch_HW
|
|
||||||
self.patches_resolution = patch_grid_size
|
|
||||||
self.num_patches = patch_grid_size[0] * patch_grid_size[1]
|
|
||||||
|
|
||||||
self.in_chans = in_chans
|
|
||||||
self.embed_dim = embed_dim
|
|
||||||
|
|
||||||
self.flatten_embedding = flatten_embedding
|
|
||||||
|
|
||||||
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_HW, stride=patch_HW)
|
|
||||||
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
|
|
||||||
|
|
||||||
def forward(self, x: Tensor) -> Tensor:
|
|
||||||
_, _, H, W = x.shape
|
|
||||||
patch_H, patch_W = self.patch_size
|
|
||||||
|
|
||||||
assert H % patch_H == 0, f"Input image height {H} is not a multiple of patch height {patch_H}"
|
|
||||||
assert W % patch_W == 0, f"Input image width {W} is not a multiple of patch width: {patch_W}"
|
|
||||||
|
|
||||||
x = self.proj(x) # B C H W
|
|
||||||
H, W = x.size(2), x.size(3)
|
|
||||||
x = x.flatten(2).transpose(1, 2) # B HW C
|
|
||||||
x = self.norm(x)
|
|
||||||
if not self.flatten_embedding:
|
|
||||||
x = x.reshape(-1, H, W, self.embed_dim) # B H W C
|
|
||||||
return x
|
|
||||||
|
|
||||||
def flops(self) -> float:
|
|
||||||
Ho, Wo = self.patches_resolution
|
|
||||||
flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1])
|
|
||||||
if self.norm is not None:
|
|
||||||
flops += Ho * Wo * self.embed_dim
|
|
||||||
return flops
|
|
@ -1,63 +0,0 @@
|
|||||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
||||||
# All rights reserved.
|
|
||||||
#
|
|
||||||
# This source code is licensed under the license found in the
|
|
||||||
# LICENSE file in the root directory of this source tree.
|
|
||||||
|
|
||||||
from typing import Callable, Optional
|
|
||||||
|
|
||||||
import torch.nn.functional as F
|
|
||||||
from torch import Tensor, nn
|
|
||||||
|
|
||||||
|
|
||||||
class SwiGLUFFN(nn.Module):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
in_features: int,
|
|
||||||
hidden_features: Optional[int] = None,
|
|
||||||
out_features: Optional[int] = None,
|
|
||||||
act_layer: Callable[..., nn.Module] = None,
|
|
||||||
drop: float = 0.0,
|
|
||||||
bias: bool = True,
|
|
||||||
) -> None:
|
|
||||||
super().__init__()
|
|
||||||
out_features = out_features or in_features
|
|
||||||
hidden_features = hidden_features or in_features
|
|
||||||
self.w12 = nn.Linear(in_features, 2 * hidden_features, bias=bias)
|
|
||||||
self.w3 = nn.Linear(hidden_features, out_features, bias=bias)
|
|
||||||
|
|
||||||
def forward(self, x: Tensor) -> Tensor:
|
|
||||||
x12 = self.w12(x)
|
|
||||||
x1, x2 = x12.chunk(2, dim=-1)
|
|
||||||
hidden = F.silu(x1) * x2
|
|
||||||
return self.w3(hidden)
|
|
||||||
|
|
||||||
|
|
||||||
try:
|
|
||||||
from xformers.ops import SwiGLU
|
|
||||||
|
|
||||||
XFORMERS_AVAILABLE = True
|
|
||||||
except ImportError:
|
|
||||||
SwiGLU = SwiGLUFFN
|
|
||||||
XFORMERS_AVAILABLE = False
|
|
||||||
|
|
||||||
|
|
||||||
class SwiGLUFFNFused(SwiGLU):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
in_features: int,
|
|
||||||
hidden_features: Optional[int] = None,
|
|
||||||
out_features: Optional[int] = None,
|
|
||||||
act_layer: Callable[..., nn.Module] = None,
|
|
||||||
drop: float = 0.0,
|
|
||||||
bias: bool = True,
|
|
||||||
) -> None:
|
|
||||||
out_features = out_features or in_features
|
|
||||||
hidden_features = hidden_features or in_features
|
|
||||||
hidden_features = (int(hidden_features * 2 / 3) + 7) // 8 * 8
|
|
||||||
super().__init__(
|
|
||||||
in_features=in_features,
|
|
||||||
hidden_features=hidden_features,
|
|
||||||
out_features=out_features,
|
|
||||||
bias=bias,
|
|
||||||
)
|
|
@ -1,231 +0,0 @@
|
|||||||
# Referenced from https://github.com/DepthAnything/Depth-Anything-V2/blob/main/depth_anything_v2/dpt.py
|
|
||||||
|
|
||||||
from typing import List, Literal, Optional
|
|
||||||
|
|
||||||
import cv2
|
|
||||||
import numpy as np
|
|
||||||
import torch
|
|
||||||
import torch.nn as nn
|
|
||||||
import torch.nn.functional as F
|
|
||||||
from torchvision.transforms import Compose
|
|
||||||
|
|
||||||
from invokeai.backend.image_util.depth_anything.utils.blocks import FeatureFusionBlock, _make_scratch
|
|
||||||
from invokeai.backend.image_util.depth_anything.utils.transform import NormalizeImage, PrepareForNet, Resize
|
|
||||||
from invokeai.backend.image_util.depth_anything.v2.dinov2 import DINOv2
|
|
||||||
|
|
||||||
|
|
||||||
def _make_fusion_block(features, use_bn, size=None):
|
|
||||||
return FeatureFusionBlock(
|
|
||||||
features,
|
|
||||||
nn.ReLU(False),
|
|
||||||
deconv=False,
|
|
||||||
bn=use_bn,
|
|
||||||
expand=False,
|
|
||||||
align_corners=True,
|
|
||||||
size=size,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
class ConvBlock(nn.Module):
|
|
||||||
def __init__(self, in_feature, out_feature):
|
|
||||||
super().__init__()
|
|
||||||
|
|
||||||
self.conv_block = nn.Sequential(
|
|
||||||
nn.Conv2d(in_feature, out_feature, kernel_size=3, stride=1, padding=1),
|
|
||||||
nn.BatchNorm2d(out_feature),
|
|
||||||
nn.ReLU(True),
|
|
||||||
)
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
return self.conv_block(x)
|
|
||||||
|
|
||||||
|
|
||||||
class DPTHead(nn.Module):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
in_channels: int,
|
|
||||||
features: int = 256,
|
|
||||||
use_bn: bool = False,
|
|
||||||
out_channels: Optional[List[int]] = None,
|
|
||||||
use_clstoken: bool = False,
|
|
||||||
):
|
|
||||||
super(DPTHead, self).__init__()
|
|
||||||
|
|
||||||
if out_channels is None:
|
|
||||||
out_channels = [256, 512, 1024, 1024]
|
|
||||||
|
|
||||||
self.use_clstoken = use_clstoken
|
|
||||||
|
|
||||||
self.projects = nn.ModuleList(
|
|
||||||
[
|
|
||||||
nn.Conv2d(
|
|
||||||
in_channels=in_channels,
|
|
||||||
out_channels=out_channel,
|
|
||||||
kernel_size=1,
|
|
||||||
stride=1,
|
|
||||||
padding=0,
|
|
||||||
)
|
|
||||||
for out_channel in out_channels
|
|
||||||
]
|
|
||||||
)
|
|
||||||
|
|
||||||
self.resize_layers = nn.ModuleList(
|
|
||||||
[
|
|
||||||
nn.ConvTranspose2d(
|
|
||||||
in_channels=out_channels[0], out_channels=out_channels[0], kernel_size=4, stride=4, padding=0
|
|
||||||
),
|
|
||||||
nn.ConvTranspose2d(
|
|
||||||
in_channels=out_channels[1], out_channels=out_channels[1], kernel_size=2, stride=2, padding=0
|
|
||||||
),
|
|
||||||
nn.Identity(),
|
|
||||||
nn.Conv2d(
|
|
||||||
in_channels=out_channels[3], out_channels=out_channels[3], kernel_size=3, stride=2, padding=1
|
|
||||||
),
|
|
||||||
]
|
|
||||||
)
|
|
||||||
|
|
||||||
if use_clstoken:
|
|
||||||
self.readout_projects = nn.ModuleList()
|
|
||||||
for _ in range(len(self.projects)):
|
|
||||||
self.readout_projects.append(nn.Sequential(nn.Linear(2 * in_channels, in_channels), nn.GELU()))
|
|
||||||
|
|
||||||
self.scratch = _make_scratch(
|
|
||||||
out_channels,
|
|
||||||
features,
|
|
||||||
groups=1,
|
|
||||||
expand=False,
|
|
||||||
)
|
|
||||||
|
|
||||||
self.scratch.stem_transpose = None
|
|
||||||
|
|
||||||
self.scratch.refinenet1 = _make_fusion_block(features, use_bn)
|
|
||||||
self.scratch.refinenet2 = _make_fusion_block(features, use_bn)
|
|
||||||
self.scratch.refinenet3 = _make_fusion_block(features, use_bn)
|
|
||||||
self.scratch.refinenet4 = _make_fusion_block(features, use_bn)
|
|
||||||
|
|
||||||
head_features_1 = features
|
|
||||||
head_features_2 = 32
|
|
||||||
|
|
||||||
self.scratch.output_conv1 = nn.Conv2d(head_features_1, head_features_1 // 2, kernel_size=3, stride=1, padding=1)
|
|
||||||
self.scratch.output_conv2 = nn.Sequential(
|
|
||||||
nn.Conv2d(head_features_1 // 2, head_features_2, kernel_size=3, stride=1, padding=1),
|
|
||||||
nn.ReLU(True),
|
|
||||||
nn.Conv2d(head_features_2, 1, kernel_size=1, stride=1, padding=0),
|
|
||||||
nn.ReLU(True),
|
|
||||||
nn.Identity(),
|
|
||||||
)
|
|
||||||
|
|
||||||
def forward(self, out_features, patch_h, patch_w):
|
|
||||||
out = []
|
|
||||||
for i, x in enumerate(out_features):
|
|
||||||
if self.use_clstoken:
|
|
||||||
x, cls_token = x[0], x[1]
|
|
||||||
readout = cls_token.unsqueeze(1).expand_as(x)
|
|
||||||
x = self.readout_projects[i](torch.cat((x, readout), -1))
|
|
||||||
else:
|
|
||||||
x = x[0]
|
|
||||||
|
|
||||||
x = x.permute(0, 2, 1).reshape((x.shape[0], x.shape[-1], patch_h, patch_w))
|
|
||||||
|
|
||||||
x = self.projects[i](x)
|
|
||||||
x = self.resize_layers[i](x)
|
|
||||||
|
|
||||||
out.append(x)
|
|
||||||
|
|
||||||
layer_1, layer_2, layer_3, layer_4 = out
|
|
||||||
|
|
||||||
layer_1_rn = self.scratch.layer1_rn(layer_1)
|
|
||||||
layer_2_rn = self.scratch.layer2_rn(layer_2)
|
|
||||||
layer_3_rn = self.scratch.layer3_rn(layer_3)
|
|
||||||
layer_4_rn = self.scratch.layer4_rn(layer_4)
|
|
||||||
|
|
||||||
path_4 = self.scratch.refinenet4(layer_4_rn, size=layer_3_rn.shape[2:])
|
|
||||||
path_3 = self.scratch.refinenet3(path_4, layer_3_rn, size=layer_2_rn.shape[2:])
|
|
||||||
path_2 = self.scratch.refinenet2(path_3, layer_2_rn, size=layer_1_rn.shape[2:])
|
|
||||||
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
|
|
||||||
|
|
||||||
out = self.scratch.output_conv1(path_1)
|
|
||||||
out = F.interpolate(out, (int(patch_h * 14), int(patch_w * 14)), mode="bilinear", align_corners=True)
|
|
||||||
out = self.scratch.output_conv2(out)
|
|
||||||
|
|
||||||
return out
|
|
||||||
|
|
||||||
|
|
||||||
class DepthAnythingV2(nn.Module):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
encoder: Literal["vits", "vitb", "vitl", "vitg"] = "vitl",
|
|
||||||
features: int = 256,
|
|
||||||
out_channels: Optional[List[int]] = None,
|
|
||||||
use_bn: bool = False,
|
|
||||||
use_clstoken: bool = False,
|
|
||||||
):
|
|
||||||
super(DepthAnythingV2, self).__init__()
|
|
||||||
|
|
||||||
if out_channels is None:
|
|
||||||
out_channels = [256, 512, 1024, 1024]
|
|
||||||
|
|
||||||
self.intermediate_layer_idx = {
|
|
||||||
"vits": [2, 5, 8, 11],
|
|
||||||
"vitb": [2, 5, 8, 11],
|
|
||||||
"vitl": [4, 11, 17, 23],
|
|
||||||
"vitg": [9, 19, 29, 39],
|
|
||||||
}
|
|
||||||
|
|
||||||
self.encoder = encoder
|
|
||||||
self.pretrained = DINOv2(model_name=encoder)
|
|
||||||
|
|
||||||
self.depth_head = DPTHead(
|
|
||||||
self.pretrained.embed_dim, features, use_bn, out_channels=out_channels, use_clstoken=use_clstoken
|
|
||||||
)
|
|
||||||
|
|
||||||
def forward(self, x: torch.Tensor):
|
|
||||||
patch_h, patch_w = x.shape[-2] // 14, x.shape[-1] // 14
|
|
||||||
|
|
||||||
features = self.pretrained.get_intermediate_layers(
|
|
||||||
x, self.intermediate_layer_idx[self.encoder], return_class_token=True
|
|
||||||
)
|
|
||||||
|
|
||||||
depth = self.depth_head(features, patch_h, patch_w)
|
|
||||||
depth = F.relu(depth)
|
|
||||||
|
|
||||||
return depth.squeeze(1)
|
|
||||||
|
|
||||||
@torch.no_grad()
|
|
||||||
def infer_image(self, raw_image: np.ndarray, input_size: int = 518):
|
|
||||||
image, (h, w) = self.image2tensor(raw_image, input_size)
|
|
||||||
|
|
||||||
depth = self.forward(image)
|
|
||||||
|
|
||||||
depth = F.interpolate(depth[:, None], (h, w), mode="bilinear", align_corners=True)[0, 0]
|
|
||||||
|
|
||||||
return depth.cpu().numpy()
|
|
||||||
|
|
||||||
def image2tensor(self, raw_image, input_size=518):
|
|
||||||
transform = Compose(
|
|
||||||
[
|
|
||||||
Resize(
|
|
||||||
width=input_size,
|
|
||||||
height=input_size,
|
|
||||||
resize_target=False,
|
|
||||||
keep_aspect_ratio=True,
|
|
||||||
ensure_multiple_of=14,
|
|
||||||
resize_method="lower_bound",
|
|
||||||
image_interpolation_method=cv2.INTER_CUBIC,
|
|
||||||
),
|
|
||||||
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
|
||||||
PrepareForNet(),
|
|
||||||
]
|
|
||||||
)
|
|
||||||
|
|
||||||
h, w = raw_image.shape[:2]
|
|
||||||
|
|
||||||
image = cv2.cvtColor(raw_image, cv2.COLOR_BGR2RGB) / 255.0
|
|
||||||
|
|
||||||
image = transform({"image": image})["image"]
|
|
||||||
image = torch.from_numpy(image).unsqueeze(0)
|
|
||||||
|
|
||||||
DEVICE = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
|
||||||
image = image.to(DEVICE)
|
|
||||||
|
|
||||||
return image, (h, w)
|
|
Loading…
Reference in New Issue
Block a user