mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Merge branch 'main' into update/docs/remove-swagger-related-files
This commit is contained in:
commit
5570a88858
@ -214,6 +214,8 @@ Here are the invoke> command that apply to txt2img:
|
||||
| `--variation <float>` | `-v<float>` | `0.0` | Add a bit of noise (0.0=none, 1.0=high) to the image in order to generate a series of variations. Usually used in combination with `-S<seed>` and `-n<int>` to generate a series a riffs on a starting image. See [Variations](./VARIATIONS.md). |
|
||||
| `--with_variations <pattern>` | | `None` | Combine two or more variations. See [Variations](./VARIATIONS.md) for now to use this. |
|
||||
| `--save_intermediates <n>` | | `None` | Save the image from every nth step into an "intermediates" folder inside the output directory |
|
||||
| `--h_symmetry_time_pct <float>` | | `None` | Create symmetry along the X axis at the desired percent complete of the generation process. (Must be between 0.0 and 1.0; set to a very small number like 0.0001 for just after the first step of generation.) |
|
||||
| `--v_symmetry_time_pct <float>` | | `None` | Create symmetry along the Y axis at the desired percent complete of the generation process. (Must be between 0.0 and 1.0; set to a very small number like 0.0001 for just after the first step of generation.) |
|
||||
|
||||
!!! note
|
||||
|
||||
|
@ -40,7 +40,7 @@ for adj in adjectives:
|
||||
print(f'a {adj} day -A{samp} -C{cg}')
|
||||
```
|
||||
|
||||
It's output looks like this (abbreviated):
|
||||
Its output looks like this (abbreviated):
|
||||
|
||||
```bash
|
||||
a sunny day -Aklms -C7.5
|
||||
|
@ -320,6 +320,8 @@ class Generate:
|
||||
variation_amount=0.0,
|
||||
threshold=0.0,
|
||||
perlin=0.0,
|
||||
h_symmetry_time_pct = None,
|
||||
v_symmetry_time_pct = None,
|
||||
karras_max=None,
|
||||
outdir=None,
|
||||
# these are specific to img2img and inpaint
|
||||
@ -390,6 +392,8 @@ class Generate:
|
||||
variation_amount // optional 0-1 value to slerp from -S noise to random noise (allows variations on an image)
|
||||
threshold // optional value >=0 to add thresholding to latent values for k-diffusion samplers (0 disables)
|
||||
perlin // optional 0-1 value to add a percentage of perlin noise to the initial noise
|
||||
h_symmetry_time_pct // optional 0-1 value that indicates the time at which horizontal symmetry is applied
|
||||
v_symmetry_time_pct // optional 0-1 value that indicates the time at which vertical symmetry is applied
|
||||
embiggen // scale factor relative to the size of the --init_img (-I), followed by ESRGAN upscaling strength (0-1.0), followed by minimum amount of overlap between tiles as a decimal ratio (0 - 1.0) or number of pixels
|
||||
embiggen_tiles // list of tiles by number in order to process and replace onto the image e.g. `0 2 4`
|
||||
embiggen_strength // strength for embiggen. 0.0 preserves image exactly, 1.0 replaces it completely
|
||||
@ -561,6 +565,8 @@ class Generate:
|
||||
strength=strength,
|
||||
threshold=threshold,
|
||||
perlin=perlin,
|
||||
h_symmetry_time_pct=h_symmetry_time_pct,
|
||||
v_symmetry_time_pct=v_symmetry_time_pct,
|
||||
embiggen=embiggen,
|
||||
embiggen_tiles=embiggen_tiles,
|
||||
embiggen_strength=embiggen_strength,
|
||||
|
@ -272,6 +272,10 @@ class Args(object):
|
||||
switches.append('--seamless')
|
||||
if a['hires_fix']:
|
||||
switches.append('--hires_fix')
|
||||
if a['h_symmetry_time_pct']:
|
||||
switches.append(f'--h_symmetry_time_pct {a["h_symmetry_time_pct"]}')
|
||||
if a['v_symmetry_time_pct']:
|
||||
switches.append(f'--v_symmetry_time_pct {a["v_symmetry_time_pct"]}')
|
||||
|
||||
# img2img generations have parameters relevant only to them and have special handling
|
||||
if a['init_img'] and len(a['init_img'])>0:
|
||||
@ -845,6 +849,18 @@ class Args(object):
|
||||
type=float,
|
||||
help='Perlin noise scale (0.0 - 1.0) - add perlin noise to the initialization instead of the usual gaussian noise.',
|
||||
)
|
||||
render_group.add_argument(
|
||||
'--h_symmetry_time_pct',
|
||||
default=None,
|
||||
type=float,
|
||||
help='Horizontal symmetry point (0.0 - 1.0) - apply horizontal symmetry at this point in image generation.',
|
||||
)
|
||||
render_group.add_argument(
|
||||
'--v_symmetry_time_pct',
|
||||
default=None,
|
||||
type=float,
|
||||
help='Vertical symmetry point (0.0 - 1.0) - apply vertical symmetry at this point in image generation.',
|
||||
)
|
||||
render_group.add_argument(
|
||||
'--fnformat',
|
||||
default='{prefix}.{seed}.png',
|
||||
@ -1151,7 +1167,8 @@ def metadata_dumps(opt,
|
||||
# remove any image keys not mentioned in RFC #266
|
||||
rfc266_img_fields = ['type','postprocessing','sampler','prompt','seed','variations','steps',
|
||||
'cfg_scale','threshold','perlin','step_number','width','height','extra','strength','seamless'
|
||||
'init_img','init_mask','facetool','facetool_strength','upscale']
|
||||
'init_img','init_mask','facetool','facetool_strength','upscale','h_symmetry_time_pct',
|
||||
'v_symmetry_time_pct']
|
||||
rfc_dict ={}
|
||||
|
||||
for item in image_dict.items():
|
||||
|
@ -64,6 +64,7 @@ class Generator:
|
||||
|
||||
def generate(self,prompt,init_image,width,height,sampler, iterations=1,seed=None,
|
||||
image_callback=None, step_callback=None, threshold=0.0, perlin=0.0,
|
||||
h_symmetry_time_pct=None, v_symmetry_time_pct=None,
|
||||
safety_checker:dict=None,
|
||||
free_gpu_mem: bool=False,
|
||||
**kwargs):
|
||||
@ -81,6 +82,8 @@ class Generator:
|
||||
step_callback = step_callback,
|
||||
threshold = threshold,
|
||||
perlin = perlin,
|
||||
h_symmetry_time_pct = h_symmetry_time_pct,
|
||||
v_symmetry_time_pct = v_symmetry_time_pct,
|
||||
attention_maps_callback = attention_maps_callback,
|
||||
**kwargs
|
||||
)
|
||||
|
@ -16,8 +16,8 @@ class Img2Img(Generator):
|
||||
self.init_latent = None # by get_noise()
|
||||
|
||||
def get_make_image(self,prompt,sampler,steps,cfg_scale,ddim_eta,
|
||||
conditioning,init_image,strength,step_callback=None,threshold=0.0,perlin=0.0,
|
||||
attention_maps_callback=None,
|
||||
conditioning,init_image,strength,step_callback=None,threshold=0.0,warmup=0.2,perlin=0.0,
|
||||
h_symmetry_time_pct=None,v_symmetry_time_pct=None,attention_maps_callback=None,
|
||||
**kwargs):
|
||||
"""
|
||||
Returns a function returning an image derived from the prompt and the initial image
|
||||
@ -33,8 +33,13 @@ class Img2Img(Generator):
|
||||
conditioning_data = (
|
||||
ConditioningData(
|
||||
uc, c, cfg_scale, extra_conditioning_info,
|
||||
postprocessing_settings = PostprocessingSettings(threshold, warmup=0.2) if threshold else None)
|
||||
.add_scheduler_args_if_applicable(pipeline.scheduler, eta=ddim_eta))
|
||||
postprocessing_settings=PostprocessingSettings(
|
||||
threshold=threshold,
|
||||
warmup=warmup,
|
||||
h_symmetry_time_pct=h_symmetry_time_pct,
|
||||
v_symmetry_time_pct=v_symmetry_time_pct
|
||||
)
|
||||
).add_scheduler_args_if_applicable(pipeline.scheduler, eta=ddim_eta))
|
||||
|
||||
|
||||
def make_image(x_T):
|
||||
|
@ -15,8 +15,8 @@ class Txt2Img(Generator):
|
||||
|
||||
@torch.no_grad()
|
||||
def get_make_image(self,prompt,sampler,steps,cfg_scale,ddim_eta,
|
||||
conditioning,width,height,step_callback=None,threshold=0.0,perlin=0.0,
|
||||
attention_maps_callback=None,
|
||||
conditioning,width,height,step_callback=None,threshold=0.0,warmup=0.2,perlin=0.0,
|
||||
h_symmetry_time_pct=None,v_symmetry_time_pct=None,attention_maps_callback=None,
|
||||
**kwargs):
|
||||
"""
|
||||
Returns a function returning an image derived from the prompt and the initial image
|
||||
@ -33,8 +33,13 @@ class Txt2Img(Generator):
|
||||
conditioning_data = (
|
||||
ConditioningData(
|
||||
uc, c, cfg_scale, extra_conditioning_info,
|
||||
postprocessing_settings = PostprocessingSettings(threshold, warmup=0.2) if threshold else None)
|
||||
.add_scheduler_args_if_applicable(pipeline.scheduler, eta=ddim_eta))
|
||||
postprocessing_settings=PostprocessingSettings(
|
||||
threshold=threshold,
|
||||
warmup=warmup,
|
||||
h_symmetry_time_pct=h_symmetry_time_pct,
|
||||
v_symmetry_time_pct=v_symmetry_time_pct
|
||||
)
|
||||
).add_scheduler_args_if_applicable(pipeline.scheduler, eta=ddim_eta))
|
||||
|
||||
def make_image(x_T) -> PIL.Image.Image:
|
||||
pipeline_output = pipeline.image_from_embeddings(
|
||||
@ -44,8 +49,10 @@ class Txt2Img(Generator):
|
||||
conditioning_data=conditioning_data,
|
||||
callback=step_callback,
|
||||
)
|
||||
|
||||
if pipeline_output.attention_map_saver is not None and attention_maps_callback is not None:
|
||||
attention_maps_callback(pipeline_output.attention_map_saver)
|
||||
|
||||
return pipeline.numpy_to_pil(pipeline_output.images)[0]
|
||||
|
||||
return make_image
|
||||
|
@ -21,12 +21,14 @@ class Txt2Img2Img(Generator):
|
||||
|
||||
def get_make_image(self, prompt:str, sampler, steps:int, cfg_scale:float, ddim_eta,
|
||||
conditioning, width:int, height:int, strength:float,
|
||||
step_callback:Optional[Callable]=None, threshold=0.0, **kwargs):
|
||||
step_callback:Optional[Callable]=None, threshold=0.0, warmup=0.2, perlin=0.0,
|
||||
h_symmetry_time_pct=None, v_symmetry_time_pct=None, attention_maps_callback=None, **kwargs):
|
||||
"""
|
||||
Returns a function returning an image derived from the prompt and the initial image
|
||||
Return value depends on the seed at the time you call it
|
||||
kwargs are 'width' and 'height'
|
||||
"""
|
||||
self.perlin = perlin
|
||||
|
||||
# noinspection PyTypeChecker
|
||||
pipeline: StableDiffusionGeneratorPipeline = self.model
|
||||
@ -36,8 +38,13 @@ class Txt2Img2Img(Generator):
|
||||
conditioning_data = (
|
||||
ConditioningData(
|
||||
uc, c, cfg_scale, extra_conditioning_info,
|
||||
postprocessing_settings = PostprocessingSettings(threshold=threshold, warmup=0.2) if threshold else None)
|
||||
.add_scheduler_args_if_applicable(pipeline.scheduler, eta=ddim_eta))
|
||||
postprocessing_settings = PostprocessingSettings(
|
||||
threshold=threshold,
|
||||
warmup=0.2,
|
||||
h_symmetry_time_pct=h_symmetry_time_pct,
|
||||
v_symmetry_time_pct=v_symmetry_time_pct
|
||||
)
|
||||
).add_scheduler_args_if_applicable(pipeline.scheduler, eta=ddim_eta))
|
||||
|
||||
def make_image(x_T):
|
||||
|
||||
@ -69,19 +76,28 @@ class Txt2Img2Img(Generator):
|
||||
if clear_cuda_cache is not None:
|
||||
clear_cuda_cache()
|
||||
|
||||
second_pass_noise = self.get_noise_like(resized_latents)
|
||||
second_pass_noise = self.get_noise_like(resized_latents, override_perlin=True)
|
||||
|
||||
# Clear symmetry for the second pass
|
||||
from dataclasses import replace
|
||||
new_postprocessing_settings = replace(conditioning_data.postprocessing_settings, h_symmetry_time_pct=None)
|
||||
new_postprocessing_settings = replace(new_postprocessing_settings, v_symmetry_time_pct=None)
|
||||
new_conditioning_data = replace(conditioning_data, postprocessing_settings=new_postprocessing_settings)
|
||||
|
||||
verbosity = get_verbosity()
|
||||
set_verbosity_error()
|
||||
pipeline_output = pipeline.img2img_from_latents_and_embeddings(
|
||||
resized_latents,
|
||||
num_inference_steps=steps,
|
||||
conditioning_data=conditioning_data,
|
||||
conditioning_data=new_conditioning_data,
|
||||
strength=strength,
|
||||
noise=second_pass_noise,
|
||||
callback=step_callback)
|
||||
set_verbosity(verbosity)
|
||||
|
||||
if pipeline_output.attention_map_saver is not None and attention_maps_callback is not None:
|
||||
attention_maps_callback(pipeline_output.attention_map_saver)
|
||||
|
||||
return pipeline.numpy_to_pil(pipeline_output.images)[0]
|
||||
|
||||
|
||||
@ -95,13 +111,13 @@ class Txt2Img2Img(Generator):
|
||||
|
||||
return make_image
|
||||
|
||||
def get_noise_like(self, like: torch.Tensor):
|
||||
def get_noise_like(self, like: torch.Tensor, override_perlin: bool=False):
|
||||
device = like.device
|
||||
if device.type == 'mps':
|
||||
x = torch.randn_like(like, device='cpu', dtype=self.torch_dtype()).to(device)
|
||||
else:
|
||||
x = torch.randn_like(like, device=device, dtype=self.torch_dtype())
|
||||
if self.perlin > 0.0:
|
||||
if self.perlin > 0.0 and override_perlin == False:
|
||||
shape = like.shape
|
||||
x = (1-self.perlin)*x + self.perlin*self.get_perlin_noise(shape[3], shape[2])
|
||||
return x
|
||||
@ -139,6 +155,9 @@ class Txt2Img2Img(Generator):
|
||||
shape = (1, channels,
|
||||
scaled_height // self.downsampling_factor, scaled_width // self.downsampling_factor)
|
||||
if self.use_mps_noise or device.type == 'mps':
|
||||
return torch.randn(shape, dtype=self.torch_dtype(), device='cpu').to(device)
|
||||
tensor = torch.empty(size=shape, device='cpu')
|
||||
tensor = self.get_noise_like(like=tensor).to(device)
|
||||
else:
|
||||
return torch.randn(shape, dtype=self.torch_dtype(), device=device)
|
||||
tensor = torch.empty(size=shape, device=device)
|
||||
tensor = self.get_noise_like(like=tensor)
|
||||
return tensor
|
||||
|
@ -58,6 +58,8 @@ COMMANDS = (
|
||||
'--inpaint_replace','-r',
|
||||
'--png_compression','-z',
|
||||
'--text_mask','-tm',
|
||||
'--h_symmetry_time_pct',
|
||||
'--v_symmetry_time_pct',
|
||||
'!fix','!fetch','!replay','!history','!search','!clear',
|
||||
'!models','!switch','!import_model','!optimize_model','!convert_model','!edit_model','!del_model',
|
||||
'!mask','!triggers',
|
||||
@ -138,7 +140,7 @@ class Completer(object):
|
||||
elif re.match('^'+'|'.join(MODEL_COMMANDS),buffer):
|
||||
self.matches= self._model_completions(text, state)
|
||||
|
||||
# looking for a ckpt model
|
||||
# looking for a ckpt model
|
||||
elif re.match('^'+'|'.join(CKPT_MODEL_COMMANDS),buffer):
|
||||
self.matches= self._model_completions(text, state, ckpt_only=True)
|
||||
|
||||
@ -255,7 +257,7 @@ class Completer(object):
|
||||
update our list of models
|
||||
'''
|
||||
self.models = models
|
||||
|
||||
|
||||
def _seed_completions(self, text, state):
|
||||
m = re.search('(-S\s?|--seed[=\s]?)(\d*)',text)
|
||||
if m:
|
||||
|
@ -18,6 +18,8 @@ from ldm.models.diffusion.cross_attention_map_saving import AttentionMapSaver
|
||||
class PostprocessingSettings:
|
||||
threshold: float
|
||||
warmup: float
|
||||
h_symmetry_time_pct: Optional[float]
|
||||
v_symmetry_time_pct: Optional[float]
|
||||
|
||||
|
||||
class InvokeAIDiffuserComponent:
|
||||
@ -30,7 +32,7 @@ class InvokeAIDiffuserComponent:
|
||||
* Hybrid conditioning (used for inpainting)
|
||||
'''
|
||||
debug_thresholding = False
|
||||
|
||||
last_percent_through = 0.0
|
||||
|
||||
@dataclass
|
||||
class ExtraConditioningInfo:
|
||||
@ -56,6 +58,7 @@ class InvokeAIDiffuserComponent:
|
||||
self.is_running_diffusers = is_running_diffusers
|
||||
self.model_forward_callback = model_forward_callback
|
||||
self.cross_attention_control_context = None
|
||||
self.last_percent_through = 0.0
|
||||
|
||||
@contextmanager
|
||||
def custom_attention_context(self,
|
||||
@ -164,6 +167,7 @@ class InvokeAIDiffuserComponent:
|
||||
if postprocessing_settings is not None:
|
||||
percent_through = self.calculate_percent_through(sigma, step_index, total_step_count)
|
||||
latents = self.apply_threshold(postprocessing_settings, latents, percent_through)
|
||||
latents = self.apply_symmetry(postprocessing_settings, latents, percent_through)
|
||||
return latents
|
||||
|
||||
def calculate_percent_through(self, sigma, step_index, total_step_count):
|
||||
@ -292,8 +296,12 @@ class InvokeAIDiffuserComponent:
|
||||
self,
|
||||
postprocessing_settings: PostprocessingSettings,
|
||||
latents: torch.Tensor,
|
||||
percent_through
|
||||
percent_through: float
|
||||
) -> torch.Tensor:
|
||||
|
||||
if postprocessing_settings.threshold is None or postprocessing_settings.threshold == 0.0:
|
||||
return latents
|
||||
|
||||
threshold = postprocessing_settings.threshold
|
||||
warmup = postprocessing_settings.warmup
|
||||
|
||||
@ -342,6 +350,56 @@ class InvokeAIDiffuserComponent:
|
||||
|
||||
return latents
|
||||
|
||||
def apply_symmetry(
|
||||
self,
|
||||
postprocessing_settings: PostprocessingSettings,
|
||||
latents: torch.Tensor,
|
||||
percent_through: float
|
||||
) -> torch.Tensor:
|
||||
|
||||
# Reset our last percent through if this is our first step.
|
||||
if percent_through == 0.0:
|
||||
self.last_percent_through = 0.0
|
||||
|
||||
if postprocessing_settings is None:
|
||||
return latents
|
||||
|
||||
# Check for out of bounds
|
||||
h_symmetry_time_pct = postprocessing_settings.h_symmetry_time_pct
|
||||
if (h_symmetry_time_pct is not None and (h_symmetry_time_pct <= 0.0 or h_symmetry_time_pct > 1.0)):
|
||||
h_symmetry_time_pct = None
|
||||
|
||||
v_symmetry_time_pct = postprocessing_settings.v_symmetry_time_pct
|
||||
if (v_symmetry_time_pct is not None and (v_symmetry_time_pct <= 0.0 or v_symmetry_time_pct > 1.0)):
|
||||
v_symmetry_time_pct = None
|
||||
|
||||
dev = latents.device.type
|
||||
|
||||
latents.to(device='cpu')
|
||||
|
||||
if (
|
||||
h_symmetry_time_pct != None and
|
||||
self.last_percent_through < h_symmetry_time_pct and
|
||||
percent_through >= h_symmetry_time_pct
|
||||
):
|
||||
# Horizontal symmetry occurs on the 3rd dimension of the latent
|
||||
width = latents.shape[3]
|
||||
x_flipped = torch.flip(latents, dims=[3])
|
||||
latents = torch.cat([latents[:, :, :, 0:int(width/2)], x_flipped[:, :, :, int(width/2):int(width)]], dim=3)
|
||||
|
||||
if (
|
||||
v_symmetry_time_pct != None and
|
||||
self.last_percent_through < v_symmetry_time_pct and
|
||||
percent_through >= v_symmetry_time_pct
|
||||
):
|
||||
# Vertical symmetry occurs on the 2nd dimension of the latent
|
||||
height = latents.shape[2]
|
||||
y_flipped = torch.flip(latents, dims=[2])
|
||||
latents = torch.cat([latents[:, :, 0:int(height / 2)], y_flipped[:, :, int(height / 2):int(height)]], dim=2)
|
||||
|
||||
self.last_percent_through = percent_through
|
||||
return latents.to(device=dev)
|
||||
|
||||
def estimate_percent_through(self, step_index, sigma):
|
||||
if step_index is not None and self.cross_attention_control_context is not None:
|
||||
# percent_through will never reach 1.0 (but this is intended)
|
||||
|
Loading…
Reference in New Issue
Block a user