simplify passing of config options

This commit is contained in:
Lincoln Stein 2023-03-11 11:32:57 -05:00
parent c14241436b
commit 580f9ecded
4 changed files with 33 additions and 50 deletions

View File

@ -37,12 +37,12 @@ class ApiDependencies:
invoker: Invoker = None
@staticmethod
def initialize(args, config, event_handler_id: int):
Globals.try_patchmatch = args.patchmatch
Globals.always_use_cpu = args.always_use_cpu
Globals.internet_available = args.internet_available and check_internet()
Globals.disable_xformers = not args.xformers
Globals.ckpt_convert = args.ckpt_convert
def initialize(config, event_handler_id: int):
Globals.try_patchmatch = config.patchmatch
Globals.always_use_cpu = config.always_use_cpu
Globals.internet_available = config.internet_available and check_internet()
Globals.disable_xformers = not config.xformers
Globals.ckpt_convert = config.ckpt_convert
# TODO: Use a logger
print(f">> Internet connectivity is {Globals.internet_available}")
@ -59,7 +59,7 @@ class ApiDependencies:
db_location = os.path.join(output_folder, "invokeai.db")
services = InvocationServices(
model_manager=get_model_manager(args, config),
model_manager=get_model_manager(config),
events=events,
images=images,
queue=MemoryInvocationQueue(),

View File

@ -53,11 +53,11 @@ config = {}
# Add startup event to load dependencies
@app.on_event("startup")
async def startup_event():
args = Args()
config = args.parse_args()
config = Args()
config.parse_args()
ApiDependencies.initialize(
args=args, config=config, event_handler_id=event_handler_id
config=config, event_handler_id=event_handler_id
)

View File

@ -17,7 +17,7 @@ from .cli.commands import BaseCommand, CliContext, ExitCli, add_parsers, get_gra
from .invocations import *
from .invocations.baseinvocation import BaseInvocation
from .services.events import EventServiceBase
from .services.generate_initializer import get_model_manager
from .services.model_manager_initializer import get_model_manager
from .services.graph import EdgeConnection, GraphExecutionState
from .services.image_storage import DiskImageStorage
from .services.invocation_queue import MemoryInvocationQueue
@ -126,10 +126,9 @@ def invoke_all(context: CliContext):
def invoke_cli():
args = Args()
config = args.parse_args()
model_manager = get_model_manager(args, config)
config = Args()
config.parse_args()
model_manager = get_model_manager(config)
events = EventServiceBase()

View File

@ -2,6 +2,7 @@ import os
import sys
import torch
from argparse import Namespace
from invokeai.backend import Args
from omegaconf import OmegaConf
from pathlib import Path
@ -11,12 +12,12 @@ from ...backend.util import choose_precision, choose_torch_device
from ...backend import Globals
# TODO: most of this code should be split into individual services as the Generate.py code is deprecated
def get_model_manager(args, config) -> ModelManager:
if not args.conf:
def get_model_manager(config: Args) -> ModelManager:
if not config.conf:
config_file = os.path.join(Globals.root, "configs", "models.yaml")
if not os.path.exists(config_file):
report_model_error(
args, FileNotFoundError(f"The file {config_file} could not be found.")
config, FileNotFoundError(f"The file {config_file} could not be found.")
)
print(f">> {invokeai.version.__app_name__}, version {invokeai.version.__version__}")
@ -32,64 +33,47 @@ def get_model_manager(args, config) -> ModelManager:
diffusers.logging.set_verbosity_error()
# normalize the config directory relative to root
if not os.path.isabs(args.conf):
args.conf = os.path.normpath(os.path.join(Globals.root, args.conf))
if not os.path.isabs(config.conf):
config.conf = os.path.normpath(os.path.join(Globals.root, config.conf))
if args.embeddings:
if not os.path.isabs(args.embedding_path):
if config.embeddings:
if not os.path.isabs(config.embedding_path):
embedding_path = os.path.normpath(
os.path.join(Globals.root, args.embedding_path)
os.path.join(Globals.root, config.embedding_path)
)
else:
embedding_path = args.embedding_path
embedding_path = config.embedding_path
else:
embedding_path = None
# migrate legacy models
ModelManager.migrate_models()
# load the infile as a list of lines
if args.infile:
try:
if os.path.isfile(args.infile):
infile = open(args.infile, "r", encoding="utf-8")
elif args.infile == "-": # stdin
infile = sys.stdin
else:
raise FileNotFoundError(f"{args.infile} not found.")
except (FileNotFoundError, IOError) as e:
print(f"{e}. Aborting.")
sys.exit(-1)
# creating the model manager
try:
device = torch.device(choose_torch_device())
precision = 'float16' if args.precision=='float16' \
else 'float32' if args.precision=='float32' \
precision = 'float16' if config.precision=='float16' \
else 'float32' if config.precision=='float32' \
else choose_precision(device)
model_manager = ModelManager(
OmegaConf.load(args.conf),
OmegaConf.load(config.conf),
precision=precision,
device_type=device,
max_loaded_models=args.max_loaded_models,
max_loaded_models=config.max_loaded_models,
embedding_path = Path(embedding_path),
)
except (FileNotFoundError, TypeError, AssertionError) as e:
report_model_error(args, e)
report_model_error(config, e)
except (IOError, KeyError) as e:
print(f"{e}. Aborting.")
sys.exit(-1)
if args.seamless:
#TODO: do something here ?
print(">> changed to seamless tiling mode")
# try to autoconvert new models
# autoimport new .ckpt files
if path := args.autoconvert:
if path := config.autoconvert:
model_manager.autoconvert_weights(
conf_path=args.conf,
conf_path=config.conf,
weights_directory=path,
)
@ -118,10 +102,10 @@ def report_model_error(opt: Namespace, e: Exception):
# only the arguments accepted by the configuration script are parsed
root_dir = ["--root", opt.root_dir] if opt.root_dir is not None else []
config = ["--config", opt.conf] if opt.conf is not None else []
previous_args = sys.argv
previous_config = sys.argv
sys.argv = ["invokeai-configure"]
sys.argv.extend(root_dir)
sys.argv.extend(config)
sys.argv.extend(config.to_dict())
if yes_to_all is not None:
for arg in yes_to_all.split():
sys.argv.append(arg)