Switching to ControlField for output from controlnet nodes.

This commit is contained in:
user1 2023-05-04 14:21:11 -07:00 committed by Kent Keirsey
parent 78cd106c23
commit 5e4c0217c7
3 changed files with 75 additions and 22 deletions

View File

@ -1,7 +1,4 @@
from typing import Literal, Optional
import numpy
from PIL import Image, ImageFilter, ImageOps
from typing import Literal, Optional, Union, List
from pydantic import BaseModel, Field
from ..models.image import ImageField, ImageType
@ -12,24 +9,57 @@ from .baseinvocation import (
InvocationConfig,
)
from controlnet_aux import CannyDetector, HEDdetector, LineartDetector
from controlnet_aux import CannyDetector
from .image import ImageOutput, build_image_output, PILInvocationConfig
# Canny Image Processor
class CannyProcessorInvocation(BaseInvocation, PILInvocationConfig):
"""Applies Canny edge detection to image"""
class ControlField(BaseModel):
image: ImageField = Field(default=None, description="processed image")
# width: Optional[int] = Field(default=None, description="The width of the image in pixels")
# height: Optional[int] = Field(default=None, description="The height of the image in pixels")
# mode: Optional[str] = Field(default=None, description="The mode of the image")
control_model: Optional[str] = Field(default=None, description="The control model used")
control_weight: Optional[float] = Field(default=None, description="The control weight used")
class Config:
schema_extra = {
"required": ["image", "control_model", "control_weight"]
# "required": ["type", "image", "width", "height", "mode"]
}
class ControlOutput(BaseInvocationOutput):
"""Base class for invocations that output ControlNet info"""
# fmt: off
type: Literal["canny"] = "canny"
type: Literal["control_output"] = "control_output"
control: Optional[ControlField] = Field(default=None, description="The control info dict")
# image: ImageField = Field(default=None, description="outputs just them image info (which is also included in control output)")
# fmt: on
class CannyControlInvocation(BaseInvocation, PILInvocationConfig):
"""Canny edge detection for ControlNet"""
# fmt: off
type: Literal["cannycontrol"] = "cannycontrol"
# Inputs
image: ImageField = Field(default=None, description="image to process")
low_threshold: float = Field(default=100, ge=0, description="low threshold of Canny pixel gradient")
control_model: str = Field(default=None, description="control model to use")
control_weight: float = Field(default=0.5, ge=0, le=1, description="control weight")
# begin_step_percent: float = Field(default=0, ge=0, le=1,
# description="% of total steps at which controlnet is first applied")
# end_step_percent: float = Field(default=1, ge=0, le=1,
# description="% of total steps at which controlnet is last applied")
# guess_mode: bool = Field(default=False, description="use guess mode (controlnet ignores prompt)")
low_threshold: float = Field(default=100, ge=0, description="low threshold of Canny pixel gradient")
high_threshold: float = Field(default=200, ge=0, description="high threshold of Canny pixel gradient")
# fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
def invoke(self, context: InvocationContext) -> ControlOutput:
image = context.services.images.get(
self.image.image_type, self.image.image_name
)
@ -43,6 +73,17 @@ class CannyProcessorInvocation(BaseInvocation, PILInvocationConfig):
session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(image_type, image_name, processed_image, metadata)
return build_image_output(
image_type=image_type, image_name=image_name, image=processed_image
"""Builds an ImageOutput and its ImageField"""
image_field = ImageField(
image_name=image_name,
image_type=image_type,
)
return ControlOutput(
control=ControlField(
image=image_field,
control_model=self.control_model,
control_weight=self.control_weight,
)
)

View File

@ -1,10 +1,10 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
import random
from typing import Literal, Optional, Union
import einops
from pydantic import BaseModel, Field, validator
import torch
from typing import Literal, Optional, Union, List
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel
@ -13,6 +13,7 @@ from invokeai.app.models.image import ImageCategory
from invokeai.app.util.misc import SEED_MAX, get_random_seed
from invokeai.app.util.step_callback import stable_diffusion_step_callback
from .controlnet_image_processors import ControlField
from ...backend.model_management.model_manager import ModelManager
from ...backend.util.devices import choose_torch_device, torch_dtype
@ -174,8 +175,7 @@ class TextToLatentsInvocation(BaseInvocation):
# seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
# seamless_axes: str = Field(default="", description="The axes to tile the image on, 'x' and/or 'y'")
progress_images: bool = Field(default=False, description="Whether or not to produce progress images during generation", )
control_model: Optional[str] = Field(default=None, description="The control model to use")
control_image: Optional[ImageField] = Field(default=None, description="The processed control image")
control: Optional[ControlField] = Field(default=None, description="The control to use")
# fmt: on
# Schema customisation
@ -257,21 +257,32 @@ class TextToLatentsInvocation(BaseInvocation):
model = self.get_model(context.services.model_manager)
conditioning_data = self.get_conditioning_data(context, model)
# loading controlnet model
if (self.control_model is None or self.control_model==''):
control_model = None
print("type of control input: ", type(self.control))
if (self.control is None):
control_model_name = None
control_image_field = None
control_weight = None
else:
control_model_name = self.control.control_model
control_image_field = self.control.image
control_weight = self.control.control_weight
# # loading controlnet model
# if (self.control_model is None or self.control_model==''):
# control_model = None
# else:
# FIXME: change this to dropdown menu?
# FIXME: generalize so don't have to hardcode torch_dtype and device
control_model = ControlNetModel.from_pretrained(self.control_model,
control_model = ControlNetModel.from_pretrained(control_model_name,
torch_dtype=torch.float16).to("cuda")
model.control_model = control_model
# loading controlnet image (currently requires pre-processed image)
control_image = (
None if self.control_image is None
None if control_image_field is None
else context.services.images.get(
self.control_image.image_type, self.control_image.image_name
control_image_field.image_type, control_image_field.image_name
)
)

View File

@ -993,6 +993,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
def prepare_control_image(
self,
image,
# FIXME: need to fix hardwiring of width and height, change to basing on latents dimensions?
width=512,
height=512,
batch_size=1,