mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Suggested changes
Co-Authored-By: Ryan Dick <14897797+RyanJDick@users.noreply.github.com>
This commit is contained in:
parent
1748848b7b
commit
5f0fe3c8a9
@ -100,8 +100,8 @@ class StableDiffusionBackend:
|
||||
if isinstance(guidance_scale, list):
|
||||
guidance_scale = guidance_scale[ctx.step_index]
|
||||
|
||||
# Note: Although logically it same, it seams that precision errors differs.
|
||||
# This sometimes results in slightly different output.
|
||||
# Note: Although this `torch.lerp(...)` line is logically equivalent to the current CFG line, it seems to result
|
||||
# in slightly different outputs. It is suspected that this is caused by small precision differences.
|
||||
# return torch.lerp(ctx.negative_noise_pred, ctx.positive_noise_pred, guidance_scale)
|
||||
return ctx.negative_noise_pred + guidance_scale * (ctx.positive_noise_pred - ctx.negative_noise_pred)
|
||||
|
||||
|
@ -2,7 +2,7 @@ from __future__ import annotations
|
||||
|
||||
from contextlib import contextmanager
|
||||
from dataclasses import dataclass
|
||||
from typing import TYPE_CHECKING, Callable, Dict, List
|
||||
from typing import TYPE_CHECKING, Callable, Dict, List, Optional
|
||||
|
||||
import torch
|
||||
from diffusers import UNet2DConditionModel
|
||||
@ -56,5 +56,5 @@ class ExtensionBase:
|
||||
yield None
|
||||
|
||||
@contextmanager
|
||||
def patch_unet(self, state_dict: Dict[str, torch.Tensor], unet: UNet2DConditionModel):
|
||||
def patch_unet(self, unet: UNet2DConditionModel, cached_weights: Optional[Dict[str, torch.Tensor]] = None):
|
||||
yield None
|
||||
|
@ -15,28 +15,21 @@ if TYPE_CHECKING:
|
||||
class FreeUExt(ExtensionBase):
|
||||
def __init__(
|
||||
self,
|
||||
freeu_config: Optional[FreeUConfig],
|
||||
freeu_config: FreeUConfig,
|
||||
):
|
||||
super().__init__()
|
||||
self.freeu_config = freeu_config
|
||||
self._freeu_config = freeu_config
|
||||
|
||||
@contextmanager
|
||||
def patch_unet(self, unet: UNet2DConditionModel, cached_weights: Optional[Dict[str, torch.Tensor]] = None):
|
||||
did_apply_freeu = False
|
||||
unet.enable_freeu(
|
||||
b1=self._freeu_config.b1,
|
||||
b2=self._freeu_config.b2,
|
||||
s1=self._freeu_config.s1,
|
||||
s2=self._freeu_config.s2,
|
||||
)
|
||||
|
||||
try:
|
||||
assert hasattr(unet, "enable_freeu") # mypy doesn't pick up this attribute?
|
||||
if self.freeu_config is not None:
|
||||
unet.enable_freeu(
|
||||
b1=self.freeu_config.b1,
|
||||
b2=self.freeu_config.b2,
|
||||
s1=self.freeu_config.s1,
|
||||
s2=self.freeu_config.s2,
|
||||
)
|
||||
did_apply_freeu = True
|
||||
|
||||
yield
|
||||
|
||||
finally:
|
||||
assert hasattr(unet, "disable_freeu") # mypy doesn't pick up this attribute?
|
||||
if did_apply_freeu:
|
||||
unet.disable_freeu()
|
||||
unet.disable_freeu()
|
||||
|
Loading…
Reference in New Issue
Block a user