updates per stalkers comments

This commit is contained in:
Kent Keirsey 2023-08-27 22:54:53 -04:00
parent 19e0f360e7
commit 5fdd25501b
3 changed files with 8 additions and 41 deletions

View File

@ -33,7 +33,7 @@ from invokeai.backend.model_management.models import ModelType, SilenceWarnings
from ...backend.model_management.models import BaseModelType
from ...backend.model_management.lora import ModelPatcher
from ...backend.model_management.seamless import set_unet_seamless, set_vae_seamless
from ...backend.model_management.seamless import set_seamless
from ...backend.stable_diffusion import PipelineIntermediateState
from ...backend.stable_diffusion.diffusers_pipeline import (
ConditioningData,
@ -401,7 +401,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
)
with ExitStack() as exit_stack, ModelPatcher.apply_lora_unet(
unet_info.context.model, _lora_loader()
), set_unet_seamless(unet_info.context.model, self.unet.seamless_axes), unet_info as unet:
), set_seamless(unet_info.context.model, self.unet.seamless_axes), unet_info as unet:
latents = latents.to(device=unet.device, dtype=unet.dtype)
if noise is not None:
noise = noise.to(device=unet.device, dtype=unet.dtype)
@ -491,7 +491,7 @@ class LatentsToImageInvocation(BaseInvocation):
context=context,
)
with set_vae_seamless(vae_info.context.model, self.vae.seamless_axes), vae_info as vae:
with set_seamless(vae_info.context.model, self.vae.seamless_axes), vae_info as vae:
latents = latents.to(vae.device)
if self.fp32:
vae.to(dtype=torch.float32)

View File

@ -398,8 +398,8 @@ class SeamlessModeOutput(BaseInvocationOutput):
type: Literal["seamless_output"] = "seamless_output"
# Outputs
unet: UNetField = OutputField(description=FieldDescriptions.unet, title="UNet")
vae: VaeField = OutputField(description=FieldDescriptions.vae, title="VAE")
unet: Optional[UNetField] = OutputField(description=FieldDescriptions.unet, title="UNet")
vae: Optional[VaeField] = OutputField(description=FieldDescriptions.vae, title="VAE")
@title("Seamless")
@tags("seamless", "model")

View File

@ -1,7 +1,7 @@
from __future__ import annotations
from contextlib import contextmanager
from typing import TypeVar, Union
import torch.nn as nn
from diffusers.models import UNet2DModel, AutoencoderKL
@ -23,43 +23,10 @@ def _conv_forward_asymmetric(self, input, weight, bias):
@contextmanager
def set_unet_seamless(model: UNet2DModel, seamless_axes):
try:
to_restore = []
for m in model.modules():
if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)):
m.asymmetric_padding_mode = {}
m.asymmetric_padding = {}
m.asymmetric_padding_mode["x"] = "circular" if ("x" in seamless_axes) else "constant"
m.asymmetric_padding["x"] = (
m._reversed_padding_repeated_twice[0],
m._reversed_padding_repeated_twice[1],
0,
0,
)
m.asymmetric_padding_mode["y"] = "circular" if ("y" in seamless_axes) else "constant"
m.asymmetric_padding["y"] = (
0,
0,
m._reversed_padding_repeated_twice[2],
m._reversed_padding_repeated_twice[3],
)
to_restore.append((m, m._conv_forward))
m._conv_forward = _conv_forward_asymmetric.__get__(m, nn.Conv2d)
ModelType = TypeVar('ModelType', UNet2DModel, AutoencoderKL)
yield
finally:
for module, orig_conv_forward in to_restore:
module._conv_forward = orig_conv_forward
if hasattr(m, "asymmetric_padding_mode"):
del m.asymmetric_padding_mode
if hasattr(m, "asymmetric_padding"):
del m.asymmetric_padding
def set_vae_seamless(model: AutoencoderKL, seamless_axes):
def set_seamless(model: ModelType, seamless_axes):
try:
to_restore = []