feat(nodes): add LatentsToImage node (VAE encode)

This commit is contained in:
psychedelicious 2023-05-05 15:15:55 +10:00
parent ff3aa57117
commit 6102e560ba

View File

@ -1,7 +1,8 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
import random
from typing import Literal, Optional
from typing import Literal, Optional, Union
import einops
from pydantic import BaseModel, Field
import torch
@ -13,7 +14,8 @@ from ...backend.model_management.model_manager import ModelManager
from ...backend.util.devices import choose_torch_device, torch_dtype
from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import PostprocessingSettings
from ...backend.image_util.seamless import configure_model_padding
from ...backend.stable_diffusion.diffusers_pipeline import ConditioningData, StableDiffusionGeneratorPipeline
from ...backend.prompting.conditioning import get_uc_and_c_and_ec
from ...backend.stable_diffusion.diffusers_pipeline import ConditioningData, StableDiffusionGeneratorPipeline, image_resized_to_grid_as_tensor
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext, InvocationConfig
import numpy as np
from ..services.image_storage import ImageType
@ -433,3 +435,47 @@ class ScaleLatentsInvocation(BaseInvocation):
name = f"{context.graph_execution_state_id}__{self.id}"
context.services.latents.set(name, resized_latents)
return LatentsOutput(latents=LatentsField(latents_name=name))
class ImageToLatentsInvocation(BaseInvocation):
"""Encodes an image into latents."""
type: Literal["i2l"] = "i2l"
# Inputs
image: Union[ImageField, None] = Field(description="The image to encode")
model: str = Field(default="", description="The model to use")
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["latents", "image"],
"type_hints": {"model": "model"},
},
}
@torch.no_grad()
def invoke(self, context: InvocationContext) -> LatentsOutput:
image = context.services.images.get(
self.image.image_type, self.image.image_name
)
# TODO: this only really needs the vae
model_info = choose_model(context.services.model_manager, self.model)
model: StableDiffusionGeneratorPipeline = model_info["model"]
image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB"))
if image_tensor.dim() == 3:
image_tensor = einops.rearrange(image_tensor, "c h w -> 1 c h w")
latents = model.non_noised_latents_from_image(
image_tensor,
device=model._model_group.device_for(model.unet),
dtype=model.unet.dtype,
)
name = f"{context.graph_execution_state_id}__{self.id}"
context.services.latents.set(name, latents)
return LatentsOutput(latents=LatentsField(latents_name=name))