mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
feat: adaptation of Canny processor
Adapted from controlnet processors package fix: do final resize in canny processor canny
This commit is contained in:
parent
ca496f0380
commit
611006b692
@ -7,7 +7,6 @@ from typing import Dict, List, Literal, Union
|
||||
import cv2
|
||||
import numpy as np
|
||||
from controlnet_aux import (
|
||||
CannyDetector,
|
||||
ContentShuffleDetector,
|
||||
HEDdetector,
|
||||
LeresDetector,
|
||||
@ -39,6 +38,7 @@ from invokeai.app.invocations.model import ModelIdentifierField
|
||||
from invokeai.app.invocations.primitives import ImageOutput
|
||||
from invokeai.app.invocations.util import validate_begin_end_step, validate_weights
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.backend.image_util.canny import get_canny_edges
|
||||
from invokeai.backend.image_util.depth_anything import DepthAnythingDetector
|
||||
from invokeai.backend.image_util.dw_openpose import DWOpenposeDetector
|
||||
|
||||
@ -189,14 +189,13 @@ class CannyImageProcessorInvocation(ImageProcessorInvocation):
|
||||
# Keep alpha channel for Canny processing to detect edges of transparent areas
|
||||
return context.images.get_pil(self.image.image_name, "RGBA")
|
||||
|
||||
def run_processor(self, image):
|
||||
canny_processor = CannyDetector()
|
||||
processed_image = canny_processor(
|
||||
def run_processor(self, image: Image.Image) -> Image.Image:
|
||||
processed_image = get_canny_edges(
|
||||
image,
|
||||
self.low_threshold,
|
||||
self.high_threshold,
|
||||
image_resolution=self.image_resolution,
|
||||
detect_resolution=self.detect_resolution,
|
||||
image_resolution=self.image_resolution,
|
||||
)
|
||||
return processed_image
|
||||
|
||||
|
41
invokeai/backend/image_util/canny.py
Normal file
41
invokeai/backend/image_util/canny.py
Normal file
@ -0,0 +1,41 @@
|
||||
import cv2
|
||||
from PIL import Image
|
||||
|
||||
from invokeai.backend.image_util.util import (
|
||||
cv2_to_pil,
|
||||
fit_image_to_resolution,
|
||||
normalize_image_channel_count,
|
||||
pil_to_cv2,
|
||||
)
|
||||
|
||||
|
||||
def get_canny_edges(
|
||||
image: Image.Image, low_threshold: int, high_threshold: int, detect_resolution: int, image_resolution: int
|
||||
) -> Image.Image:
|
||||
"""Returns the edges of an image using the Canny edge detection algorithm.
|
||||
|
||||
This function is adapted from https://github.com/lllyasviel/ControlNet.
|
||||
|
||||
Args:
|
||||
image: The input image.
|
||||
low_threshold: The lower threshold for the hysteresis procedure.
|
||||
high_threshold: The upper threshold for the hysteresis procedure.
|
||||
input_resolution: The resolution of the input image. The image will be resized to this resolution before edge detection.
|
||||
output_resolution: The resolution of the output image. The edges will be resized to this resolution before returning.
|
||||
|
||||
Returns:
|
||||
The Canny edges of the input image.
|
||||
"""
|
||||
|
||||
if image.mode != "RGB":
|
||||
image = image.convert("RGB")
|
||||
|
||||
np_image = pil_to_cv2(image)
|
||||
np_image = normalize_image_channel_count(np_image)
|
||||
np_image = fit_image_to_resolution(np_image, detect_resolution)
|
||||
|
||||
edge_map = cv2.Canny(np_image, low_threshold, high_threshold)
|
||||
edge_map = normalize_image_channel_count(edge_map)
|
||||
edge_map = fit_image_to_resolution(edge_map, image_resolution)
|
||||
|
||||
return cv2_to_pil(edge_map)
|
Loading…
Reference in New Issue
Block a user