mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Handle t2i adapter in modular denoise
This commit is contained in:
parent
7c975f0d00
commit
6af659b1da
@ -62,6 +62,7 @@ from invokeai.backend.stable_diffusion.extensions.controlnet import ControlNetEx
|
||||
from invokeai.backend.stable_diffusion.extensions.freeu import FreeUExt
|
||||
from invokeai.backend.stable_diffusion.extensions.preview import PreviewExt
|
||||
from invokeai.backend.stable_diffusion.extensions.rescale_cfg import RescaleCFGExt
|
||||
from invokeai.backend.stable_diffusion.extensions.t2i_adapter import T2IAdapterExt
|
||||
from invokeai.backend.stable_diffusion.extensions_manager import ExtensionsManager
|
||||
from invokeai.backend.stable_diffusion.schedulers import SCHEDULER_MAP
|
||||
from invokeai.backend.stable_diffusion.schedulers.schedulers import SCHEDULER_NAME_VALUES
|
||||
@ -498,6 +499,33 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
)
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def parse_t2i_adapter_field(
|
||||
exit_stack: ExitStack,
|
||||
context: InvocationContext,
|
||||
t2i_adapters: Optional[Union[T2IAdapterField, list[T2IAdapterField]]],
|
||||
ext_manager: ExtensionsManager,
|
||||
) -> None:
|
||||
if t2i_adapters is None:
|
||||
return
|
||||
|
||||
# Handle the possibility that t2i_adapters could be a list or a single T2IAdapterField.
|
||||
if isinstance(t2i_adapters, T2IAdapterField):
|
||||
t2i_adapters = [t2i_adapters]
|
||||
|
||||
for t2i_adapter_field in t2i_adapters:
|
||||
ext_manager.add_extension(
|
||||
T2IAdapterExt(
|
||||
node_context=context,
|
||||
model_id=t2i_adapter_field.t2i_adapter_model,
|
||||
image=context.images.get_pil(t2i_adapter_field.image.image_name),
|
||||
weight=t2i_adapter_field.weight,
|
||||
begin_step_percent=t2i_adapter_field.begin_step_percent,
|
||||
end_step_percent=t2i_adapter_field.end_step_percent,
|
||||
resize_mode=t2i_adapter_field.resize_mode,
|
||||
)
|
||||
)
|
||||
|
||||
def prep_ip_adapter_image_prompts(
|
||||
self,
|
||||
context: InvocationContext,
|
||||
@ -840,6 +868,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
# ext = extension_field.to_extension(exit_stack, context, ext_manager)
|
||||
# ext_manager.add_extension(ext)
|
||||
self.parse_controlnet_field(exit_stack, context, self.control, ext_manager)
|
||||
self.parse_t2i_adapter_field(exit_stack, context, self.t2i_adapter, ext_manager)
|
||||
|
||||
# ext: t2i/ip adapter
|
||||
ext_manager.run_callback(ExtensionCallbackType.SETUP, denoise_ctx)
|
||||
|
115
invokeai/backend/stable_diffusion/extensions/t2i_adapter.py
Normal file
115
invokeai/backend/stable_diffusion/extensions/t2i_adapter.py
Normal file
@ -0,0 +1,115 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import math
|
||||
from typing import TYPE_CHECKING, List, Optional, Union
|
||||
|
||||
import torch
|
||||
from diffusers import T2IAdapter
|
||||
from PIL.Image import Image
|
||||
|
||||
from invokeai.app.util.controlnet_utils import prepare_control_image
|
||||
from invokeai.backend.model_manager import BaseModelType
|
||||
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningMode
|
||||
from invokeai.backend.stable_diffusion.extension_callback_type import ExtensionCallbackType
|
||||
from invokeai.backend.stable_diffusion.extensions.base import ExtensionBase, callback
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from invokeai.app.invocations.model import ModelIdentifierField
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
from invokeai.app.util.controlnet_utils import CONTROLNET_RESIZE_VALUES
|
||||
from invokeai.backend.stable_diffusion.denoise_context import DenoiseContext
|
||||
|
||||
|
||||
class T2IAdapterExt(ExtensionBase):
|
||||
def __init__(
|
||||
self,
|
||||
node_context: InvocationContext,
|
||||
model_id: ModelIdentifierField,
|
||||
image: Image,
|
||||
weight: Union[float, List[float]],
|
||||
begin_step_percent: float,
|
||||
end_step_percent: float,
|
||||
resize_mode: CONTROLNET_RESIZE_VALUES,
|
||||
):
|
||||
super().__init__()
|
||||
self._node_context = node_context
|
||||
self._model_id = model_id
|
||||
self._image = image
|
||||
self._weight = weight
|
||||
self._resize_mode = resize_mode
|
||||
self._begin_step_percent = begin_step_percent
|
||||
self._end_step_percent = end_step_percent
|
||||
|
||||
self._adapter_state: Optional[List[torch.Tensor]] = None
|
||||
|
||||
# The max_unet_downscale is the maximum amount that the UNet model downscales the latent image internally.
|
||||
model_config = self._node_context.models.get_config(self._model_id.key)
|
||||
if model_config.base == BaseModelType.StableDiffusion1:
|
||||
self._max_unet_downscale = 8
|
||||
elif model_config.base == BaseModelType.StableDiffusionXL:
|
||||
self._max_unet_downscale = 4
|
||||
else:
|
||||
raise ValueError(f"Unexpected T2I-Adapter base model type: '{model_config.base}'.")
|
||||
|
||||
@callback(ExtensionCallbackType.SETUP)
|
||||
def setup(self, ctx: DenoiseContext):
|
||||
t2i_model: T2IAdapter
|
||||
with self._node_context.models.load(self._model_id) as t2i_model:
|
||||
_, _, latents_height, latents_width = ctx.inputs.orig_latents.shape
|
||||
|
||||
self._adapter_state = self._run_model(
|
||||
model=t2i_model,
|
||||
image=self._image,
|
||||
latents_height=latents_height,
|
||||
latents_width=latents_width,
|
||||
max_unet_downscale=self._max_unet_downscale,
|
||||
resize_mode=self._resize_mode,
|
||||
)
|
||||
|
||||
def _run_model(
|
||||
self,
|
||||
model: T2IAdapter,
|
||||
image: Image,
|
||||
latents_height: int,
|
||||
latents_width: int,
|
||||
max_unet_downscale: int,
|
||||
resize_mode: CONTROLNET_RESIZE_VALUES,
|
||||
):
|
||||
input_height = latents_height // max_unet_downscale * model.total_downscale_factor
|
||||
input_width = latents_width // max_unet_downscale * model.total_downscale_factor
|
||||
|
||||
t2i_image = prepare_control_image(
|
||||
image=image,
|
||||
do_classifier_free_guidance=False,
|
||||
width=input_width,
|
||||
height=input_height,
|
||||
num_channels=model.config["in_channels"], # mypy treats this as a FrozenDict
|
||||
device=model.device,
|
||||
dtype=model.dtype,
|
||||
resize_mode=resize_mode,
|
||||
)
|
||||
|
||||
return model(t2i_image)
|
||||
|
||||
@callback(ExtensionCallbackType.PRE_UNET)
|
||||
def pre_unet_step(self, ctx: DenoiseContext):
|
||||
# skip if model not active in current step
|
||||
total_steps = len(ctx.inputs.timesteps)
|
||||
first_step = math.floor(self._begin_step_percent * total_steps)
|
||||
last_step = math.ceil(self._end_step_percent * total_steps)
|
||||
if ctx.step_index < first_step or ctx.step_index > last_step:
|
||||
return
|
||||
|
||||
weight = self._weight
|
||||
if isinstance(weight, list):
|
||||
weight = weight[ctx.step_index]
|
||||
|
||||
adapter_state = self._adapter_state
|
||||
if ctx.conditioning_mode == ConditioningMode.Both:
|
||||
adapter_state = [torch.cat([v] * 2) for v in adapter_state]
|
||||
|
||||
if ctx.unet_kwargs.down_intrablock_additional_residuals is None:
|
||||
ctx.unet_kwargs.down_intrablock_additional_residuals = [v * weight for v in adapter_state]
|
||||
else:
|
||||
for i, value in enumerate(adapter_state):
|
||||
ctx.unet_kwargs.down_intrablock_additional_residuals[i] += value * weight
|
Loading…
Reference in New Issue
Block a user