mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
add ability to import and edit alternative models online
- !import_model <path/to/model/weights> will import a new model, prompt the user for its name and description, write it to the models.yaml file, and load it. - !edit_model <model_name> will bring up a previously-defined model and prompt the user to edit its descriptive fields. Example of !import_model <pre> invoke> <b>!import_model models/ldm/stable-diffusion-v1/model-epoch08-float16.ckpt</b> >> Model import in process. Please enter the values needed to configure this model: Name for this model: <b>waifu-diffusion</b> Description of this model: <b>Waifu Diffusion v1.3</b> Configuration file for this model: <b>configs/stable-diffusion/v1-inference.yaml</b> Default image width: <b>512</b> Default image height: <b>512</b> >> New configuration: waifu-diffusion: config: configs/stable-diffusion/v1-inference.yaml description: Waifu Diffusion v1.3 height: 512 weights: models/ldm/stable-diffusion-v1/model-epoch08-float16.ckpt width: 512 OK to import [n]? <b>y</b> >> Caching model stable-diffusion-1.4 in system RAM >> Loading waifu-diffusion from models/ldm/stable-diffusion-v1/model-epoch08-float16.ckpt | LatentDiffusion: Running in eps-prediction mode | DiffusionWrapper has 859.52 M params. | Making attention of type 'vanilla' with 512 in_channels | Working with z of shape (1, 4, 32, 32) = 4096 dimensions. | Making attention of type 'vanilla' with 512 in_channels | Using faster float16 precision </pre> Example of !edit_model <pre> invoke> <b>!edit_model waifu-diffusion</b> >> Editing model waifu-diffusion from configuration file ./configs/models.yaml description: <b>Waifu diffusion v1.4beta</b> weights: models/ldm/stable-diffusion-v1/<b>model-epoch10-float16.ckpt</b> config: configs/stable-diffusion/v1-inference.yaml width: 512 height: 512 >> New configuration: waifu-diffusion: config: configs/stable-diffusion/v1-inference.yaml description: Waifu diffusion v1.4beta weights: models/ldm/stable-diffusion-v1/model-epoch10-float16.ckpt height: 512 width: 512 OK to import [n]? y >> Caching model stable-diffusion-1.4 in system RAM >> Loading waifu-diffusion from models/ldm/stable-diffusion-v1/model-epoch10-float16.ckpt ... </pre>
This commit is contained in:
parent
916f5bfbb2
commit
6afc0f9b38
@ -157,7 +157,8 @@ Here are the invoke> command that apply to txt2img:
|
||||
| --gfpgan_strength <float> | -G <float> | -G0 | Fix faces using the GFPGAN algorithm; argument indicates how hard the algorithm should try (0.0-1.0) |
|
||||
| --save_original | -save_orig| False | When upscaling or fixing faces, this will cause the original image to be saved rather than replaced. |
|
||||
| --variation <float> |-v<float>| 0.0 | Add a bit of noise (0.0=none, 1.0=high) to the image in order to generate a series of variations. Usually used in combination with -S<seed> and -n<int> to generate a series a riffs on a starting image. See [Variations](./VARIATIONS.md). |
|
||||
| --with_variations <pattern> | -V<pattern>| None | Combine two or more variations. See [Variations](./VARIATIONS.md) for now to use this. |
|
||||
| --with_variations <pattern> | | None | Combine two or more variations. See [Variations](./VARIATIONS.md) for now to use this. |
|
||||
| --save_intermediates <n> | | None | Save the image from every nth step into an "intermediates" folder inside the output directory |
|
||||
|
||||
Note that the width and height of the image must be multiples of
|
||||
64. You can provide different values, but they will be rounded down to
|
||||
@ -206,10 +207,10 @@ well as the --mask (-M) argument:
|
||||
| --init_mask <path> | -M<path> | None |Path to an image the same size as the initial_image, with areas for inpainting made transparent.|
|
||||
|
||||
|
||||
# Convenience commands
|
||||
# Postprocessing
|
||||
|
||||
In addition to the standard image generation arguments, there are a
|
||||
series of convenience commands that begin with !:
|
||||
To postprocess a file using face restoration or upscaling, use the
|
||||
`!fix` command.
|
||||
|
||||
## !fix
|
||||
|
||||
@ -243,21 +244,156 @@ Outputs:
|
||||
[2] outputs/img-samples/000018.2273800735.embiggen-00.png: !fix "outputs/img-samples/000017.243781548.gfpgan-00.png" -s 50 -S 2273800735 -W 512 -H 512 -C 7.5 -A k_lms --embiggen 3.0 0.75 0.25
|
||||
~~~
|
||||
|
||||
## !fetch
|
||||
# Model selection and importation
|
||||
|
||||
This command retrieves the generation parameters from a previously
|
||||
generated image and either loads them into the command line. You may
|
||||
provide either the name of a file in the current output directory, or
|
||||
a full file path.
|
||||
The CLI allows you to add new models on the fly, as well as to switch
|
||||
among them rapidly without leaving the script.
|
||||
|
||||
~~~
|
||||
invoke> !fetch 0000015.8929913.png
|
||||
# the script returns the next line, ready for editing and running:
|
||||
invoke> a fantastic alien landscape -W 576 -H 512 -s 60 -A plms -C 7.5
|
||||
~~~
|
||||
## !models
|
||||
|
||||
Note that this command may behave unexpectedly if given a PNG file that
|
||||
was not generated by InvokeAI.
|
||||
This prints out a list of the models defined in `config/models.yaml'.
|
||||
The active model is bold-faced
|
||||
|
||||
Example:
|
||||
<pre>
|
||||
laion400m not loaded <no description>
|
||||
<b>stable-diffusion-1.4 active Stable Diffusion v1.4</b>
|
||||
waifu-diffusion not loaded Waifu Diffusion v1.3
|
||||
</pre>
|
||||
|
||||
## !switch <model>
|
||||
|
||||
This quickly switches from one model to another without leaving the
|
||||
CLI script. `invoke.py` uses a memory caching system; once a model
|
||||
has been loaded, switching back and forth is quick. The following
|
||||
example shows this in action. Note how the second column of the
|
||||
`!models` table changes to `cached` after a model is first loaded,
|
||||
and that the long initialization step is not needed when loading
|
||||
a cached model.
|
||||
|
||||
<pre>
|
||||
invoke> !models
|
||||
laion400m not loaded <no description>
|
||||
<b>stable-diffusion-1.4 cached Stable Diffusion v1.4</b>
|
||||
waifu-diffusion active Waifu Diffusion v1.3
|
||||
|
||||
invoke> !switch waifu-diffusion
|
||||
>> Caching model stable-diffusion-1.4 in system RAM
|
||||
>> Loading waifu-diffusion from models/ldm/stable-diffusion-v1/model-epoch08-float16.ckpt
|
||||
| LatentDiffusion: Running in eps-prediction mode
|
||||
| DiffusionWrapper has 859.52 M params.
|
||||
| Making attention of type 'vanilla' with 512 in_channels
|
||||
| Working with z of shape (1, 4, 32, 32) = 4096 dimensions.
|
||||
| Making attention of type 'vanilla' with 512 in_channels
|
||||
| Using faster float16 precision
|
||||
>> Model loaded in 18.24s
|
||||
>> Max VRAM used to load the model: 2.17G
|
||||
>> Current VRAM usage:2.17G
|
||||
>> Setting Sampler to k_lms
|
||||
|
||||
invoke> !models
|
||||
laion400m not loaded <no description>
|
||||
stable-diffusion-1.4 cached Stable Diffusion v1.4
|
||||
<b>waifu-diffusion active Waifu Diffusion v1.3</b>
|
||||
|
||||
invoke> !switch stable-diffusion-1.4
|
||||
>> Caching model waifu-diffusion in system RAM
|
||||
>> Retrieving model stable-diffusion-1.4 from system RAM cache
|
||||
>> Setting Sampler to k_lms
|
||||
|
||||
invoke> !models
|
||||
laion400m not loaded <no description>
|
||||
<b>stable-diffusion-1.4 active Stable Diffusion v1.4</b>
|
||||
waifu-diffusion cached Waifu Diffusion v1.3
|
||||
</pre>
|
||||
|
||||
## !import_model <path/to/model/weights>
|
||||
|
||||
This command imports a new model weights file into InvokeAI, makes it
|
||||
available for image generation within the script, and writes out the
|
||||
configuration for the model into `config/models.yaml` for use in
|
||||
subsequent sessions.
|
||||
|
||||
Provide `!import_model` with the path to a weights file ending in
|
||||
`.ckpt`. If you type a partial path and press tab, the CLI will
|
||||
autocomplete. Although it will also autocomplete to `.vae` files,
|
||||
these are not currenty supported (but will be soon).
|
||||
|
||||
When you hit return, the CLI will prompt you to fill in additional
|
||||
information about the model, including the short name you wish to use
|
||||
for it with the `!switch` command, a brief description of the model,
|
||||
the default image width and height to use with this model, and the
|
||||
model's configuration file. The latter three fields are automatically
|
||||
filled with reasonable defaults. In the example below, the bold-faced
|
||||
text shows what the user typed in with the exception of the width,
|
||||
height and configuration file paths, which were filled in
|
||||
automatically.
|
||||
|
||||
Example:
|
||||
|
||||
<pre>
|
||||
invoke> <b>!import_model models/ldm/stable-diffusion-v1/model-epoch08-float16.ckpt</b>
|
||||
>> Model import in process. Please enter the values needed to configure this model:
|
||||
|
||||
Name for this model: <b>waifu-diffusion</b>
|
||||
Description of this model: <b>Waifu Diffusion v1.3</b>
|
||||
Configuration file for this model: <b>configs/stable-diffusion/v1-inference.yaml</b>
|
||||
Default image width: <b>512</b>
|
||||
Default image height: <b>512</b>
|
||||
>> New configuration:
|
||||
waifu-diffusion:
|
||||
config: configs/stable-diffusion/v1-inference.yaml
|
||||
description: Really horrible Hentai pictures
|
||||
height: 512
|
||||
weights: models/ldm/stable-diffusion-v1/RD1412.ckpt
|
||||
width: 512
|
||||
OK to import [n]? <b>y</b>
|
||||
>> Caching model stable-diffusion-1.4 in system RAM
|
||||
>> Loading waifu-diffusion from models/ldm/stable-diffusion-v1/model-epoch08-float16.ckpt
|
||||
| LatentDiffusion: Running in eps-prediction mode
|
||||
| DiffusionWrapper has 859.52 M params.
|
||||
| Making attention of type 'vanilla' with 512 in_channels
|
||||
| Working with z of shape (1, 4, 32, 32) = 4096 dimensions.
|
||||
| Making attention of type 'vanilla' with 512 in_channels
|
||||
| Using faster float16 precision
|
||||
invoke>
|
||||
</pre>
|
||||
|
||||
##!edit_model <name_of_model>
|
||||
|
||||
The `!edit_model` command can be used to modify a model that is
|
||||
already defined in `config/models.yaml`. Call it with the short
|
||||
name of the model you wish to modify, and it will allow you to
|
||||
modify the model's `description`, `weights` and other fields.
|
||||
|
||||
Example:
|
||||
<pre>
|
||||
invoke> <b>!edit_model waifu-diffusion</b>
|
||||
>> Editing model waifu-diffusion from configuration file ./configs/models.yaml
|
||||
description: <b>Waifu diffusion v1.4beta</b>
|
||||
weights: models/ldm/stable-diffusion-v1/<b>model-epoch10-float16.ckpt</b>
|
||||
config: configs/stable-diffusion/v1-inference.yaml
|
||||
width: 512
|
||||
height: 512
|
||||
|
||||
>> New configuration:
|
||||
waifu-diffusion:
|
||||
config: configs/stable-diffusion/v1-inference.yaml
|
||||
description: Waifu diffusion v1.4beta
|
||||
weights: models/ldm/stable-diffusion-v1/model-epoch10-float16.ckpt
|
||||
height: 512
|
||||
width: 512
|
||||
|
||||
OK to import [n]? y
|
||||
>> Caching model stable-diffusion-1.4 in system RAM
|
||||
>> Loading waifu-diffusion from models/ldm/stable-diffusion-v1/model-epoch10-float16.ckpt
|
||||
...
|
||||
</pre>
|
||||
|
||||
# History processing
|
||||
|
||||
The CLI provides a series of convenient commands for reviewing previous
|
||||
actions, retrieving them, modifying them, and re-running them.
|
||||
|
||||
## !history
|
||||
|
||||
@ -284,6 +420,22 @@ invoke> !20
|
||||
invoke> watercolor of beautiful woman sitting under tree wearing broad hat and flowing garment -v0.2 -n6 -S2878767194
|
||||
~~~
|
||||
|
||||
## !fetch
|
||||
|
||||
This command retrieves the generation parameters from a previously
|
||||
generated image and either loads them into the command line. You may
|
||||
provide either the name of a file in the current output directory, or
|
||||
a full file path.
|
||||
|
||||
~~~
|
||||
invoke> !fetch 0000015.8929913.png
|
||||
# the script returns the next line, ready for editing and running:
|
||||
invoke> a fantastic alien landscape -W 576 -H 512 -s 60 -A plms -C 7.5
|
||||
~~~
|
||||
|
||||
Note that this command may behave unexpectedly if given a PNG file that
|
||||
was not generated by InvokeAI.
|
||||
|
||||
## !search <search string>
|
||||
|
||||
This is similar to !history but it only returns lines that contain
|
||||
|
@ -121,6 +121,26 @@ class ModelCache(object):
|
||||
else:
|
||||
print(line)
|
||||
|
||||
def add_model(self, model_name:str, model_attributes:dict, clobber=False) ->str:
|
||||
'''
|
||||
Update the named model with a dictionary of attributes. Will fail with an
|
||||
assertion error if the name already exists. Pass clobber=True to overwrite.
|
||||
On a successful update, the config will be changed in memory and a YAML
|
||||
string will be returned.
|
||||
'''
|
||||
omega = self.config
|
||||
# check that all the required fields are present
|
||||
for field in ('description','weights','height','width','config'):
|
||||
assert field in model_attributes, f'required field {field} is missing'
|
||||
|
||||
assert (clobber or model_name not in omega), f'attempt to overwrite existing model definition "{model_name}"'
|
||||
config = omega[model_name] if model_name in omega else {}
|
||||
for field in model_attributes:
|
||||
config[field] = model_attributes[field]
|
||||
|
||||
omega[model_name] = config
|
||||
return OmegaConf.to_yaml(omega)
|
||||
|
||||
def _check_memory(self):
|
||||
avail_memory = psutil.virtual_memory()[1]
|
||||
if AVG_MODEL_SIZE + self.min_avail_mem > avail_memory:
|
||||
@ -163,10 +183,10 @@ class ModelCache(object):
|
||||
m, u = model.load_state_dict(sd, strict=False)
|
||||
|
||||
if self.precision == 'float16':
|
||||
print('>> Using faster float16 precision')
|
||||
print(' | Using faster float16 precision')
|
||||
model.to(torch.float16)
|
||||
else:
|
||||
print('>> Using more accurate float32 precision')
|
||||
print(' | Using more accurate float32 precision')
|
||||
|
||||
model.to(self.device)
|
||||
# model.to doesn't change the cond_stage_model.device used to move the tokenizer output, so set it here
|
||||
|
@ -21,6 +21,8 @@ except (ImportError,ModuleNotFoundError):
|
||||
readline_available = False
|
||||
|
||||
IMG_EXTENSIONS = ('.png','.jpg','.jpeg','.PNG','.JPG','.JPEG','.gif','.GIF')
|
||||
WEIGHT_EXTENSIONS = ('.ckpt','.bae')
|
||||
CONFIG_EXTENSIONS = ('.yaml','.yml')
|
||||
COMMANDS = (
|
||||
'--steps','-s',
|
||||
'--seed','-S',
|
||||
@ -47,10 +49,15 @@ COMMANDS = (
|
||||
'--skip_normalize','-x',
|
||||
'--log_tokenization','-t',
|
||||
'--hires_fix',
|
||||
'!fix','!fetch','!history','!search','!clear','!models','!switch',
|
||||
'!fix','!fetch','!history','!search','!clear',
|
||||
'!models','!switch','!import_model','!edit_model'
|
||||
)
|
||||
MODEL_COMMANDS = (
|
||||
'!switch',
|
||||
'!edit_model',
|
||||
)
|
||||
WEIGHT_COMMANDS = (
|
||||
'!import_model',
|
||||
)
|
||||
IMG_PATH_COMMANDS = (
|
||||
'--outdir[=\s]',
|
||||
@ -64,6 +71,7 @@ IMG_FILE_COMMANDS=(
|
||||
'--embedding_path[=\s]',
|
||||
)
|
||||
path_regexp = '('+'|'.join(IMG_PATH_COMMANDS+IMG_FILE_COMMANDS) + ')\s*\S*$'
|
||||
weight_regexp = '('+'|'.join(WEIGHT_COMMANDS) + ')\s*\S*$'
|
||||
|
||||
class Completer(object):
|
||||
def __init__(self, options, models=[]):
|
||||
@ -74,6 +82,7 @@ class Completer(object):
|
||||
self.default_dir = None
|
||||
self.linebuffer = None
|
||||
self.auto_history_active = True
|
||||
self.extensions = None
|
||||
return
|
||||
|
||||
def complete(self, text, state):
|
||||
@ -84,7 +93,13 @@ class Completer(object):
|
||||
buffer = readline.get_line_buffer()
|
||||
|
||||
if state == 0:
|
||||
if re.search(path_regexp,buffer):
|
||||
|
||||
# extensions defined, so go directly into path completion mode
|
||||
if self.extensions is not None:
|
||||
self.matches = self._path_completions(text, state, self.extensions)
|
||||
|
||||
# looking for an image file
|
||||
elif re.search(path_regexp,buffer):
|
||||
do_shortcut = re.search('^'+'|'.join(IMG_FILE_COMMANDS),buffer)
|
||||
self.matches = self._path_completions(text, state, IMG_EXTENSIONS,shortcut_ok=do_shortcut)
|
||||
|
||||
@ -92,8 +107,12 @@ class Completer(object):
|
||||
elif re.search('(-S\s*|--seed[=\s])\d*$',buffer):
|
||||
self.matches= self._seed_completions(text,state)
|
||||
|
||||
# looking for a model
|
||||
elif re.match('^'+'|'.join(MODEL_COMMANDS),buffer):
|
||||
self.matches= self._model_completions(text,state)
|
||||
self.matches= self._model_completions(text, state)
|
||||
|
||||
elif re.search(weight_regexp,buffer):
|
||||
self.matches = self._path_completions(text, state, WEIGHT_EXTENSIONS)
|
||||
|
||||
# This is the first time for this text, so build a match list.
|
||||
elif text:
|
||||
@ -111,6 +130,13 @@ class Completer(object):
|
||||
response = None
|
||||
return response
|
||||
|
||||
def complete_extensions(self, extensions:list):
|
||||
'''
|
||||
If called with a list of extensions, will force completer
|
||||
to do file path completions.
|
||||
'''
|
||||
self.extensions=extensions
|
||||
|
||||
def add_history(self,line):
|
||||
'''
|
||||
Pass thru to readline
|
||||
|
@ -106,7 +106,7 @@ class DDPM(pl.LightningModule):
|
||||
], 'currently only supporting "eps" and "x0"'
|
||||
self.parameterization = parameterization
|
||||
print(
|
||||
f' >> {self.__class__.__name__}: Running in {self.parameterization}-prediction mode'
|
||||
f' | {self.__class__.__name__}: Running in {self.parameterization}-prediction mode'
|
||||
)
|
||||
self.cond_stage_model = None
|
||||
self.clip_denoised = clip_denoised
|
||||
|
@ -245,7 +245,7 @@ class AttnBlock(nn.Module):
|
||||
|
||||
def make_attn(in_channels, attn_type="vanilla"):
|
||||
assert attn_type in ["vanilla", "linear", "none"], f'attn_type {attn_type} unknown'
|
||||
print(f" >> Making attention of type '{attn_type}' with {in_channels} in_channels")
|
||||
print(f" | Making attention of type '{attn_type}' with {in_channels} in_channels")
|
||||
if attn_type == "vanilla":
|
||||
return AttnBlock(in_channels)
|
||||
elif attn_type == "none":
|
||||
@ -521,7 +521,7 @@ class Decoder(nn.Module):
|
||||
block_in = ch*ch_mult[self.num_resolutions-1]
|
||||
curr_res = resolution // 2**(self.num_resolutions-1)
|
||||
self.z_shape = (1,z_channels,curr_res,curr_res)
|
||||
print(" >> Working with z of shape {} = {} dimensions.".format(
|
||||
print(" | Working with z of shape {} = {} dimensions.".format(
|
||||
self.z_shape, np.prod(self.z_shape)))
|
||||
|
||||
# z to block_in
|
||||
|
@ -75,7 +75,7 @@ def count_params(model, verbose=False):
|
||||
total_params = sum(p.numel() for p in model.parameters())
|
||||
if verbose:
|
||||
print(
|
||||
f' >> {model.__class__.__name__} has {total_params * 1.e-6:.2f} M params.'
|
||||
f' | {model.__class__.__name__} has {total_params * 1.e-6:.2f} M params.'
|
||||
)
|
||||
return total_params
|
||||
|
||||
|
@ -9,6 +9,7 @@ import copy
|
||||
import warnings
|
||||
import time
|
||||
import traceback
|
||||
import yaml
|
||||
sys.path.append('.') # corrects a weird problem on Macs
|
||||
from ldm.invoke.readline import get_completer
|
||||
from ldm.invoke.args import Args, metadata_dumps, metadata_from_png, dream_cmd_from_png
|
||||
@ -108,6 +109,7 @@ def main_loop(gen, opt, infile):
|
||||
# output directory specified at the time of script launch. We do not currently support
|
||||
# changing the history file midstream when the output directory is changed.
|
||||
completer = get_completer(opt, models=list(model_config.keys()))
|
||||
completer.set_default_dir(opt.outdir)
|
||||
output_cntr = completer.get_current_history_length()+1
|
||||
|
||||
# os.pathconf is not available on Windows
|
||||
@ -119,10 +121,8 @@ def main_loop(gen, opt, infile):
|
||||
name_max = 255
|
||||
|
||||
while not done:
|
||||
operation = 'generate' # default operation, alternative is 'postprocess'
|
||||
|
||||
if completer:
|
||||
completer.set_default_dir(opt.outdir)
|
||||
operation = 'generate'
|
||||
|
||||
try:
|
||||
command = get_next_command(infile)
|
||||
@ -142,53 +142,11 @@ def main_loop(gen, opt, infile):
|
||||
break
|
||||
|
||||
if command.startswith('!'):
|
||||
subcommand = command[1:]
|
||||
command, operation = do_command(command, gen, opt, completer)
|
||||
|
||||
if subcommand.startswith('dream'): # in case a stored prompt still contains the !dream command
|
||||
command = command.replace('!dream ','',1)
|
||||
|
||||
elif subcommand.startswith('fix'):
|
||||
command = command.replace('!fix ','',1)
|
||||
operation = 'postprocess'
|
||||
|
||||
elif subcommand.startswith('switch'):
|
||||
model_name = command.replace('!switch ','',1)
|
||||
gen.set_model(model_name)
|
||||
completer.add_history(command)
|
||||
if operation is None:
|
||||
continue
|
||||
|
||||
elif subcommand.startswith('models'):
|
||||
model_name = command.replace('!models ','',1)
|
||||
gen.model_cache.print_models()
|
||||
continue
|
||||
|
||||
elif subcommand.startswith('fetch'):
|
||||
file_path = command.replace('!fetch ','',1)
|
||||
retrieve_dream_command(opt,file_path,completer)
|
||||
continue
|
||||
|
||||
elif subcommand.startswith('history'):
|
||||
completer.show_history()
|
||||
continue
|
||||
|
||||
elif subcommand.startswith('search'):
|
||||
search_str = command.replace('!search ','',1)
|
||||
completer.show_history(search_str)
|
||||
continue
|
||||
|
||||
elif subcommand.startswith('clear'):
|
||||
completer.clear_history()
|
||||
continue
|
||||
|
||||
elif re.match('^(\d+)',subcommand):
|
||||
command_no = re.match('^(\d+)',subcommand).groups()[0]
|
||||
command = completer.get_line(int(command_no))
|
||||
completer.set_line(command)
|
||||
continue
|
||||
|
||||
else: # not a recognized subcommand, so give the --help text
|
||||
command = '-h'
|
||||
|
||||
if opt.parse_cmd(command) is None:
|
||||
continue
|
||||
|
||||
@ -381,6 +339,155 @@ def main_loop(gen, opt, infile):
|
||||
|
||||
print('goodbye!')
|
||||
|
||||
def do_command(command:str, gen, opt:Args, completer) -> tuple:
|
||||
operation = 'generate' # default operation, alternative is 'postprocess'
|
||||
|
||||
if command.startswith('!dream'): # in case a stored prompt still contains the !dream command
|
||||
command = command.replace('!dream ','',1)
|
||||
|
||||
elif command.startswith('!fix'):
|
||||
command = command.replace('!fix ','',1)
|
||||
operation = 'postprocess'
|
||||
|
||||
elif command.startswith('!switch'):
|
||||
model_name = command.replace('!switch ','',1)
|
||||
gen.set_model(model_name)
|
||||
completer.add_history(command)
|
||||
operation = None
|
||||
|
||||
elif command.startswith('!models'):
|
||||
gen.model_cache.print_models()
|
||||
operation = None
|
||||
|
||||
elif command.startswith('!import'):
|
||||
path = shlex.split(command)
|
||||
if len(path) < 2:
|
||||
print('** please provide a path to a .ckpt or .vae model file')
|
||||
elif not os.path.exists(path[1]):
|
||||
print(f'** {path[1]}: file not found')
|
||||
else:
|
||||
add_weights_to_config(path[1], gen, opt, completer)
|
||||
completer.add_history(command)
|
||||
operation = None
|
||||
|
||||
elif command.startswith('!edit'):
|
||||
path = shlex.split(command)
|
||||
if len(path) < 2:
|
||||
print('** please provide the name of a model')
|
||||
else:
|
||||
edit_config(path[1], gen, opt, completer)
|
||||
completer.add_history(command)
|
||||
operation = None
|
||||
|
||||
elif command.startswith('!fetch'):
|
||||
file_path = command.replace('!fetch ','',1)
|
||||
retrieve_dream_command(opt,file_path,completer)
|
||||
operation = None
|
||||
|
||||
elif command.startswith('!history'):
|
||||
completer.show_history()
|
||||
operation = None
|
||||
|
||||
elif command.startswith('!search'):
|
||||
search_str = command.replace('!search ','',1)
|
||||
completer.show_history(search_str)
|
||||
operation = None
|
||||
|
||||
elif command.startswith('!clear'):
|
||||
completer.clear_history()
|
||||
operation = None
|
||||
|
||||
elif re.match('^!(\d+)',command):
|
||||
command_no = re.match('^!(\d+)',command).groups()[0]
|
||||
command = completer.get_line(int(command_no))
|
||||
completer.set_line(command)
|
||||
operation = None
|
||||
|
||||
else: # not a recognized command, so give the --help text
|
||||
command = '-h'
|
||||
return command, operation
|
||||
|
||||
def add_weights_to_config(model_path:str, gen, opt, completer):
|
||||
print(f'>> Model import in process. Please enter the values needed to configure this model:')
|
||||
print()
|
||||
|
||||
new_config = {}
|
||||
new_config['weights'] = model_path
|
||||
|
||||
done = False
|
||||
while not done:
|
||||
model_name = input('Name for this model: ')
|
||||
if not re.match('^[\w._-]+$',model_name):
|
||||
print('** model name must contain only words, digits and the characters [._-] **')
|
||||
else:
|
||||
done = True
|
||||
new_config['description'] = input('Description of this model: ')
|
||||
|
||||
completer.complete_extensions(('.yaml','.yml'))
|
||||
completer.linebuffer = 'configs/stable-diffusion/v1-inference.yaml'
|
||||
|
||||
done = False
|
||||
while not done:
|
||||
new_config['config'] = input('Configuration file for this model: ')
|
||||
done = os.path.exists(new_config['config'])
|
||||
|
||||
completer.complete_extensions(None)
|
||||
|
||||
for field in ('width','height'):
|
||||
done = False
|
||||
while not done:
|
||||
try:
|
||||
completer.linebuffer = '512'
|
||||
value = int(input(f'Default image {field}: '))
|
||||
assert value >= 64 and value <= 2048
|
||||
new_config[field] = value
|
||||
done = True
|
||||
except:
|
||||
print('** Please enter a valid integer between 64 and 2048')
|
||||
|
||||
if write_config_file(opt.conf, gen, model_name, new_config):
|
||||
gen.set_model(model_name)
|
||||
|
||||
def edit_config(model_name:str, gen, opt, completer):
|
||||
config = gen.model_cache.config
|
||||
|
||||
if model_name not in config:
|
||||
print(f'** Unknown model {model_name}')
|
||||
return
|
||||
|
||||
print(f'\n>> Editing model {model_name} from configuration file {opt.conf}')
|
||||
|
||||
conf = config[model_name]
|
||||
new_config = {}
|
||||
completer.complete_extensions(('.yaml','.yml','.ckpt','.vae'))
|
||||
for field in ('description', 'weights', 'config', 'width','height'):
|
||||
completer.linebuffer = str(conf[field]) if field in conf else ''
|
||||
new_value = input(f'{field}: ')
|
||||
new_config[field] = int(new_value) if field in ('width','height') else new_value
|
||||
completer.complete_extensions(None)
|
||||
|
||||
if write_config_file(opt.conf, gen, model_name, new_config, clobber=True):
|
||||
gen.set_model(model_name)
|
||||
|
||||
def write_config_file(conf_path, gen, model_name, new_config, clobber=False):
|
||||
op = 'modify' if clobber else 'import'
|
||||
print('\n>> New configuration:')
|
||||
print(yaml.dump({model_name:new_config}))
|
||||
if input(f'OK to {op} [n]? ') not in ('y','Y'):
|
||||
return False
|
||||
|
||||
try:
|
||||
yaml_str = gen.model_cache.add_model(model_name, new_config, clobber)
|
||||
except AssertionError as e:
|
||||
print(f'** configuration failed: {str(e)}')
|
||||
return False
|
||||
|
||||
tmpfile = os.path.join(os.path.dirname(conf_path),'new_config.tmp')
|
||||
with open(tmpfile, 'w') as outfile:
|
||||
outfile.write(yaml_str)
|
||||
os.rename(tmpfile,conf_path)
|
||||
return True
|
||||
|
||||
def do_postprocess (gen, opt, callback):
|
||||
file_path = opt.prompt # treat the prompt as the file pathname
|
||||
if os.path.dirname(file_path) == '': #basename given
|
||||
|
Loading…
Reference in New Issue
Block a user