mirror of
https://github.com/invoke-ai/InvokeAI
synced 2025-07-25 21:05:37 +00:00
(minor) Tidy prepare_control_image(...).
This commit is contained in:
@ -268,10 +268,8 @@ def prepare_control_image(
|
||||
# image used to be Union[PIL.Image.Image, List[PIL.Image.Image], torch.Tensor, List[torch.Tensor]]
|
||||
# but now should be able to assume that image is a single PIL.Image, which simplifies things
|
||||
image: Image,
|
||||
# FIXME: need to fix hardwiring of width and height, change to basing on latents dimensions?
|
||||
# latents_to_match_resolution, # TorchTensor of shape (batch_size, 3, height, width)
|
||||
width=512, # should be 8 * latent.shape[3]
|
||||
height=512, # should be 8 * latent height[2]
|
||||
width: int, # should be 8 * latent.shape[3]
|
||||
height: int, # should be 8 * latent height[2]
|
||||
# batch_size=1, # currently no batching
|
||||
# num_images_per_prompt=1, # currently only single image
|
||||
device="cuda",
|
||||
@ -289,10 +287,10 @@ def prepare_control_image(
|
||||
image = image.convert("RGB")
|
||||
if resize_mode == "just_resize_simple":
|
||||
image = image.resize((width, height), resample=PIL_INTERPOLATION["lanczos"])
|
||||
elif resize_mode == "crop_resize_simple": # not yet implemented
|
||||
pass
|
||||
elif resize_mode == "fill_resize_simple": # not yet implemented
|
||||
pass
|
||||
elif resize_mode == "crop_resize_simple":
|
||||
raise NotImplementedError(f"prepare_control_image is not implemented for resize_mode='{resize_mode}'.")
|
||||
elif resize_mode == "fill_resize_simple":
|
||||
raise NotImplementedError(f"prepare_control_image is not implemented for resize_mode='{resize_mode}'.")
|
||||
nimage = np.array(image)
|
||||
nimage = nimage[None, :]
|
||||
nimage = np.concatenate([nimage], axis=0)
|
||||
@ -313,9 +311,7 @@ def prepare_control_image(
|
||||
device=device,
|
||||
)
|
||||
else:
|
||||
pass
|
||||
print("ERROR: invalid resize_mode ==> ", resize_mode)
|
||||
exit(1)
|
||||
raise ValueError(f"Unsupported resize_mode: '{resize_mode}'.")
|
||||
|
||||
timage = timage.to(device=device, dtype=dtype)
|
||||
cfg_injection = control_mode == "more_control" or control_mode == "unbalanced"
|
||||
|
Reference in New Issue
Block a user