mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Added first controlnet preprocessor node for canny edge detection.
This commit is contained in:
parent
ca0669c337
commit
6ed0efa938
48
invokeai/app/invocations/controlnet_image_processors.py
Normal file
48
invokeai/app/invocations/controlnet_image_processors.py
Normal file
@ -0,0 +1,48 @@
|
||||
from typing import Literal, Optional
|
||||
|
||||
import numpy
|
||||
from PIL import Image, ImageFilter, ImageOps
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from ..models.image import ImageField, ImageType
|
||||
from .baseinvocation import (
|
||||
BaseInvocation,
|
||||
BaseInvocationOutput,
|
||||
InvocationContext,
|
||||
InvocationConfig,
|
||||
)
|
||||
|
||||
from controlnet_aux import CannyDetector, HEDdetector, LineartDetector
|
||||
from .image import ImageOutput, build_image_output, PILInvocationConfig
|
||||
|
||||
|
||||
# Canny Image Processor
|
||||
class CannyProcessorInvocation(BaseInvocation, PILInvocationConfig):
|
||||
"""Applies Canny edge detection to image"""
|
||||
|
||||
# fmt: off
|
||||
type: Literal["canny"] = "canny"
|
||||
|
||||
# Inputs
|
||||
image: ImageField = Field(default=None, description="image to process")
|
||||
low_threshold: float = Field(default=100, ge=0, description="low threshold of Canny pixel gradient")
|
||||
high_threshold: float = Field(default=200, ge=0, description="high threshold of Canny pixel gradient")
|
||||
# fmt: on
|
||||
|
||||
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||||
image = context.services.images.get(
|
||||
self.image.image_type, self.image.image_name
|
||||
)
|
||||
canny_processor = CannyDetector()
|
||||
processed_image = canny_processor(image, self.low_threshold, self.high_threshold)
|
||||
image_type = ImageType.INTERMEDIATE
|
||||
image_name = context.services.images.create_name(
|
||||
context.graph_execution_state_id, self.id
|
||||
)
|
||||
metadata = context.services.metadata.build_metadata(
|
||||
session_id=context.graph_execution_state_id, node=self
|
||||
)
|
||||
context.services.images.save(image_type, image_name, processed_image, metadata)
|
||||
return build_image_output(
|
||||
image_type=image_type, image_name=image_name, image=processed_image
|
||||
)
|
Loading…
Reference in New Issue
Block a user