Refactoring simplet2i (#387)

* start refactoring -not yet functional

* first phase of refactor done - not sure weighted prompts working

* Second phase of refactoring. Everything mostly working.
* The refactoring has moved all the hard-core inference work into
ldm.dream.generator.*, where there are submodules for txt2img and
img2img. inpaint will go in there as well.
* Some additional refactoring will be done soon, but relatively
minor work.

* fix -save_orig flag to actually work

* add @neonsecret attention.py memory optimization

* remove unneeded imports

* move token logging into conditioning.py

* add placeholder version of inpaint; porting in progress

* fix crash in img2img

* inpainting working; not tested on variations

* fix crashes in img2img

* ported attention.py memory optimization #117 from basujindal branch

* added @torch_no_grad() decorators to img2img, txt2img, inpaint closures

* Final commit prior to PR against development
* fixup crash when generating intermediate images in web UI
* rename ldm.simplet2i to ldm.generate
* add backward-compatibility simplet2i shell with deprecation warning

* add back in mps exception, addresses @vargol comment in #354

* replaced Conditioning class with exported functions

* fix wrong type of with_variations attribute during intialization

* changed "image_iterator()" to "get_make_image()"

* raise NotImplementedError for calling get_make_image() in parent class

* Update ldm/generate.py

better error message

Co-authored-by: Kevin Gibbons <bakkot@gmail.com>

* minor stylistic fixes and assertion checks from code review

* moved get_noise() method into img2img class

* break get_noise() into two methods, one for txt2img and the other for img2img

* inpainting works on non-square images now

* make get_noise() an abstract method in base class

* much improved inpainting

Co-authored-by: Kevin Gibbons <bakkot@gmail.com>
This commit is contained in:
Lincoln Stein 2022-09-05 20:40:10 -04:00 committed by GitHub
parent 1ad2a8e567
commit 720e5cd651
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
16 changed files with 1261 additions and 990 deletions

96
ldm/dream/conditioning.py Normal file
View File

@ -0,0 +1,96 @@
'''
This module handles the generation of the conditioning tensors, including management of
weighted subprompts.
Useful function exports:
get_uc_and_c() get the conditioned and unconditioned latent
split_weighted_subpromopts() split subprompts, normalize and weight them
log_tokenization() print out colour-coded tokens and warn if truncated
'''
import re
import torch
def get_uc_and_c(prompt, model, log_tokens=False, skip_normalize=False):
uc = model.get_learned_conditioning([''])
# get weighted sub-prompts
weighted_subprompts = split_weighted_subprompts(
prompt, skip_normalize
)
if len(weighted_subprompts) > 1:
# i dont know if this is correct.. but it works
c = torch.zeros_like(uc)
# normalize each "sub prompt" and add it
for subprompt, weight in weighted_subprompts:
log_tokenization(subprompt, model, log_tokens)
c = torch.add(
c,
model.get_learned_conditioning([subprompt]),
alpha=weight,
)
else: # just standard 1 prompt
log_tokenization(prompt, model, log_tokens)
c = model.get_learned_conditioning([prompt])
return (uc, c)
def split_weighted_subprompts(text, skip_normalize=False)->list:
"""
grabs all text up to the first occurrence of ':'
uses the grabbed text as a sub-prompt, and takes the value following ':' as weight
if ':' has no value defined, defaults to 1.0
repeats until no text remaining
"""
prompt_parser = re.compile("""
(?P<prompt> # capture group for 'prompt'
(?:\\\:|[^:])+ # match one or more non ':' characters or escaped colons '\:'
) # end 'prompt'
(?: # non-capture group
:+ # match one or more ':' characters
(?P<weight> # capture group for 'weight'
-?\d+(?:\.\d+)? # match positive or negative integer or decimal number
)? # end weight capture group, make optional
\s* # strip spaces after weight
| # OR
$ # else, if no ':' then match end of line
) # end non-capture group
""", re.VERBOSE)
parsed_prompts = [(match.group("prompt").replace("\\:", ":"), float(
match.group("weight") or 1)) for match in re.finditer(prompt_parser, text)]
if skip_normalize:
return parsed_prompts
weight_sum = sum(map(lambda x: x[1], parsed_prompts))
if weight_sum == 0:
print(
"Warning: Subprompt weights add up to zero. Discarding and using even weights instead.")
equal_weight = 1 / len(parsed_prompts)
return [(x[0], equal_weight) for x in parsed_prompts]
return [(x[0], x[1] / weight_sum) for x in parsed_prompts]
# shows how the prompt is tokenized
# usually tokens have '</w>' to indicate end-of-word,
# but for readability it has been replaced with ' '
def log_tokenization(text, model, log=False):
if not log:
return
tokens = model.cond_stage_model.tokenizer._tokenize(text)
tokenized = ""
discarded = ""
usedTokens = 0
totalTokens = len(tokens)
for i in range(0, totalTokens):
token = tokens[i].replace('</w>', ' ')
# alternate color
s = (usedTokens % 6) + 1
if i < model.cond_stage_model.max_length:
tokenized = tokenized + f"\x1b[0;3{s};40m{token}"
usedTokens += 1
else: # over max token length
discarded = discarded + f"\x1b[0;3{s};40m{token}"
print(f"\n>> Tokens ({usedTokens}):\n{tokenized}\x1b[0m")
if discarded != "":
print(
f">> Tokens Discarded ({totalTokens-usedTokens}):\n{discarded}\x1b[0m"
)

View File

@ -1,4 +1,6 @@
import torch
from torch import autocast
from contextlib import contextmanager, nullcontext
def choose_torch_device() -> str:
'''Convenience routine for guessing which GPU device to run model on'''
@ -8,10 +10,11 @@ def choose_torch_device() -> str:
return 'mps'
return 'cpu'
def choose_autocast_device(device) -> str:
def choose_autocast_device(device):
'''Returns an autocast compatible device from a torch device'''
device_type = device.type # this returns 'mps' on M1
# autocast only supports cuda or cpu
if device_type not in ('cuda','cpu'):
return 'cpu'
return device_type
if device_type in ('cuda','cpu'):
return device_type,autocast
else:
return 'cpu',nullcontext

View File

@ -0,0 +1,4 @@
'''
Initialization file for the ldm.dream.generator package
'''
from .base import Generator

158
ldm/dream/generator/base.py Normal file
View File

@ -0,0 +1,158 @@
'''
Base class for ldm.dream.generator.*
including img2img, txt2img, and inpaint
'''
import torch
import numpy as np
import random
from tqdm import tqdm, trange
from PIL import Image
from einops import rearrange, repeat
from pytorch_lightning import seed_everything
from ldm.dream.devices import choose_autocast_device
downsampling = 8
class Generator():
def __init__(self,model):
self.model = model
self.seed = None
self.latent_channels = model.channels
self.downsampling_factor = downsampling # BUG: should come from model or config
self.variation_amount = 0
self.with_variations = []
# this is going to be overridden in img2img.py, txt2img.py and inpaint.py
def get_make_image(self,prompt,**kwargs):
"""
Returns a function returning an image derived from the prompt and the initial image
Return value depends on the seed at the time you call it
"""
raise NotImplementedError("image_iterator() must be implemented in a descendent class")
def set_variation(self, seed, variation_amount, with_variations):
self.seed = seed
self.variation_amount = variation_amount
self.with_variations = with_variations
def generate(self,prompt,init_image,width,height,iterations=1,seed=None,
image_callback=None, step_callback=None,
**kwargs):
device_type,scope = choose_autocast_device(self.model.device)
make_image = self.get_make_image(
prompt,
init_image = init_image,
width = width,
height = height,
step_callback = step_callback,
**kwargs
)
results = []
seed = seed if seed else self.new_seed()
seed, initial_noise = self.generate_initial_noise(seed, width, height)
with scope(device_type), self.model.ema_scope():
for n in trange(iterations, desc='Generating'):
x_T = None
if self.variation_amount > 0:
seed_everything(seed)
target_noise = self.get_noise(width,height)
x_T = self.slerp(self.variation_amount, initial_noise, target_noise)
elif initial_noise is not None:
# i.e. we specified particular variations
x_T = initial_noise
else:
seed_everything(seed)
if self.model.device.type == 'mps':
x_T = self.get_noise(width,height)
# make_image will do the equivalent of get_noise itself
image = make_image(x_T)
results.append([image, seed])
if image_callback is not None:
image_callback(image, seed)
seed = self.new_seed()
return results
def sample_to_image(self,samples):
"""
Returns a function returning an image derived from the prompt and the initial image
Return value depends on the seed at the time you call it
"""
x_samples = self.model.decode_first_stage(samples)
x_samples = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0)
if len(x_samples) != 1:
raise Exception(
f'>> expected to get a single image, but got {len(x_samples)}')
x_sample = 255.0 * rearrange(
x_samples[0].cpu().numpy(), 'c h w -> h w c'
)
return Image.fromarray(x_sample.astype(np.uint8))
def generate_initial_noise(self, seed, width, height):
initial_noise = None
if self.variation_amount > 0 or len(self.with_variations) > 0:
# use fixed initial noise plus random noise per iteration
seed_everything(seed)
initial_noise = self.get_noise(width,height)
for v_seed, v_weight in self.with_variations:
seed = v_seed
seed_everything(seed)
next_noise = self.get_noise(width,height)
initial_noise = self.slerp(v_weight, initial_noise, next_noise)
if self.variation_amount > 0:
random.seed() # reset RNG to an actually random state, so we can get a random seed for variations
seed = random.randrange(0,np.iinfo(np.uint32).max)
return (seed, initial_noise)
else:
return (seed, None)
# returns a tensor filled with random numbers from a normal distribution
def get_noise(self,width,height):
"""
Returns a tensor filled with random numbers, either form a normal distribution
(txt2img) or from the latent image (img2img, inpaint)
"""
raise NotImplementedError("get_noise() must be implemented in a descendent class")
def new_seed(self):
self.seed = random.randrange(0, np.iinfo(np.uint32).max)
return self.seed
def slerp(self, t, v0, v1, DOT_THRESHOLD=0.9995):
'''
Spherical linear interpolation
Args:
t (float/np.ndarray): Float value between 0.0 and 1.0
v0 (np.ndarray): Starting vector
v1 (np.ndarray): Final vector
DOT_THRESHOLD (float): Threshold for considering the two vectors as
colineal. Not recommended to alter this.
Returns:
v2 (np.ndarray): Interpolation vector between v0 and v1
'''
inputs_are_torch = False
if not isinstance(v0, np.ndarray):
inputs_are_torch = True
v0 = v0.detach().cpu().numpy()
if not isinstance(v1, np.ndarray):
inputs_are_torch = True
v1 = v1.detach().cpu().numpy()
dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1)))
if np.abs(dot) > DOT_THRESHOLD:
v2 = (1 - t) * v0 + t * v1
else:
theta_0 = np.arccos(dot)
sin_theta_0 = np.sin(theta_0)
theta_t = theta_0 * t
sin_theta_t = np.sin(theta_t)
s0 = np.sin(theta_0 - theta_t) / sin_theta_0
s1 = sin_theta_t / sin_theta_0
v2 = s0 * v0 + s1 * v1
if inputs_are_torch:
v2 = torch.from_numpy(v2).to(self.model.device)
return v2

View File

@ -0,0 +1,72 @@
'''
ldm.dream.generator.txt2img descends from ldm.dream.generator
'''
import torch
import numpy as np
from ldm.dream.devices import choose_autocast_device
from ldm.dream.generator.base import Generator
from ldm.models.diffusion.ddim import DDIMSampler
class Img2Img(Generator):
def __init__(self,model):
super().__init__(model)
self.init_latent = None # by get_noise()
@torch.no_grad()
def get_make_image(self,prompt,sampler,steps,cfg_scale,ddim_eta,
conditioning,init_image,strength,step_callback=None,**kwargs):
"""
Returns a function returning an image derived from the prompt and the initial image
Return value depends on the seed at the time you call it.
"""
# PLMS sampler not supported yet, so ignore previous sampler
if not isinstance(sampler,DDIMSampler):
print(
f">> sampler '{sampler.__class__.__name__}' is not yet supported. Using DDIM sampler"
)
sampler = DDIMSampler(self.model, device=self.model.device)
sampler.make_schedule(
ddim_num_steps=steps, ddim_eta=ddim_eta, verbose=False
)
device_type,scope = choose_autocast_device(self.model.device)
with scope(device_type):
self.init_latent = self.model.get_first_stage_encoding(
self.model.encode_first_stage(init_image)
) # move to latent space
t_enc = int(strength * steps)
uc, c = conditioning
@torch.no_grad()
def make_image(x_T):
# encode (scaled latent)
z_enc = sampler.stochastic_encode(
self.init_latent,
torch.tensor([t_enc]).to(self.model.device),
noise=x_T
)
# decode it
samples = sampler.decode(
z_enc,
c,
t_enc,
img_callback = step_callback,
unconditional_guidance_scale=cfg_scale,
unconditional_conditioning=uc,
)
return self.sample_to_image(samples)
return make_image
def get_noise(self,width,height):
device = self.model.device
init_latent = self.init_latent
assert init_latent is not None,'call to get_noise() when init_latent not set'
if device.type == 'mps':
return torch.randn_like(init_latent, device='cpu').to(device)
else:
return torch.randn_like(init_latent, device=device)

View File

@ -0,0 +1,76 @@
'''
ldm.dream.generator.inpaint descends from ldm.dream.generator
'''
import torch
import numpy as np
from einops import rearrange, repeat
from ldm.dream.devices import choose_autocast_device
from ldm.dream.generator.img2img import Img2Img
from ldm.models.diffusion.ddim import DDIMSampler
class Inpaint(Img2Img):
def __init__(self,model):
super().__init__(model)
@torch.no_grad()
def get_make_image(self,prompt,sampler,steps,cfg_scale,ddim_eta,
conditioning,init_image,init_mask,strength,
step_callback=None,**kwargs):
"""
Returns a function returning an image derived from the prompt and
the initial image + mask. Return value depends on the seed at
the time you call it. kwargs are 'init_latent' and 'strength'
"""
init_mask = init_mask[0][0].unsqueeze(0).repeat(4,1,1).unsqueeze(0)
init_mask = repeat(init_mask, '1 ... -> b ...', b=1)
# PLMS sampler not supported yet, so ignore previous sampler
if not isinstance(sampler,DDIMSampler):
print(
f">> sampler '{sampler.__class__.__name__}' is not yet supported. Using DDIM sampler"
)
sampler = DDIMSampler(self.model, device=self.model.device)
sampler.make_schedule(
ddim_num_steps=steps, ddim_eta=ddim_eta, verbose=False
)
device_type,scope = choose_autocast_device(self.model.device)
with scope(device_type):
self.init_latent = self.model.get_first_stage_encoding(
self.model.encode_first_stage(init_image)
) # move to latent space
t_enc = int(strength * steps)
uc, c = conditioning
print(f">> target t_enc is {t_enc} steps")
@torch.no_grad()
def make_image(x_T):
# encode (scaled latent)
z_enc = sampler.stochastic_encode(
self.init_latent,
torch.tensor([t_enc]).to(self.model.device),
noise=x_T
)
# decode it
samples = sampler.decode(
z_enc,
c,
t_enc,
img_callback = step_callback,
unconditional_guidance_scale = cfg_scale,
unconditional_conditioning = uc,
mask = init_mask,
init_latent = self.init_latent
)
return self.sample_to_image(samples)
return make_image

View File

@ -0,0 +1,61 @@
'''
ldm.dream.generator.txt2img inherits from ldm.dream.generator
'''
import torch
import numpy as np
from ldm.dream.generator.base import Generator
class Txt2Img(Generator):
def __init__(self,model):
super().__init__(model)
@torch.no_grad()
def get_make_image(self,prompt,sampler,steps,cfg_scale,ddim_eta,
conditioning,width,height,step_callback=None,**kwargs):
"""
Returns a function returning an image derived from the prompt and the initial image
Return value depends on the seed at the time you call it
kwargs are 'width' and 'height'
"""
uc, c = conditioning
@torch.no_grad()
def make_image(x_T):
shape = [
self.latent_channels,
height // self.downsampling_factor,
width // self.downsampling_factor,
]
samples, _ = sampler.sample(
batch_size = 1,
S = steps,
x_T = x_T,
conditioning = c,
shape = shape,
verbose = False,
unconditional_guidance_scale = cfg_scale,
unconditional_conditioning = uc,
eta = ddim_eta,
img_callback = step_callback
)
return self.sample_to_image(samples)
return make_image
# returns a tensor filled with random numbers from a normal distribution
def get_noise(self,width,height):
device = self.model.device
if device.type == 'mps':
return torch.randn([1,
self.latent_channels,
height // self.downsampling_factor,
width // self.downsampling_factor],
device='cpu').to(device)
else:
return torch.randn([1,
self.latent_channels,
height // self.downsampling_factor,
width // self.downsampling_factor],
device=device)

View File

@ -59,10 +59,16 @@ class PromptFormatter:
switches.append(f'-H{opt.height or t2i.height}')
switches.append(f'-C{opt.cfg_scale or t2i.cfg_scale}')
switches.append(f'-A{opt.sampler_name or t2i.sampler_name}')
# to do: put model name into the t2i object
# switches.append(f'--model{t2i.model_name}')
if opt.invert_mask:
switches.append(f'--invert_mask')
if opt.seamless or t2i.seamless:
switches.append(f'--seamless')
if opt.init_img:
switches.append(f'-I{opt.init_img}')
if opt.mask:
switches.append(f'-M{opt.mask}')
if opt.fit:
switches.append(f'--fit')
if opt.strength and opt.init_img is not None:

View File

@ -22,7 +22,7 @@ class Completer:
def complete(self, text, state):
buffer = readline.get_line_buffer()
if text.startswith(('-I', '--init_img')):
if text.startswith(('-I', '--init_img','-M','--init_mask')):
return self._path_completions(text, state, ('.png','.jpg','.jpeg'))
if buffer.strip().endswith('cd') or text.startswith(('.', '/')):
@ -48,10 +48,15 @@ class Completer:
def _path_completions(self, text, state, extensions):
# get the path so far
# TODO: replace this mess with a regular expression match
if text.startswith('-I'):
path = text.replace('-I', '', 1).lstrip()
elif text.startswith('--init_img='):
path = text.replace('--init_img=', '', 1).lstrip()
elif text.startswith('--init_mask='):
path = text.replace('--init_mask=', '', 1).lstrip()
elif text.startswith('-M'):
path = text.replace('-M', '', 1).lstrip()
else:
path = text
@ -94,6 +99,7 @@ if readline_available:
'--grid','-g',
'--individual','-i',
'--init_img','-I',
'--init_mask','-M',
'--strength','-f',
'--variants','-v',
'--outdir','-o',

View File

@ -144,7 +144,7 @@ class DreamServer(BaseHTTPRequestHandler):
# and don't bother with the last one, since it'll render anyway
nonlocal step_index
if progress_images and step % 5 == 0 and step < steps - 1:
image = self.model._sample_to_image(sample)
image = self.model.sample_to_image(sample)
name = f'{prefix}.{seed}.{step_index}.png'
metadata = f'{prompt} -S{seed} [intermediate]'
path = step_writer.save_image_and_prompt_to_png(image, metadata, name)

642
ldm/generate.py Normal file
View File

@ -0,0 +1,642 @@
# Copyright (c) 2022 Lincoln D. Stein (https://github.com/lstein)
# Derived from source code carrying the following copyrights
# Copyright (c) 2022 Machine Vision and Learning Group, LMU Munich
# Copyright (c) 2022 Robin Rombach and Patrick Esser and contributors
import torch
import numpy as np
import random
import os
import time
import re
import sys
import traceback
import transformers
from omegaconf import OmegaConf
from PIL import Image, ImageOps
from torch import nn
from pytorch_lightning import seed_everything
from ldm.util import instantiate_from_config
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.plms import PLMSSampler
from ldm.models.diffusion.ksampler import KSampler
from ldm.dream.pngwriter import PngWriter
from ldm.dream.image_util import InitImageResizer
from ldm.dream.devices import choose_torch_device
from ldm.dream.conditioning import get_uc_and_c
"""Simplified text to image API for stable diffusion/latent diffusion
Example Usage:
from ldm.generate import Generate
# Create an object with default values
gr = Generate(model = <path> // models/ldm/stable-diffusion-v1/model.ckpt
config = <path> // configs/stable-diffusion/v1-inference.yaml
iterations = <integer> // how many times to run the sampling (1)
steps = <integer> // 50
seed = <integer> // current system time
sampler_name= ['ddim', 'k_dpm_2_a', 'k_dpm_2', 'k_euler_a', 'k_euler', 'k_heun', 'k_lms', 'plms'] // k_lms
grid = <boolean> // false
width = <integer> // image width, multiple of 64 (512)
height = <integer> // image height, multiple of 64 (512)
cfg_scale = <float> // condition-free guidance scale (7.5)
)
# do the slow model initialization
gr.load_model()
# Do the fast inference & image generation. Any options passed here
# override the default values assigned during class initialization
# Will call load_model() if the model was not previously loaded and so
# may be slow at first.
# The method returns a list of images. Each row of the list is a sub-list of [filename,seed]
results = gr.prompt2png(prompt = "an astronaut riding a horse",
outdir = "./outputs/samples",
iterations = 3)
for row in results:
print(f'filename={row[0]}')
print(f'seed ={row[1]}')
# Same thing, but using an initial image.
results = gr.prompt2png(prompt = "an astronaut riding a horse",
outdir = "./outputs/,
iterations = 3,
init_img = "./sketches/horse+rider.png")
for row in results:
print(f'filename={row[0]}')
print(f'seed ={row[1]}')
# Same thing, but we return a series of Image objects, which lets you manipulate them,
# combine them, and save them under arbitrary names
results = gr.prompt2image(prompt = "an astronaut riding a horse"
outdir = "./outputs/")
for row in results:
im = row[0]
seed = row[1]
im.save(f'./outputs/samples/an_astronaut_riding_a_horse-{seed}.png')
im.thumbnail(100,100).save('./outputs/samples/astronaut_thumb.jpg')
Note that the old txt2img() and img2img() calls are deprecated but will
still work.
"""
class Generate:
"""Generate class
Stores default values for multiple configuration items
"""
def __init__(
self,
iterations = 1,
steps = 50,
cfg_scale = 7.5,
weights = 'models/ldm/stable-diffusion-v1/model.ckpt',
config = 'configs/stable-diffusion/v1-inference.yaml',
grid = False,
width = 512,
height = 512,
sampler_name = 'k_lms',
ddim_eta = 0.0, # deterministic
precision = 'autocast',
full_precision = False,
strength = 0.75, # default in scripts/img2img.py
seamless = False,
embedding_path = None,
device_type = 'cuda',
):
self.iterations = iterations
self.width = width
self.height = height
self.steps = steps
self.cfg_scale = cfg_scale
self.weights = weights
self.config = config
self.sampler_name = sampler_name
self.grid = grid
self.ddim_eta = ddim_eta
self.precision = precision
self.full_precision = True if choose_torch_device() == 'mps' else full_precision
self.strength = strength
self.seamless = seamless
self.embedding_path = embedding_path
self.device_type = device_type
self.model = None # empty for now
self.sampler = None
self.device = None
self.generators = {}
self.base_generator = None
self.seed = None
if device_type == 'cuda' and not torch.cuda.is_available():
device_type = choose_torch_device()
print(">> cuda not available, using device", device_type)
self.device = torch.device(device_type)
# for VRAM usage statistics
device_type = choose_torch_device()
self.session_peakmem = torch.cuda.max_memory_allocated() if device_type == 'cuda' else None
transformers.logging.set_verbosity_error()
def prompt2png(self, prompt, outdir, **kwargs):
"""
Takes a prompt and an output directory, writes out the requested number
of PNG files, and returns an array of [[filename,seed],[filename,seed]...]
Optional named arguments are the same as those passed to Generate and prompt2image()
"""
results = self.prompt2image(prompt, **kwargs)
pngwriter = PngWriter(outdir)
prefix = pngwriter.unique_prefix()
outputs = []
for image, seed in results:
name = f'{prefix}.{seed}.png'
path = pngwriter.save_image_and_prompt_to_png(
image, f'{prompt} -S{seed}', name)
outputs.append([path, seed])
return outputs
def txt2img(self, prompt, **kwargs):
outdir = kwargs.pop('outdir', 'outputs/img-samples')
return self.prompt2png(prompt, outdir, **kwargs)
def img2img(self, prompt, **kwargs):
outdir = kwargs.pop('outdir', 'outputs/img-samples')
assert (
'init_img' in kwargs
), 'call to img2img() must include the init_img argument'
return self.prompt2png(prompt, outdir, **kwargs)
def prompt2image(
self,
# these are common
prompt,
iterations = None,
steps = None,
seed = None,
cfg_scale = None,
ddim_eta = None,
skip_normalize = False,
image_callback = None,
step_callback = None,
width = None,
height = None,
sampler_name = None,
seamless = False,
log_tokenization= False,
with_variations = None,
variation_amount = 0.0,
# these are specific to img2img
init_img = None,
mask = None,
invert_mask = False,
fit = False,
strength = None,
# these are specific to GFPGAN/ESRGAN
gfpgan_strength= 0,
save_original = False,
upscale = None,
**args,
): # eat up additional cruft
"""
ldm.prompt2image() is the common entry point for txt2img() and img2img()
It takes the following arguments:
prompt // prompt string (no default)
iterations // iterations (1); image count=iterations
steps // refinement steps per iteration
seed // seed for random number generator
width // width of image, in multiples of 64 (512)
height // height of image, in multiples of 64 (512)
cfg_scale // how strongly the prompt influences the image (7.5) (must be >1)
seamless // whether the generated image should tile
init_img // path to an initial image
mask // path to an initial image mask for inpainting
invert_mask // paint over opaque areas, retain transparent areas
strength // strength for noising/unnoising init_img. 0.0 preserves image exactly, 1.0 replaces it completely
gfpgan_strength // strength for GFPGAN. 0.0 preserves image exactly, 1.0 replaces it completely
ddim_eta // image randomness (eta=0.0 means the same seed always produces the same image)
step_callback // a function or method that will be called each step
image_callback // a function or method that will be called each time an image is generated
with_variations // a weighted list [(seed_1, weight_1), (seed_2, weight_2), ...] of variations which should be applied before doing any generation
variation_amount // optional 0-1 value to slerp from -S noise to random noise (allows variations on an image)
To use the step callback, define a function that receives two arguments:
- Image GPU data
- The step number
To use the image callback, define a function of method that receives two arguments, an Image object
and the seed. You can then do whatever you like with the image, including converting it to
different formats and manipulating it. For example:
def process_image(image,seed):
image.save(f{'images/seed.png'})
The callback used by the prompt2png() can be found in ldm/dream_util.py. It contains code
to create the requested output directory, select a unique informative name for each image, and
write the prompt into the PNG metadata.
"""
# TODO: convert this into a getattr() loop
steps = steps or self.steps
width = width or self.width
height = height or self.height
seamless = seamless or self.seamless
cfg_scale = cfg_scale or self.cfg_scale
ddim_eta = ddim_eta or self.ddim_eta
iterations = iterations or self.iterations
strength = strength or self.strength
self.seed = seed
self.log_tokenization = log_tokenization
with_variations = [] if with_variations is None else with_variations
model = (
self.load_model()
) # will instantiate the model or return it from cache
for m in model.modules():
if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)):
m.padding_mode = 'circular' if seamless else m._orig_padding_mode
assert cfg_scale > 1.0, 'CFG_Scale (-C) must be >1.0'
assert (
0.0 < strength < 1.0
), 'img2img and inpaint strength can only work with 0.0 < strength < 1.0'
assert (
0.0 <= variation_amount <= 1.0
), '-v --variation_amount must be in [0.0, 1.0]'
# check this logic - doesn't look right
if len(with_variations) > 0 or variation_amount > 1.0:
assert seed is not None,\
'seed must be specified when using with_variations'
if variation_amount == 0.0:
assert iterations == 1,\
'when using --with_variations, multiple iterations are only possible when using --variation_amount'
assert all(0 <= weight <= 1 for _, weight in with_variations),\
f'variation weights must be in [0.0, 1.0]: got {[weight for _, weight in with_variations]}'
width, height, _ = self._resolution_check(width, height, log=True)
if sampler_name and (sampler_name != self.sampler_name):
self.sampler_name = sampler_name
self._set_sampler()
tic = time.time()
if torch.cuda.is_available():
torch.cuda.reset_peak_memory_stats()
results = list()
init_image = None
init_mask_image = None
try:
uc, c = get_uc_and_c(
prompt, model=self.model,
skip_normalize=skip_normalize,
log_tokens=self.log_tokenization
)
if mask and not init_img:
raise AssertionError('If mask path is provided, initial image path should be provided as well')
if mask and init_img:
init_image,size1 = self._load_img(init_img, width, height,fit=fit)
init_image.to(self.device)
init_mask_image,size2 = self._load_img_mask(mask, width, height,fit=fit, invert=invert_mask)
init_mask_image.to(self.device)
assert size1==size2,f"for inpainting, the initial image and its mask must be identical sizes, instead got {size1} vs {size2}"
generator = self._make_inpaint()
elif init_img: # little bit of repeated code here, but makes logic clearer
init_image,_ = self._load_img(init_img, width, height, fit=fit)
init_image.to(self.device)
generator = self._make_img2img()
else:
generator = self._make_txt2img()
generator.set_variation(self.seed, variation_amount, with_variations)
results = generator.generate(
prompt,
iterations = iterations,
seed = self.seed,
sampler = self.sampler,
steps = steps,
cfg_scale = cfg_scale,
conditioning = (uc,c),
ddim_eta = ddim_eta,
image_callback = image_callback, # called after the final image is generated
step_callback = step_callback, # called after each intermediate image is generated
width = width,
height = height,
init_image = init_image, # notice that init_image is different from init_img
init_mask = init_mask_image,
strength = strength
)
if upscale is not None or gfpgan_strength > 0:
self.upscale_and_reconstruct(results,
upscale = upscale,
strength = gfpgan_strength,
save_original = save_original,
image_callback = image_callback)
except KeyboardInterrupt:
print('*interrupted*')
print(
'>> Partial results will be returned; if --grid was requested, nothing will be returned.'
)
except RuntimeError as e:
print(traceback.format_exc(), file=sys.stderr)
print('>> Are you sure your system has an adequate GPU?')
toc = time.time()
print('>> Usage stats:')
print(
f'>> {len(results)} image(s) generated in', '%4.2fs' % (toc - tic)
)
print(
f'>> Max VRAM used for this generation:',
'%4.2fG' % (torch.cuda.max_memory_allocated() / 1e9),
)
if self.session_peakmem:
self.session_peakmem = max(
self.session_peakmem, torch.cuda.max_memory_allocated()
)
print(
f'>> Max VRAM used since script start: ',
'%4.2fG' % (self.session_peakmem / 1e9),
)
return results
def _make_img2img(self):
if not self.generators.get('img2img'):
from ldm.dream.generator.img2img import Img2Img
self.generators['img2img'] = Img2Img(self.model)
return self.generators['img2img']
def _make_txt2img(self):
if not self.generators.get('txt2img'):
from ldm.dream.generator.txt2img import Txt2Img
self.generators['txt2img'] = Txt2Img(self.model)
return self.generators['txt2img']
def _make_inpaint(self):
if not self.generators.get('inpaint'):
from ldm.dream.generator.inpaint import Inpaint
self.generators['inpaint'] = Inpaint(self.model)
return self.generators['inpaint']
def load_model(self):
"""Load and initialize the model from configuration variables passed at object creation time"""
if self.model is None:
seed_everything(random.randrange(0, np.iinfo(np.uint32).max))
try:
config = OmegaConf.load(self.config)
model = self._load_model_from_config(config, self.weights)
if self.embedding_path is not None:
model.embedding_manager.load(
self.embedding_path, self.full_precision
)
self.model = model.to(self.device)
# model.to doesn't change the cond_stage_model.device used to move the tokenizer output, so set it here
self.model.cond_stage_model.device = self.device
except AttributeError as e:
print(f'>> Error loading model. {str(e)}', file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
raise SystemExit from e
self._set_sampler()
for m in self.model.modules():
if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)):
m._orig_padding_mode = m.padding_mode
return self.model
def upscale_and_reconstruct(self,
image_list,
upscale = None,
strength = 0.0,
save_original = False,
image_callback = None):
try:
if upscale is not None:
from ldm.gfpgan.gfpgan_tools import real_esrgan_upscale
if strength > 0:
from ldm.gfpgan.gfpgan_tools import run_gfpgan
except (ModuleNotFoundError, ImportError):
print(traceback.format_exc(), file=sys.stderr)
print('>> You may need to install the ESRGAN and/or GFPGAN modules')
return
for r in image_list:
image, seed = r
try:
if upscale is not None:
if len(upscale) < 2:
upscale.append(0.75)
image = real_esrgan_upscale(
image,
upscale[1],
int(upscale[0]),
seed,
)
if strength > 0:
image = run_gfpgan(
image, strength, seed, 1
)
except Exception as e:
print(
f'>> Error running RealESRGAN or GFPGAN. Your image was not upscaled.\n{e}'
)
if image_callback is not None:
image_callback(image, seed, upscaled=True)
else:
r[0] = image
# to help WebGUI - front end to generator util function
def sample_to_image(self,samples):
return self._sample_to_image(samples)
def _sample_to_image(self,samples):
if not self.base_generator:
from ldm.dream.generator import Generator
self.base_generator = Generator(self.model)
return self.base_generator.sample_to_image(samples)
def _set_sampler(self):
msg = f'>> Setting Sampler to {self.sampler_name}'
if self.sampler_name == 'plms':
self.sampler = PLMSSampler(self.model, device=self.device)
elif self.sampler_name == 'ddim':
self.sampler = DDIMSampler(self.model, device=self.device)
elif self.sampler_name == 'k_dpm_2_a':
self.sampler = KSampler(
self.model, 'dpm_2_ancestral', device=self.device
)
elif self.sampler_name == 'k_dpm_2':
self.sampler = KSampler(self.model, 'dpm_2', device=self.device)
elif self.sampler_name == 'k_euler_a':
self.sampler = KSampler(
self.model, 'euler_ancestral', device=self.device
)
elif self.sampler_name == 'k_euler':
self.sampler = KSampler(self.model, 'euler', device=self.device)
elif self.sampler_name == 'k_heun':
self.sampler = KSampler(self.model, 'heun', device=self.device)
elif self.sampler_name == 'k_lms':
self.sampler = KSampler(self.model, 'lms', device=self.device)
else:
msg = f'>> Unsupported Sampler: {self.sampler_name}, Defaulting to plms'
self.sampler = PLMSSampler(self.model, device=self.device)
print(msg)
def _load_model_from_config(self, config, ckpt):
print(f'>> Loading model from {ckpt}')
pl_sd = torch.load(ckpt, map_location='cpu')
sd = pl_sd['state_dict']
model = instantiate_from_config(config.model)
m, u = model.load_state_dict(sd, strict=False)
model.to(self.device)
model.eval()
if self.full_precision:
print(
'>> Using slower but more accurate full-precision math (--full_precision)'
)
else:
print(
'>> Using half precision math. Call with --full_precision to use more accurate but VRAM-intensive full precision.'
)
model.half()
return model
def _load_img(self, path, width, height, fit=False):
assert os.path.exists(path), f'>> {path}: File not found'
with Image.open(path) as img:
image = img.convert('RGB')
print(
f'>> loaded input image of size {image.width}x{image.height} from {path}'
)
if fit:
image = self._fit_image(image,(width,height))
else:
image = self._squeeze_image(image)
size = image.size
image = np.array(image).astype(np.float32) / 255.0
image = image[None].transpose(0, 3, 1, 2)
image = torch.from_numpy(image)
image = 2.0 * image - 1.0
return image.to(self.device),size
def _load_img_mask(self, path, width, height, fit=False, invert=False):
assert os.path.exists(path), f'>> {path}: File not found'
image = Image.open(path)
print(
f'>> loaded input mask of size {image.width}x{image.height} from {path}'
)
if fit:
image = self._fit_image(image,(width,height))
else:
image = self._squeeze_image(image)
# convert into a black/white mask
image = self._mask_to_image(image,invert)
image = image.convert('RGB')
size = image.size
# not quite sure what's going on here. It is copied from basunjindal's implementation
# image = image.resize((64, 64), resample=Image.Resampling.LANCZOS)
# BUG: We need to use the model's downsample factor rather than hardcoding "8"
from ldm.dream.generator.base import downsampling
image = image.resize((size[0]//downsampling, size[1]//downsampling), resample=Image.Resampling.LANCZOS)
image = np.array(image)
image = image.astype(np.float32) / 255.0
image = image[None].transpose(0, 3, 1, 2)
image = torch.from_numpy(image)
return image.to(self.device),size
# The mask is expected to have the region to be inpainted
# with alpha transparency. It converts it into a black/white
# image with the transparent part black.
def _mask_to_image(self, init_mask, invert=False) -> Image:
if self._has_transparency(init_mask):
# Obtain the mask from the transparency channel
mask = Image.new(mode="L", size=init_mask.size, color=255)
mask.putdata(init_mask.getdata(band=3))
if invert:
mask = ImageOps.invert(mask)
return mask
else:
print(f'>> No transparent pixels in this image. Will paint across entire image.')
return Image.new(mode="L", size=mask.size, color=0)
def _has_transparency(self,image):
if image.info.get("transparency", None) is not None:
return True
if image.mode == "P":
transparent = image.info.get("transparency", -1)
for _, index in image.getcolors():
if index == transparent:
return True
elif image.mode == "RGBA":
extrema = image.getextrema()
if extrema[3][0] < 255:
return True
return False
def _squeeze_image(self,image):
x,y,resize_needed = self._resolution_check(image.width,image.height)
if resize_needed:
return InitImageResizer(image).resize(x,y)
return image
def _fit_image(self,image,max_dimensions):
w,h = max_dimensions
print(
f'>> image will be resized to fit inside a box {w}x{h} in size.'
)
if image.width > image.height:
h = None # by setting h to none, we tell InitImageResizer to fit into the width and calculate height
elif image.height > image.width:
w = None # ditto for w
else:
pass
image = InitImageResizer(image).resize(w,h) # note that InitImageResizer does the multiple of 64 truncation internally
print(
f'>> after adjusting image dimensions to be multiples of 64, init image is {image.width}x{image.height}'
)
return image
def _resolution_check(self, width, height, log=False):
resize_needed = False
w, h = map(
lambda x: x - x % 64, (width, height)
) # resize to integer multiple of 64
if h != height or w != width:
if log:
print(
f'>> Provided width and height must be multiples of 64. Auto-resizing to {w}x{h}'
)
height = h
width = w
resize_needed = True
if (width * height) > (self.width * self.height):
print(">> This input is larger than your defaults. If you run out of memory, please use a smaller image.")
return width, height, resize_needed

View File

@ -13,8 +13,8 @@ opt = arg_parser.parse_args()
model_path = os.path.join(opt.gfpgan_dir, opt.gfpgan_model_path)
gfpgan_model_exists = os.path.isfile(model_path)
def _run_gfpgan(image, strength, prompt, seed, upsampler_scale=4):
print(f'>> GFPGAN - Restoring Faces: {prompt} : seed:{seed}')
def run_gfpgan(image, strength, seed, upsampler_scale=4):
print(f'>> GFPGAN - Restoring Faces for image seed:{seed}')
gfpgan = None
with warnings.catch_warnings():
warnings.filterwarnings('ignore', category=DeprecationWarning)
@ -127,9 +127,9 @@ def _load_gfpgan_bg_upsampler(bg_upsampler, upsampler_scale, bg_tile=400):
return bg_upsampler
def real_esrgan_upscale(image, strength, upsampler_scale, prompt, seed):
def real_esrgan_upscale(image, strength, upsampler_scale, seed):
print(
f'>> Real-ESRGAN Upscaling: {prompt} : seed:{seed} : scale:{upsampler_scale}x'
f'>> Real-ESRGAN Upscaling seed:{seed} : scale:{upsampler_scale}x'
)
with warnings.catch_warnings():

View File

@ -171,6 +171,7 @@ class DDIMSampler(object):
)
return samples, intermediates
# This routine gets called from img2img
@torch.no_grad()
def ddim_sampling(
self,
@ -270,6 +271,7 @@ class DDIMSampler(object):
return img, intermediates
# This routine gets called from ddim_sampling() and decode()
@torch.no_grad()
def p_sample_ddim(
self,
@ -372,14 +374,16 @@ class DDIMSampler(object):
@torch.no_grad()
def decode(
self,
x_latent,
cond,
t_start,
img_callback=None,
unconditional_guidance_scale=1.0,
unconditional_conditioning=None,
use_original_steps=False,
self,
x_latent,
cond,
t_start,
img_callback=None,
unconditional_guidance_scale=1.0,
unconditional_conditioning=None,
use_original_steps=False,
init_latent = None,
mask = None,
):
timesteps = (
@ -395,6 +399,8 @@ class DDIMSampler(object):
iterator = tqdm(time_range, desc='Decoding image', total=total_steps)
x_dec = x_latent
x0 = init_latent
for i, step in enumerate(iterator):
index = total_steps - i - 1
ts = torch.full(
@ -403,6 +409,14 @@ class DDIMSampler(object):
device=x_latent.device,
dtype=torch.long,
)
if mask is not None:
assert x0 is not None
xdec_orig = self.model.q_sample(
x0, ts
) # TODO: deterministic forward pass?
x_dec = xdec_orig * mask + (1.0 - mask) * x_dec
x_dec, _ = self.p_sample_ddim(
x_dec,
cond,
@ -412,6 +426,7 @@ class DDIMSampler(object):
unconditional_guidance_scale=unconditional_guidance_scale,
unconditional_conditioning=unconditional_conditioning,
)
if img_callback:
img_callback(x_dec, i)

View File

@ -13,7 +13,7 @@ def exists(val):
def uniq(arr):
return {el: True for el in arr}.keys()
return{el: True for el in arr}.keys()
def default(val, d):
@ -45,18 +45,19 @@ class GEGLU(nn.Module):
class FeedForward(nn.Module):
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0):
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
super().__init__()
inner_dim = int(dim * mult)
dim_out = default(dim_out, dim)
project_in = (
nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU())
if not glu
else GEGLU(dim, inner_dim)
)
project_in = nn.Sequential(
nn.Linear(dim, inner_dim),
nn.GELU()
) if not glu else GEGLU(dim, inner_dim)
self.net = nn.Sequential(
project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out)
project_in,
nn.Dropout(dropout),
nn.Linear(inner_dim, dim_out)
)
def forward(self, x):
@ -73,9 +74,7 @@ def zero_module(module):
def Normalize(in_channels):
return torch.nn.GroupNorm(
num_groups=32, num_channels=in_channels, eps=1e-6, affine=True
)
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
class LinearAttention(nn.Module):
@ -83,28 +82,17 @@ class LinearAttention(nn.Module):
super().__init__()
self.heads = heads
hidden_dim = dim_head * heads
self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias=False)
self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False)
self.to_out = nn.Conv2d(hidden_dim, dim, 1)
def forward(self, x):
b, c, h, w = x.shape
qkv = self.to_qkv(x)
q, k, v = rearrange(
qkv,
'b (qkv heads c) h w -> qkv b heads c (h w)',
heads=self.heads,
qkv=3,
)
k = k.softmax(dim=-1)
q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3)
k = k.softmax(dim=-1)
context = torch.einsum('bhdn,bhen->bhde', k, v)
out = torch.einsum('bhde,bhdn->bhen', context, q)
out = rearrange(
out,
'b heads c (h w) -> b (heads c) h w',
heads=self.heads,
h=h,
w=w,
)
out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w)
return self.to_out(out)
@ -114,18 +102,26 @@ class SpatialSelfAttention(nn.Module):
self.in_channels = in_channels
self.norm = Normalize(in_channels)
self.q = torch.nn.Conv2d(
in_channels, in_channels, kernel_size=1, stride=1, padding=0
)
self.k = torch.nn.Conv2d(
in_channels, in_channels, kernel_size=1, stride=1, padding=0
)
self.v = torch.nn.Conv2d(
in_channels, in_channels, kernel_size=1, stride=1, padding=0
)
self.proj_out = torch.nn.Conv2d(
in_channels, in_channels, kernel_size=1, stride=1, padding=0
)
self.q = torch.nn.Conv2d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
self.k = torch.nn.Conv2d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
self.v = torch.nn.Conv2d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
self.proj_out = torch.nn.Conv2d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
def forward(self, x):
h_ = x
@ -135,12 +131,12 @@ class SpatialSelfAttention(nn.Module):
v = self.v(h_)
# compute attention
b, c, h, w = q.shape
b,c,h,w = q.shape
q = rearrange(q, 'b c h w -> b (h w) c')
k = rearrange(k, 'b c h w -> b c (h w)')
w_ = torch.einsum('bij,bjk->bik', q, k)
w_ = w_ * (int(c) ** (-0.5))
w_ = w_ * (int(c)**(-0.5))
w_ = torch.nn.functional.softmax(w_, dim=2)
# attend to values
@ -150,18 +146,16 @@ class SpatialSelfAttention(nn.Module):
h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h)
h_ = self.proj_out(h_)
return x + h_
return x+h_
class CrossAttention(nn.Module):
def __init__(
self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0
):
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):
super().__init__()
inner_dim = dim_head * heads
context_dim = default(context_dim, query_dim)
self.scale = dim_head**-0.5
self.scale = dim_head ** -0.5
self.heads = heads
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
@ -169,7 +163,8 @@ class CrossAttention(nn.Module):
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)
nn.Linear(inner_dim, query_dim),
nn.Dropout(dropout)
)
def forward(self, x, context=None, mask=None):
@ -179,59 +174,43 @@ class CrossAttention(nn.Module):
context = default(context, x)
k = self.to_k(context)
v = self.to_v(context)
del context, x
q, k, v = map(
lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)
)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale # (8, 4096, 40)
del q, k
if exists(mask):
mask = rearrange(mask, 'b ... -> b (...)')
max_neg_value = -torch.finfo(sim.dtype).max
mask = repeat(mask, 'b j -> (b h) () j', h=h)
sim.masked_fill_(~mask, max_neg_value)
del mask
# attention, what we cannot get enough of
attn = sim.softmax(dim=-1)
# attention, what we cannot get enough of, by halves
sim[4:] = sim[4:].softmax(dim=-1)
sim[:4] = sim[:4].softmax(dim=-1)
out = einsum('b i j, b j d -> b i d', attn, v)
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
return self.to_out(out)
sim = einsum('b i j, b j d -> b i d', sim, v)
sim = rearrange(sim, '(b h) n d -> b n (h d)', h=h)
return self.to_out(sim)
class BasicTransformerBlock(nn.Module):
def __init__(
self,
dim,
n_heads,
d_head,
dropout=0.0,
context_dim=None,
gated_ff=True,
checkpoint=True,
):
def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True):
super().__init__()
self.attn1 = CrossAttention(
query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout
) # is a self-attention
self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout) # is a self-attention
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
self.attn2 = CrossAttention(
query_dim=dim,
context_dim=context_dim,
heads=n_heads,
dim_head=d_head,
dropout=dropout,
) # is self-attn if context is none
self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim,
heads=n_heads, dim_head=d_head, dropout=dropout) # is self-attn if context is none
self.norm1 = nn.LayerNorm(dim)
self.norm2 = nn.LayerNorm(dim)
self.norm3 = nn.LayerNorm(dim)
self.checkpoint = checkpoint
def forward(self, x, context=None):
return checkpoint(
self._forward, (x, context), self.parameters(), self.checkpoint
)
return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint)
def _forward(self, x, context=None):
x = x.contiguous() if x.device.type == 'mps' else x
@ -249,43 +228,29 @@ class SpatialTransformer(nn.Module):
Then apply standard transformer action.
Finally, reshape to image
"""
def __init__(
self,
in_channels,
n_heads,
d_head,
depth=1,
dropout=0.0,
context_dim=None,
):
def __init__(self, in_channels, n_heads, d_head,
depth=1, dropout=0., context_dim=None):
super().__init__()
self.in_channels = in_channels
inner_dim = n_heads * d_head
self.norm = Normalize(in_channels)
self.proj_in = nn.Conv2d(
in_channels, inner_dim, kernel_size=1, stride=1, padding=0
)
self.proj_in = nn.Conv2d(in_channels,
inner_dim,
kernel_size=1,
stride=1,
padding=0)
self.transformer_blocks = nn.ModuleList(
[
BasicTransformerBlock(
inner_dim,
n_heads,
d_head,
dropout=dropout,
context_dim=context_dim,
)
for d in range(depth)
]
[BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim)
for d in range(depth)]
)
self.proj_out = zero_module(
nn.Conv2d(
inner_dim, in_channels, kernel_size=1, stride=1, padding=0
)
)
self.proj_out = zero_module(nn.Conv2d(inner_dim,
in_channels,
kernel_size=1,
stride=1,
padding=0))
def forward(self, x, context=None):
# note: if no context is given, cross-attention defaults to self-attention

View File

@ -1,856 +1,13 @@
# Copyright (c) 2022 Lincoln D. Stein (https://github.com/lstein)
'''
This module is provided for backward compatibility with the
original (hasty) API.
# Derived from source code carrying the following copyrights
# Copyright (c) 2022 Machine Vision and Learning Group, LMU Munich
# Copyright (c) 2022 Robin Rombach and Patrick Esser and contributors
Please use ldm.generate instead.
'''
import torch
import numpy as np
import random
import os
import traceback
from omegaconf import OmegaConf
from PIL import Image
from tqdm import tqdm, trange
from itertools import islice
from einops import rearrange, repeat
from torch import nn
from torchvision.utils import make_grid
from pytorch_lightning import seed_everything
from torch import autocast
from contextlib import contextmanager, nullcontext
import transformers
import time
import re
import sys
from ldm.generate import Generate
from ldm.util import instantiate_from_config
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.plms import PLMSSampler
from ldm.models.diffusion.ksampler import KSampler
from ldm.dream.pngwriter import PngWriter
from ldm.dream.image_util import InitImageResizer
from ldm.dream.devices import choose_autocast_device, choose_torch_device
"""Simplified text to image API for stable diffusion/latent diffusion
Example Usage:
from ldm.simplet2i import T2I
# Create an object with default values
t2i = T2I(model = <path> // models/ldm/stable-diffusion-v1/model.ckpt
config = <path> // configs/stable-diffusion/v1-inference.yaml
iterations = <integer> // how many times to run the sampling (1)
steps = <integer> // 50
seed = <integer> // current system time
sampler_name= ['ddim', 'k_dpm_2_a', 'k_dpm_2', 'k_euler_a', 'k_euler', 'k_heun', 'k_lms', 'plms'] // k_lms
grid = <boolean> // false
width = <integer> // image width, multiple of 64 (512)
height = <integer> // image height, multiple of 64 (512)
cfg_scale = <float> // unconditional guidance scale (7.5)
)
# do the slow model initialization
t2i.load_model()
# Do the fast inference & image generation. Any options passed here
# override the default values assigned during class initialization
# Will call load_model() if the model was not previously loaded and so
# may be slow at first.
# The method returns a list of images. Each row of the list is a sub-list of [filename,seed]
results = t2i.prompt2png(prompt = "an astronaut riding a horse",
outdir = "./outputs/samples",
iterations = 3)
for row in results:
print(f'filename={row[0]}')
print(f'seed ={row[1]}')
# Same thing, but using an initial image.
results = t2i.prompt2png(prompt = "an astronaut riding a horse",
outdir = "./outputs/,
iterations = 3,
init_img = "./sketches/horse+rider.png")
for row in results:
print(f'filename={row[0]}')
print(f'seed ={row[1]}')
# Same thing, but we return a series of Image objects, which lets you manipulate them,
# combine them, and save them under arbitrary names
results = t2i.prompt2image(prompt = "an astronaut riding a horse"
outdir = "./outputs/")
for row in results:
im = row[0]
seed = row[1]
im.save(f'./outputs/samples/an_astronaut_riding_a_horse-{seed}.png')
im.thumbnail(100,100).save('./outputs/samples/astronaut_thumb.jpg')
Note that the old txt2img() and img2img() calls are deprecated but will
still work.
"""
class T2I:
"""T2I class
Attributes
----------
model
config
iterations
steps
seed
sampler_name
width
height
cfg_scale
latent_channels
downsampling_factor
precision
strength
seamless
embedding_path
The vast majority of these arguments default to reasonable values.
"""
def __init__(
self,
iterations=1,
steps=50,
seed=None,
cfg_scale=7.5,
weights='models/ldm/stable-diffusion-v1/model.ckpt',
config='configs/stable-diffusion/v1-inference.yaml',
grid=False,
width=512,
height=512,
sampler_name='k_lms',
latent_channels=4,
downsampling_factor=8,
ddim_eta=0.0, # deterministic
precision='autocast',
full_precision=False,
strength=0.75, # default in scripts/img2img.py
seamless=False,
embedding_path=None,
device_type = 'cuda',
# just to keep track of this parameter when regenerating prompt
# needs to be replaced when new configuration system implemented.
latent_diffusion_weights=False,
):
self.iterations = iterations
self.width = width
self.height = height
self.steps = steps
self.cfg_scale = cfg_scale
self.weights = weights
self.config = config
self.sampler_name = sampler_name
self.latent_channels = latent_channels
self.downsampling_factor = downsampling_factor
self.grid = grid
self.ddim_eta = ddim_eta
self.precision = precision
self.full_precision = True if choose_torch_device() == 'mps' else full_precision
self.strength = strength
self.seamless = seamless
self.embedding_path = embedding_path
self.device_type = device_type
self.model = None # empty for now
self.sampler = None
self.device = None
self.latent_diffusion_weights = latent_diffusion_weights
if device_type == 'cuda' and not torch.cuda.is_available():
device_type = choose_torch_device()
print(">> cuda not available, using device", device_type)
self.device = torch.device(device_type)
# for VRAM usage statistics
device_type = choose_torch_device()
self.session_peakmem = torch.cuda.max_memory_allocated() if device_type == 'cuda' else None
if seed is None:
self.seed = self._new_seed()
else:
self.seed = seed
transformers.logging.set_verbosity_error()
def prompt2png(self, prompt, outdir, **kwargs):
"""
Takes a prompt and an output directory, writes out the requested number
of PNG files, and returns an array of [[filename,seed],[filename,seed]...]
Optional named arguments are the same as those passed to T2I and prompt2image()
"""
results = self.prompt2image(prompt, **kwargs)
pngwriter = PngWriter(outdir)
prefix = pngwriter.unique_prefix()
outputs = []
for image, seed in results:
name = f'{prefix}.{seed}.png'
path = pngwriter.save_image_and_prompt_to_png(
image, f'{prompt} -S{seed}', name)
outputs.append([path, seed])
return outputs
def txt2img(self, prompt, **kwargs):
outdir = kwargs.pop('outdir', 'outputs/img-samples')
return self.prompt2png(prompt, outdir, **kwargs)
def img2img(self, prompt, **kwargs):
outdir = kwargs.pop('outdir', 'outputs/img-samples')
assert (
'init_img' in kwargs
), 'call to img2img() must include the init_img argument'
return self.prompt2png(prompt, outdir, **kwargs)
def prompt2image(
self,
# these are common
prompt,
iterations = None,
steps = None,
seed = None,
cfg_scale = None,
ddim_eta = None,
skip_normalize = False,
image_callback = None,
step_callback = None,
width = None,
height = None,
seamless = False,
# these are specific to img2img
init_img = None,
fit = False,
strength = None,
gfpgan_strength= 0,
save_original = False,
upscale = None,
sampler_name = None,
log_tokenization= False,
with_variations = None,
variation_amount = 0.0,
**args,
): # eat up additional cruft
"""
ldm.prompt2image() is the common entry point for txt2img() and img2img()
It takes the following arguments:
prompt // prompt string (no default)
iterations // iterations (1); image count=iterations
steps // refinement steps per iteration
seed // seed for random number generator
width // width of image, in multiples of 64 (512)
height // height of image, in multiples of 64 (512)
cfg_scale // how strongly the prompt influences the image (7.5) (must be >1)
seamless // whether the generated image should tile
init_img // path to an initial image - its dimensions override width and height
strength // strength for noising/unnoising init_img. 0.0 preserves image exactly, 1.0 replaces it completely
gfpgan_strength // strength for GFPGAN. 0.0 preserves image exactly, 1.0 replaces it completely
ddim_eta // image randomness (eta=0.0 means the same seed always produces the same image)
step_callback // a function or method that will be called each step
image_callback // a function or method that will be called each time an image is generated
with_variations // a weighted list [(seed_1, weight_1), (seed_2, weight_2), ...] of variations which should be applied before doing any generation
variation_amount // optional 0-1 value to slerp from -S noise to random noise (allows variations on an image)
To use the step callback, define a function that receives two arguments:
- Image GPU data
- The step number
To use the image callback, define a function of method that receives two arguments, an Image object
and the seed. You can then do whatever you like with the image, including converting it to
different formats and manipulating it. For example:
def process_image(image,seed):
image.save(f{'images/seed.png'})
The callback used by the prompt2png() can be found in ldm/dream_util.py. It contains code
to create the requested output directory, select a unique informative name for each image, and
write the prompt into the PNG metadata.
"""
# TODO: convert this into a getattr() loop
steps = steps or self.steps
width = width or self.width
height = height or self.height
seamless = seamless or self.seamless
cfg_scale = cfg_scale or self.cfg_scale
ddim_eta = ddim_eta or self.ddim_eta
iterations = iterations or self.iterations
strength = strength or self.strength
self.log_tokenization = log_tokenization
with_variations = [] if with_variations is None else with_variations
model = (
self.load_model()
) # will instantiate the model or return it from cache
for m in model.modules():
if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)):
m.padding_mode = 'circular' if seamless else m._orig_padding_mode
assert cfg_scale > 1.0, 'CFG_Scale (-C) must be >1.0'
assert (
0.0 <= strength <= 1.0
), 'can only work with strength in [0.0, 1.0]'
assert (
0.0 <= variation_amount <= 1.0
), '-v --variation_amount must be in [0.0, 1.0]'
if len(with_variations) > 0 or variation_amount > 0.0:
assert seed is not None,\
'seed must be specified when using with_variations'
if variation_amount == 0.0:
assert iterations == 1,\
'when using --with_variations, multiple iterations are only possible when using --variation_amount'
assert all(0 <= weight <= 1 for _, weight in with_variations),\
f'variation weights must be in [0.0, 1.0]: got {[weight for _, weight in with_variations]}'
seed = seed or self.seed
width, height, _ = self._resolution_check(width, height, log=True)
# TODO: - Check if this is still necessary to run on M1 devices.
# - Move code into ldm.dream.devices to live alongside other
# special-hardware casing code.
if self.precision == 'autocast' and torch.cuda.is_available():
scope = autocast
else:
scope = nullcontext
if sampler_name and (sampler_name != self.sampler_name):
self.sampler_name = sampler_name
self._set_sampler()
tic = time.time()
if torch.cuda.is_available():
torch.cuda.reset_peak_memory_stats()
results = list()
try:
if init_img:
assert os.path.exists(init_img), f'{init_img}: File not found'
init_image = self._load_img(init_img, width, height, fit).to(self.device)
with scope(self.device.type):
init_latent = self.model.get_first_stage_encoding(
self.model.encode_first_stage(init_image)
) # move to latent space
make_image = self._img2img(
prompt,
steps=steps,
cfg_scale=cfg_scale,
ddim_eta=ddim_eta,
skip_normalize=skip_normalize,
init_latent=init_latent,
strength=strength,
callback=step_callback,
)
else:
init_latent = None
make_image = self._txt2img(
prompt,
steps=steps,
cfg_scale=cfg_scale,
ddim_eta=ddim_eta,
skip_normalize=skip_normalize,
width=width,
height=height,
callback=step_callback,
)
initial_noise = None
if variation_amount > 0 or len(with_variations) > 0:
# use fixed initial noise plus random noise per iteration
seed_everything(seed)
initial_noise = self._get_noise(init_latent,width,height)
for v_seed, v_weight in with_variations:
seed = v_seed
seed_everything(seed)
next_noise = self._get_noise(init_latent,width,height)
initial_noise = self.slerp(v_weight, initial_noise, next_noise)
if variation_amount > 0:
random.seed() # reset RNG to an actually random state, so we can get a random seed for variations
seed = random.randrange(0,np.iinfo(np.uint32).max)
device_type = choose_autocast_device(self.device)
with scope(device_type), self.model.ema_scope():
for n in trange(iterations, desc='Generating'):
x_T = None
if variation_amount > 0:
seed_everything(seed)
target_noise = self._get_noise(init_latent,width,height)
x_T = self.slerp(variation_amount, initial_noise, target_noise)
elif initial_noise is not None:
# i.e. we specified particular variations
x_T = initial_noise
else:
seed_everything(seed)
if self.device.type == 'mps':
x_T = self._get_noise(init_latent,width,height)
# make_image will do the equivalent of get_noise itself
image = make_image(x_T)
results.append([image, seed])
if image_callback is not None:
image_callback(image, seed)
seed = self._new_seed()
if upscale is not None or gfpgan_strength > 0:
for result in results:
image, seed = result
try:
if upscale is not None:
from ldm.gfpgan.gfpgan_tools import (
real_esrgan_upscale,
)
if len(upscale) < 2:
upscale.append(0.75)
image = real_esrgan_upscale(
image,
upscale[1],
int(upscale[0]),
prompt,
seed,
)
if gfpgan_strength > 0:
from ldm.gfpgan.gfpgan_tools import _run_gfpgan
image = _run_gfpgan(
image, gfpgan_strength, prompt, seed, 1
)
except Exception as e:
print(
f'>> Error running RealESRGAN - Your image was not upscaled.\n{e}'
)
if image_callback is not None:
image_callback(image, seed, upscaled=True)
else: # no callback passed, so we simply replace old image with rescaled one
result[0] = image
except KeyboardInterrupt:
print('*interrupted*')
print(
'>> Partial results will be returned; if --grid was requested, nothing will be returned.'
)
except RuntimeError as e:
print(traceback.format_exc(), file=sys.stderr)
print('>> Are you sure your system has an adequate NVIDIA GPU?')
toc = time.time()
print('>> Usage stats:')
print(
f'>> {len(results)} image(s) generated in', '%4.2fs' % (toc - tic)
)
print(
f'>> Max VRAM used for this generation:',
'%4.2fG' % (torch.cuda.max_memory_allocated() / 1e9),
)
if self.session_peakmem:
self.session_peakmem = max(
self.session_peakmem, torch.cuda.max_memory_allocated()
)
print(
f'>> Max VRAM used since script start: ',
'%4.2fG' % (self.session_peakmem / 1e9),
)
return results
@torch.no_grad()
def _txt2img(
self,
prompt,
steps,
cfg_scale,
ddim_eta,
skip_normalize,
width,
height,
callback,
):
"""
Returns a function returning an image derived from the prompt and the initial image
Return value depends on the seed at the time you call it
"""
sampler = self.sampler
@torch.no_grad()
def make_image(x_T):
uc, c = self._get_uc_and_c(prompt, skip_normalize)
shape = [
self.latent_channels,
height // self.downsampling_factor,
width // self.downsampling_factor,
]
samples, _ = sampler.sample(
batch_size=1,
S=steps,
x_T=x_T,
conditioning=c,
shape=shape,
verbose=False,
unconditional_guidance_scale=cfg_scale,
unconditional_conditioning=uc,
eta=ddim_eta,
img_callback=callback
)
return self._sample_to_image(samples)
return make_image
@torch.no_grad()
def _img2img(
self,
prompt,
steps,
cfg_scale,
ddim_eta,
skip_normalize,
init_latent,
strength,
callback, # Currently not implemented for img2img
):
"""
Returns a function returning an image derived from the prompt and the initial image
Return value depends on the seed at the time you call it
"""
# PLMS sampler not supported yet, so ignore previous sampler
if self.sampler_name != 'ddim':
print(
f">> sampler '{self.sampler_name}' is not yet supported. Using DDIM sampler"
)
sampler = DDIMSampler(self.model, device=self.device)
else:
sampler = self.sampler
sampler.make_schedule(
ddim_num_steps=steps, ddim_eta=ddim_eta, verbose=False
)
t_enc = int(strength * steps)
@torch.no_grad()
def make_image(x_T):
uc, c = self._get_uc_and_c(prompt, skip_normalize)
# encode (scaled latent)
z_enc = sampler.stochastic_encode(
init_latent,
torch.tensor([t_enc]).to(self.device),
noise=x_T
)
# decode it
samples = sampler.decode(
z_enc,
c,
t_enc,
img_callback=callback,
unconditional_guidance_scale=cfg_scale,
unconditional_conditioning=uc,
)
return self._sample_to_image(samples)
return make_image
# TODO: does this actually need to run every loop? does anything in it vary by random seed?
def _get_uc_and_c(self, prompt, skip_normalize):
uc = self.model.get_learned_conditioning([''])
# get weighted sub-prompts
weighted_subprompts = T2I._split_weighted_subprompts(
prompt, skip_normalize)
if len(weighted_subprompts) > 1:
# i dont know if this is correct.. but it works
c = torch.zeros_like(uc)
# normalize each "sub prompt" and add it
for subprompt, weight in weighted_subprompts:
self._log_tokenization(subprompt)
c = torch.add(
c,
self.model.get_learned_conditioning([subprompt]),
alpha=weight,
)
else: # just standard 1 prompt
self._log_tokenization(prompt)
c = self.model.get_learned_conditioning([prompt])
return (uc, c)
def _sample_to_image(self, samples):
x_samples = self.model.decode_first_stage(samples)
x_samples = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0)
if len(x_samples) != 1:
raise Exception(
f'>> expected to get a single image, but got {len(x_samples)}')
x_sample = 255.0 * rearrange(
x_samples[0].cpu().numpy(), 'c h w -> h w c'
)
return Image.fromarray(x_sample.astype(np.uint8))
def _new_seed(self):
self.seed = random.randrange(0, np.iinfo(np.uint32).max)
return self.seed
def load_model(self):
"""Load and initialize the model from configuration variables passed at object creation time"""
if self.model is None:
seed_everything(self.seed)
try:
config = OmegaConf.load(self.config)
model = self._load_model_from_config(config, self.weights)
if self.embedding_path is not None:
model.embedding_manager.load(
self.embedding_path, self.full_precision
)
self.model = model.to(self.device)
# model.to doesn't change the cond_stage_model.device used to move the tokenizer output, so set it here
self.model.cond_stage_model.device = self.device
except AttributeError as e:
print(f'>> Error loading model. {str(e)}', file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
raise SystemExit from e
self._set_sampler()
for m in self.model.modules():
if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)):
m._orig_padding_mode = m.padding_mode
return self.model
# returns a tensor filled with random numbers from a normal distribution
def _get_noise(self,init_latent,width,height):
if init_latent is not None:
if self.device.type == 'mps':
return torch.randn_like(init_latent, device='cpu').to(self.device)
else:
return torch.randn_like(init_latent, device=self.device)
else:
if self.device.type == 'mps':
return torch.randn([1,
self.latent_channels,
height // self.downsampling_factor,
width // self.downsampling_factor],
device='cpu').to(self.device)
else:
return torch.randn([1,
self.latent_channels,
height // self.downsampling_factor,
width // self.downsampling_factor],
device=self.device)
def _set_sampler(self):
msg = f'>> Setting Sampler to {self.sampler_name}'
if self.sampler_name == 'plms':
self.sampler = PLMSSampler(self.model, device=self.device)
elif self.sampler_name == 'ddim':
self.sampler = DDIMSampler(self.model, device=self.device)
elif self.sampler_name == 'k_dpm_2_a':
self.sampler = KSampler(
self.model, 'dpm_2_ancestral', device=self.device
)
elif self.sampler_name == 'k_dpm_2':
self.sampler = KSampler(self.model, 'dpm_2', device=self.device)
elif self.sampler_name == 'k_euler_a':
self.sampler = KSampler(
self.model, 'euler_ancestral', device=self.device
)
elif self.sampler_name == 'k_euler':
self.sampler = KSampler(self.model, 'euler', device=self.device)
elif self.sampler_name == 'k_heun':
self.sampler = KSampler(self.model, 'heun', device=self.device)
elif self.sampler_name == 'k_lms':
self.sampler = KSampler(self.model, 'lms', device=self.device)
else:
msg = f'>> Unsupported Sampler: {self.sampler_name}, Defaulting to plms'
self.sampler = PLMSSampler(self.model, device=self.device)
print(msg)
def _load_model_from_config(self, config, ckpt):
print(f'>> Loading model from {ckpt}')
pl_sd = torch.load(ckpt, map_location='cpu')
# if "global_step" in pl_sd:
# print(f"Global Step: {pl_sd['global_step']}")
sd = pl_sd['state_dict']
model = instantiate_from_config(config.model)
m, u = model.load_state_dict(sd, strict=False)
model.to(self.device)
model.eval()
if self.full_precision:
print(
'Using slower but more accurate full-precision math (--full_precision)'
)
else:
print(
'>> Using half precision math. Call with --full_precision to use more accurate but VRAM-intensive full precision.'
)
model.half()
return model
def _load_img(self, path, width, height, fit=False):
with Image.open(path) as img:
image = img.convert('RGB')
print(
f'>> loaded input image of size {image.width}x{image.height} from {path}'
)
# The logic here is:
# 1. If "fit" is true, then the image will be fit into the bounding box defined
# by width and height. It will do this in a way that preserves the init image's
# aspect ratio while preventing letterboxing. This means that if there is
# leftover horizontal space after rescaling the image to fit in the bounding box,
# the generated image's width will be reduced to the rescaled init image's width.
# Similarly for the vertical space.
# 2. Otherwise, if "fit" is false, then the image will be scaled, preserving its
# aspect ratio, to the nearest multiple of 64. Large images may generate an
# unexpected OOM error.
if fit:
image = self._fit_image(image,(width,height))
else:
image = self._squeeze_image(image)
image = np.array(image).astype(np.float32) / 255.0
image = image[None].transpose(0, 3, 1, 2)
image = torch.from_numpy(image)
return 2.0 * image - 1.0
def _squeeze_image(self,image):
x,y,resize_needed = self._resolution_check(image.width,image.height)
if resize_needed:
return InitImageResizer(image).resize(x,y)
return image
def _fit_image(self,image,max_dimensions):
w,h = max_dimensions
print(
f'>> image will be resized to fit inside a box {w}x{h} in size.'
)
if image.width > image.height:
h = None # by setting h to none, we tell InitImageResizer to fit into the width and calculate height
elif image.height > image.width:
w = None # ditto for w
else:
pass
image = InitImageResizer(image).resize(w,h) # note that InitImageResizer does the multiple of 64 truncation internally
print(
f'>> after adjusting image dimensions to be multiples of 64, init image is {image.width}x{image.height}'
)
return image
# TO DO: Move this and related weighted subprompt code into its own module.
def _split_weighted_subprompts(text, skip_normalize=False):
"""
grabs all text up to the first occurrence of ':'
uses the grabbed text as a sub-prompt, and takes the value following ':' as weight
if ':' has no value defined, defaults to 1.0
repeats until no text remaining
"""
prompt_parser = re.compile("""
(?P<prompt> # capture group for 'prompt'
(?:\\\:|[^:])+ # match one or more non ':' characters or escaped colons '\:'
) # end 'prompt'
(?: # non-capture group
:+ # match one or more ':' characters
(?P<weight> # capture group for 'weight'
-?\d+(?:\.\d+)? # match positive or negative integer or decimal number
)? # end weight capture group, make optional
\s* # strip spaces after weight
| # OR
$ # else, if no ':' then match end of line
) # end non-capture group
""", re.VERBOSE)
parsed_prompts = [(match.group("prompt").replace("\\:", ":"), float(
match.group("weight") or 1)) for match in re.finditer(prompt_parser, text)]
if skip_normalize:
return parsed_prompts
weight_sum = sum(map(lambda x: x[1], parsed_prompts))
if weight_sum == 0:
print(
"Warning: Subprompt weights add up to zero. Discarding and using even weights instead.")
equal_weight = 1 / len(parsed_prompts)
return [(x[0], equal_weight) for x in parsed_prompts]
return [(x[0], x[1] / weight_sum) for x in parsed_prompts]
# shows how the prompt is tokenized
# usually tokens have '</w>' to indicate end-of-word,
# but for readability it has been replaced with ' '
def _log_tokenization(self, text):
if not self.log_tokenization:
return
tokens = self.model.cond_stage_model.tokenizer._tokenize(text)
tokenized = ""
discarded = ""
usedTokens = 0
totalTokens = len(tokens)
for i in range(0, totalTokens):
token = tokens[i].replace('</w>', ' ')
# alternate color
s = (usedTokens % 6) + 1
if i < self.model.cond_stage_model.max_length:
tokenized = tokenized + f"\x1b[0;3{s};40m{token}"
usedTokens += 1
else: # over max token length
discarded = discarded + f"\x1b[0;3{s};40m{token}"
print(f"\nTokens ({usedTokens}):\n{tokenized}\x1b[0m")
if discarded != "":
print(
f"Tokens Discarded ({totalTokens-usedTokens}):\n{discarded}\x1b[0m")
def _resolution_check(self, width, height, log=False):
resize_needed = False
w, h = map(
lambda x: x - x % 64, (width, height)
) # resize to integer multiple of 64
if h != height or w != width:
if log:
print(
f'>> Provided width and height must be multiples of 64. Auto-resizing to {w}x{h}'
)
height = h
width = w
resize_needed = True
if (width * height) > (self.width * self.height):
print(">> This input is larger than your defaults. If you run out of memory, please use a smaller image.")
return width, height, resize_needed
def slerp(self, t, v0, v1, DOT_THRESHOLD=0.9995):
'''
Spherical linear interpolation
Args:
t (float/np.ndarray): Float value between 0.0 and 1.0
v0 (np.ndarray): Starting vector
v1 (np.ndarray): Final vector
DOT_THRESHOLD (float): Threshold for considering the two vectors as
colineal. Not recommended to alter this.
Returns:
v2 (np.ndarray): Interpolation vector between v0 and v1
'''
inputs_are_torch = False
if not isinstance(v0, np.ndarray):
inputs_are_torch = True
v0 = v0.detach().cpu().numpy()
if not isinstance(v1, np.ndarray):
inputs_are_torch = True
v1 = v1.detach().cpu().numpy()
dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1)))
if np.abs(dot) > DOT_THRESHOLD:
v2 = (1 - t) * v0 + t * v1
else:
theta_0 = np.arccos(dot)
sin_theta_0 = np.sin(theta_0)
theta_t = theta_0 * t
sin_theta_t = np.sin(theta_t)
s0 = np.sin(theta_0 - theta_t) / sin_theta_0
s1 = sin_theta_t / sin_theta_0
v2 = s0 * v0 + s1 * v1
if inputs_are_torch:
v2 = torch.from_numpy(v2).to(self.device)
return v2
class T2I(Generate):
def __init__(self,**kwargs):
print(f'>> The ldm.simplet2i module is deprecated. Use ldm.generate instead. It is a drop-in replacement.')
super().__init__(kwargs)

View File

@ -40,7 +40,7 @@ def main():
print('* Initializing, be patient...\n')
sys.path.append('.')
from pytorch_lightning import logging
from ldm.simplet2i import T2I
from ldm.generate import Generate
# these two lines prevent a horrible warning message from appearing
# when the frozen CLIP tokenizer is imported
@ -52,19 +52,18 @@ def main():
# defaults passed on the command line.
# additional parameters will be added (or overriden) during
# the user input loop
t2i = T2I(
width=width,
height=height,
sampler_name=opt.sampler_name,
weights=weights,
full_precision=opt.full_precision,
config=config,
grid = opt.grid,
t2i = Generate(
width = width,
height = height,
sampler_name = opt.sampler_name,
weights = weights,
full_precision = opt.full_precision,
config = config,
grid = opt.grid,
# this is solely for recreating the prompt
latent_diffusion_weights=opt.laion400m,
seamless=opt.seamless,
embedding_path=opt.embedding_path,
device_type=opt.device
seamless = opt.seamless,
embedding_path = opt.embedding_path,
device_type = opt.device
)
# make sure the output directory exists
@ -567,6 +566,17 @@ def create_cmd_parser():
type=str,
help='Path to input image for img2img mode (supersedes width and height)',
)
parser.add_argument(
'-M',
'--mask',
type=str,
help='Path to inpainting mask; transparent areas will be painted over',
)
parser.add_argument(
'--invert_mask',
action='store_true',
help='Invert the inpainting mask; opaque areas will be painted over',
)
parser.add_argument(
'-T',
'-fit',