mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node
This commit is contained in:
parent
6ed0efa938
commit
78cd106c23
@ -6,6 +6,8 @@ import einops
|
||||
from pydantic import BaseModel, Field, validator
|
||||
import torch
|
||||
|
||||
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel
|
||||
|
||||
from invokeai.app.invocations.util.choose_model import choose_model
|
||||
from invokeai.app.models.image import ImageCategory
|
||||
from invokeai.app.util.misc import SEED_MAX, get_random_seed
|
||||
@ -28,7 +30,7 @@ from .compel import ConditioningField
|
||||
from ...backend.stable_diffusion import PipelineIntermediateState
|
||||
from diffusers.schedulers import SchedulerMixin as Scheduler
|
||||
import diffusers
|
||||
from diffusers import DiffusionPipeline
|
||||
from diffusers import DiffusionPipeline, ControlNetModel
|
||||
|
||||
|
||||
class LatentsField(BaseModel):
|
||||
@ -171,6 +173,9 @@ class TextToLatentsInvocation(BaseInvocation):
|
||||
model: str = Field(default="", description="The model to use (currently ignored)")
|
||||
# seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
|
||||
# seamless_axes: str = Field(default="", description="The axes to tile the image on, 'x' and/or 'y'")
|
||||
progress_images: bool = Field(default=False, description="Whether or not to produce progress images during generation", )
|
||||
control_model: Optional[str] = Field(default=None, description="The control model to use")
|
||||
control_image: Optional[ImageField] = Field(default=None, description="The processed control image")
|
||||
# fmt: on
|
||||
|
||||
# Schema customisation
|
||||
@ -252,6 +257,63 @@ class TextToLatentsInvocation(BaseInvocation):
|
||||
model = self.get_model(context.services.model_manager)
|
||||
conditioning_data = self.get_conditioning_data(context, model)
|
||||
|
||||
# loading controlnet model
|
||||
if (self.control_model is None or self.control_model==''):
|
||||
control_model = None
|
||||
else:
|
||||
# FIXME: change this to dropdown menu?
|
||||
# FIXME: generalize so don't have to hardcode torch_dtype and device
|
||||
control_model = ControlNetModel.from_pretrained(self.control_model,
|
||||
torch_dtype=torch.float16).to("cuda")
|
||||
model.control_model = control_model
|
||||
|
||||
# loading controlnet image (currently requires pre-processed image)
|
||||
control_image = (
|
||||
None if self.control_image is None
|
||||
else context.services.images.get(
|
||||
self.control_image.image_type, self.control_image.image_name
|
||||
)
|
||||
)
|
||||
|
||||
# copied from old backend/txt2img.py
|
||||
# FIXME: still need to test with different widths, heights, devices, dtypes
|
||||
# and add in batch_size, num_images_per_prompt?
|
||||
if control_image is not None:
|
||||
if isinstance(control_model, ControlNetModel):
|
||||
control_image = model.prepare_control_image(
|
||||
image=control_image,
|
||||
# do_classifier_free_guidance=do_classifier_free_guidance,
|
||||
do_classifier_free_guidance=True,
|
||||
# width=width,
|
||||
# height=height,
|
||||
width=512,
|
||||
height=512,
|
||||
# batch_size=batch_size * num_images_per_prompt,
|
||||
# num_images_per_prompt=num_images_per_prompt,
|
||||
device=control_model.device,
|
||||
dtype=control_model.dtype,
|
||||
)
|
||||
elif isinstance(control_model, MultiControlNetModel):
|
||||
images = []
|
||||
for image_ in control_image:
|
||||
image_ = model.prepare_control_image(
|
||||
image=image_,
|
||||
# do_classifier_free_guidance=do_classifier_free_guidance,
|
||||
do_classifier_free_guidance=True,
|
||||
# width=width,
|
||||
# height=height,
|
||||
width=512,
|
||||
height=512,
|
||||
# batch_size=batch_size * num_images_per_prompt,
|
||||
# num_images_per_prompt=num_images_per_prompt,
|
||||
device=control_model.device,
|
||||
dtype=control_model.dtype,
|
||||
)
|
||||
images.append(image_)
|
||||
control_image = images
|
||||
|
||||
|
||||
|
||||
# TODO: Verify the noise is the right size
|
||||
|
||||
result_latents, result_attention_map_saver = model.latents_from_embeddings(
|
||||
@ -259,7 +321,8 @@ class TextToLatentsInvocation(BaseInvocation):
|
||||
noise=noise,
|
||||
num_inference_steps=self.steps,
|
||||
conditioning_data=conditioning_data,
|
||||
callback=step_callback
|
||||
callback=step_callback,
|
||||
control_image=control_image,
|
||||
)
|
||||
|
||||
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
|
||||
|
Loading…
Reference in New Issue
Block a user